I am using https://stackoverflow.com/a/1833851 to clone a function so that I can override it. For example:
Function.prototype.clone = function() {
var that = this;
var temp = function temporary() { return that.apply(this, arguments); };
for(var key in this) {
if (this.hasOwnProperty(key)) {
temp[key] = this[key];
}
}
return temp;
};
window.capture_list = [];
window.handler_clone = window.YAHOO.handleData.clone();
window.YAHOO.handleData = function(oRequest, oResponse, oData){
window.capture_list.push( {'oRequest': oRequest, 'oResponse': oResponse, 'oData': oData} );
return window.handler_clone( oRequest, oResponse, oData );
};
This appears to achieve the task, but I get a "Maximum call stack size exceeded error" in practice.
It seems like the clone method I'm using is recursing into itself somehow... I think I'm misunderstanding something about this clone implementation due to my limited js experience.
Any thoughts on where this recursion is, or how to better implement the clone for overriding? I'm really just trying to intercept the arguments passed to handler(). Thanks!
the handleData function:
window.YAHOO.handleData = function(oRequest, oResponse, oData) {
if (oData == null) {
oData = {}
}
oData.totalRecords = oResponse.meta.totalRecords;
return oData
};
Stepping through this:
Clone copies this then applies any arguments to the original function, then iterates the keys in function (I am assuming to get the prototype properties?), then returning that back out.
It seems like you are trying to create a decorator?
In any case, I am not sure why you haven't opted to use bind it creates a new function with the context that is passed in.
More here: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
Related
I'm trying to make an object as a mock to pass into a test.
I don't know if I'm constructing it correctly - I'm getting Error: User() method does not exist.
injectedUser = {
set: function(key, val){
this[key] = val;
}
};
injectedParse = {
Parse: {
User: function() {
return injectedUser;
}
}
};
Parse = function() {
return injectedParse;
};
The desired behavior I'm looking for is for function Parse.User to be called with user = new Parse.User and be able to do user.set("key", "value");
But it seems like I'm not building this object properly? I have another issue but since it is more a javascript thing potentially, I made a new, more general issue about building objects
I also tried
set = function (key, val) {
this[key] = val;
}
mockParse = function(){
this.User()
};
mockParse.prototype.User = function(){
return set
};
$provide.value('Parse', mockParse);
That gave me the same error.
All the information you should know about constructing objects are at: http://ericleads.com/2013/02/fluent-javascript-three-different-kinds-of-prototypal-oo/
In javascript using an object parameter is my preferred way of working with functions. To check that a function has the required parameters I either (Solution 1) loop through all the object parameters properties and throw an error or (Solution 2) wait until a required property is needed and throw an error. Solution two seems efficient but I have to throws in multiple places in the function. Solution 1 seems pragmatic but should probably be a reusable piece of code. Is there another solution I should be looking at?
You can actually do this
var propsNeeded = ["prop1", "prop2", "blah", "blah", "blah"],
obj = {
prop1: "Hi"
}
function hasRequiredProperties(props, obj){
return Object.keys(obj).sort().join() == propsNeeded.sort().join();
}
console.log(hasRequiredProperties(propsNeeded, obj)); // false
You can check for single properties like
function hasProperty(propName, obj){
return obj.hasOwnProperty(propName);
}
For consistency I would create require method and use it always when some property is required.
var require = function (key, object) {
if (typeof object[key] === 'undefined') {
throw new Error('Required property ' + key + ' is undefined');
}
};
I would test if required property exists as soon as I'm certain that property is needed. Like this:
var example = function (args) {
require('alwaysRequired', args);
// some code here which uses property alwaysRequired
if (args.something) {
require('sometimesRequired', args);
// some code here which uses property sometimesRequired
}
};
Using #Amit's answer I'd probably add a method to Object itself:
Object.prototype.hasAllProperties = function(props, fire){
var result = Object.keys(this).sort().join() == propsNeeded.sort().join();
if (fire && !result){
throw new Error('Object does not define all properties');
}
return result;
}
and in your function:
function someFunction(myObject){
var objComplete = myObject.hasAllProperties(["prop1", "prop2", "prop3"], false);
}
Update:
After noticing the problem with #Amit's original answer, here's what I suggest:
Object.prototype.hasAllProperties = function(props, fire){
var result = true;
$(props).each(function(i, e){
if (!this.hasOwnProperty(e) ) {
result = false;
return false;
}
});
if (fire && !result){
throw new Error('Object does not define all properties');
}
return result;
}
This is just a general case of checking for presence of keys on a object, which can be done easily enough with
requiredParams.every(function(prop) { return prop in paramObj; })
It almost reads like natural language. "Taking the required parameters, is EVERY one of them IN the parameter object?".
Just wrap this in function checkParams(paramObj, requiredParams) for easy re-use.
More generally, this is the problem of asking if one list (in this case the list of required parameters) is included in another list (the keys on the params object). So we can write a general routine for list inclusion:
function listIncluded(list1, list2) {
return list1.every(function(e) { return list2.indexOf(e) !== -1; });
}
Then our parameter-checking becomes
function checkParams(paramObj, requiredParams) {
return listIncluded(requiredParams, Object.keys(paramObj));
}
If you want to know if object has at least some properties you can use this function without third parameter:
function hasRequiredProperties(propsNeeded, obj, strict) {
if (strict) return Object.keys(obj).sort().join() == propsNeeded.sort().join();
for (var i in propsNeeded ) {
if (!obj.hasOwnProperty(propsNeeded[i])) return false;
}
return true;
};
Example:
options = {url: {
protocol: 'https:',
hostname: 'encrypted.google.com',
port: '80'
}
};
propsNeeded = ['protocol', 'hostname'];
hasRequiredProperties(propsNeeded, options.url); // true
hasRequiredProperties(propsNeeded, options.url, true); // false
Ok, difficult to understand from the title only. Here is an example. I want a function to refer to a variable that is "injected" automagically, ie:
function abc() {
console.log(myVariable);
}
I have tried with:
with({myVariable: "value"}) { abc() }
but this doesn't work unless abc is declared within the with block, ie:
with({myVariable: "value"}) {
function abc() {
console.log(myVariable);
}
abc(); // This will work
}
So the last piece will work, but is it possible to fake the with statement, or do I have to force the developers to declare their function calls in a with statement?
Basically the call I want to do is:
doSomething({myVariable: "value"}, function() {
console.log(myVariable);
});
Ofcourse, I am aware I could pass this is a one parameter object, but that is not what I am trying to do:
doSomething({myVariable: "value"}, function(M) {
console.log(M.myVariable);
});
Further more, I am trying to avoid using eval:
with({myVariable: "value"}) {
eval(abc.toString())(); // Will also work
}
Is this not supported at at all beyond eval in Javascript?
JavaScript does not provide any straightforward way to achieve the syntax you're looking for. The only way to inject a variable into a Lexical Environment is by using eval (or the very similar Function constructor). Some of the answers to this question suggest this. Some other answers suggest using global variables as a workaround. Each of those solutions have their own caveats, though.
Other than that, your only option is to use a different syntax. The closest you can get to your original syntax is passing a parameter from doSomething to the callback, as Aadit M Shah suggested. Yes, I am aware you said you don't want to do that, but it's either that or an ugly hack...
Original answer (written when I didn't fully understand the question)
Maybe what you're looking for is a closure? Something like this:
var myVariable = "value";
function doSomething() {
console.log(myVariable);
};
doSomething(); // logs "value"
Or maybe this?
function createClosure(myVariable) {
return function() {
console.log(myVariable);
};
}
var closure = createClosure("value");
closure(); // logs "value"
Or even:
var closure = function(myVariable) {
return function() {
console.log(myVariable);
};
}("value");
closure(); // logs "value"
I asked a similar question a long time ago: Is it possible to achieve dynamic scoping in JavaScript without resorting to eval?
The short answer is no, you can't achieve dynamic scoping without resorting to eval. The long answer is, you don't need to.
JavaScript doesn't support dynamic scoping, but that's not an issue because you can make your free variables parameters of the function that they belong to.
In my humble opinion this is the best solution:
function doSomething(context, callback) {
callback(context);
}
doSomething({myVariable: "value"}, function(M) {
console.log(M.myVariable);
});
However since you don't want to write a formal parameter, the next best thing is to use this instead:
function doSomething(context, callback) {
callback.call(context);
}
doSomething({myVariable: "value"}, function() {
console.log(this.myVariable);
});
Another option would be to manipulate the formal parameter list of the program as follows:
function inject(func, properties) {
var args = [], params = [];
for (var property in properties) {
if (properties.hasOwnProperty(property)) {
args.push(properties[property]);
params.push(property);
}
}
return Function.apply(null, params.concat("return " + func.toString()))
.apply(null, args);
}
Now we can use this inject method to inject properties into a function as follows:
function doSomething(context, callback) {
var func = inject(callback, context);
func();
}
doSomething({myVariable: "value"}, function() {
console.log(myVariable);
});
See the demo: http://jsfiddle.net/sDKga/1/
Note: The inject function will create an entirely new function which will not have the same lexical scope as the original function. Hence functions with free variables and partially applied functions will not work as expected. Only use inject with normal functions.
The Function constructor is kind of like eval but it's much safer. Of course I would advise you to simply use a formal parameter or this instead. However the design decision is your choice.
Try:
function doSomething(vars, fun) {
for (var key in vars) { // set the variables in vars
window[key] = vars[key];
}
fun.call(); // call function
for (var key in vars) { // remove the variables again. this will allow only the function to use it
delete window[key];
}
}
Set global variables that can then be received inside of fun
The JSFiddle: http://jsfiddle.net/shawn31313/MbAMQ/
Warning: disgusting code ahead
function callWithContext(func, context, args) {
var oldProperties = {};
for(var n in context) {
if(context.hasOwnProperty(n)) {
var oldProperty = Object.getOwnPropertyDescriptor(self, n);
oldProperties[n] = oldProperty;
(function(n) {
Object.defineProperty(self, n, {
get: function() {
if(arguments.callee.caller === func) {
return context[n];
}
if(!oldProperty) {
return;
}
if(oldProperty.get) {
return oldProperty.get.apply(this, arguments);
}
return oldProperty.value;
},
set: function(value) {
if(arguments.callee.caller === func) {
context[n] = value;
}
if(!oldProperty) {
return;
}
if(oldProperty.set) {
return oldProperty.get.apply(this, arguments);
} else if(!oldProperty.writable) {
var fakeObject = {};
Object.defineProperty(fakeObject, n, {value: null, writable: false});
fakeObject[n] = value; // Kind of stupid, but…
return;
}
oldProperty.value = value;
}
});
})(n);
}
}
func.apply(this, args);
for(var n in context) {
if(context.hasOwnProperty(n)) {
if(oldProperties[n]) {
Object.defineProperty(self, n, oldProperties[n]);
} else {
delete self[n];
}
}
}
}
This is vomitously horrendous, by the way; don’t use it. But ew, it actually works.
i don't see why you can't just pass the info in or define a single global, but i think that would be best.
that said, i am working on a Module maker/runner that allows sloppy/dangerous code to execute without interference to the host environment. that provides the opportunity to re-define variables, which can be passed as an object.
this does use eval (Function() technically) but it can run in "use strict", so it's not too crazy/clever.
it doesn't leave behind artifacts.
it also won't let globals get hurt.
it's still a work in progress, and i need to iron out a couple minor details before i vouch for security, so don't use it for fort knox or anything, but it's working and stable enough to perform the operation asked for.
tested in ch28, FF22, IE10:
function Module(strCode, blnPreventExtensions, objWhitelist, objExtend) {
var __proto__=self.__proto__, pbu=self.__proto__, str=strCode, om=[].map, wasFN=false,
params = {Object:1}, fnScrubber, natives= [ Object, Array, RegExp, String, Boolean, Date] ,
nativeSlots = [],
preamble = "'use strict';" ,
inherited="__defineGetter__,__defineSetter__,__proto__,valueOf,constructor,__lookupGetter__,__lookupSetter__",
late = inherited +
Object.getOwnPropertyNames(__proto__||{}) + Object.getOwnPropertyNames(window);
late.split(",").sort().map(function(a) {
this[a] = 1;
}, params);
preamble+=";var "+inherited+";";
//turn functions into strings, but note that a function was passed
if(str.call){wasFN=true; str=String(str); delete params.Object; }
objExtend=objExtend||{};
var vals=Object.keys(objExtend).map(function(k){ return objExtend[k]; })
// build a usable clone of Object for all the new OOP methods it provides:
var fakeOb=Object.bind();
(Object.getOwnPropertyNames(Object)||Object.keys(Object)).map(function(a){
if(Object[a] && Object[a].bind){this[a]=Object[a].bind(Object); } return this;
},fakeOb)[0];
//allow "eval" and "arguments" since strict throws if you formalize them and eval is now presumed safe.
delete params.eval;
delete params.arguments;
params.hasOwnProperty=undefined;
params.toString=undefined;
params['__proto__']={};
__proto__=null;
Object.keys(objWhitelist||{}).map(function ripper(a,b){
b=this[a];
if(typeof b!=='object'){
delete this[a];
}
}, params);
// var ok=Object.keys.bind(Object);
// prevent new prototype methods from being added to native constructors:
if (blnPreventExtensions) {
natives.forEach(function(con, i) {
var proto=con.prototype;
Object.getOwnPropertyNames(proto).map(function(prop){
if(proto[prop] && proto[prop].bind ){ this[prop]=proto[prop];}
}, nativeSlots[i] = {});
delete con.constructor;
delete con.prototype.constructor;
}); //end con map()
} /* end if(blnPreventExtensions) */
//white-list harmless math utils and prevent hijacking:
delete params.Math;
if(blnPreventExtensions){Object.freeze(Math);}
//prevent literal constructors from getting Function ref (eg: [].constructor.constructor, /./.constructor.constructor, etc...):
Function.prototype.constructor = null;
try {
//generate a private wrapper function to evaluate code:
var response = Function(
Object.keys(objExtend) + (vals.length?",":"") +
Object.keys(params).filter(/./.test, /^[\w\$]+$/), // localize most globals
preamble + " return " + str.trim() // cram code into a function body with global-blocking formal parameters
);
// call it with a blank this object and only user-supplied arguments:
if (blnPreventExtensions) { //( user-land code must run inside here to be secure)
response = response.apply({}, vals.concat(fakeOb)).apply({}, [].slice.call(arguments,4) );
}else{
response = response.apply({}, vals.concat(fakeOb));
}
} catch (y) {
response = y + "!!";
} /* end try/catch */
if (blnPreventExtensions) {
om.call(natives, function(con, i) {
var pro=con.prototype;
//remove all proto methods for this con to censor any additions made by unsafe code:
Object.getOwnPropertyNames(pro).map(function(a){ try{delete pro[a];}catch(y){}});
//restore all original props from the backup:
var bu = nativeSlots[i];
om.call(Object.keys(bu), function(prop){ con.prototype[prop]=bu[prop]; }, bu);
}); //end con map()
} /* end if(blnPreventExtensions) */
//restore hidden Function constructor property:
Function.prototype.constructor = Function;
return response;
} /* end Module() */
/////////////////////////////////////////////////////////////
function doSomething(context, fn){
console.log(myVariable);
return myVariable;
}
//use 1:
alert( Module(doSomething, true, {console:1}, {myVariable: "value123"} ) );// immed
//use2:
var fn=Module(doSomething, false, {console:1}, {myVariable: "value123"} );// as function
alert(fn);
alert(fn());
again, i think OP would be best off not doing things later than need be, but for the sake of comprehensiveness and inspiration i'm putting this out there in good faith.
You need to use call() to construct a context, as in:
var f=function(){
console.log(this.foo);
};
f.call({foo:'bar'})
will print "bar"
You can avoid using eval() in calling the function, if you are willing to use it in doSomething():
function abc() {
console.log(myVariable);
}
// Prints "value"
callWith({ myVariable: "value" }, abc);
function callWith(context, func) {
for(var i in context) eval('var ' + i + ' = context[i];');
eval('(' + func.toString() + ')')();
}
Have a look at this post.
Have a look at goog.partial, scroll a little bit up to see the description of what it does:
Here is an implementation of it:
var b = goog.partial(alert, 'Hello world!');
b();//alerts "Hello world!"
In the example it passes the function alert with parameter "Hello world!" but you can pass it your own function with multiple parameters.
This allows you to create a variable that points to a function that is always called with a certain paramater. To use parameters in a function that are not named you can use arguments:
function test(){
console.log(arguments);//["hello","world"]
}
test("hello","world");
I'm working on some script for a set of functions that all operate from one call and take a large number of parameters to return one value. The main function requires the use of 11 other functions which need to work with the same parameters. I have it structured somewhat like this:
function mainfunction(param1, param2, ..., param16)
{
//do a bunch of stuff with the parameters
return output;
}
function secondaryfunction1()
{
//gets called by mainfunction
//does a bunch of stuff with the parameters from mainfunction
}
Is there anything I can do to make the parameters passed to mainfunction available to all the secondary functions without passing them or making them global variables? If not, that's fine, I'll pass them as parameters - I'm curious as to whether or not I can do it more elegantly.
You can place the definition of secondaryfunction1 inside mainfunction:
function mainfunction(param1, param2, ..., param16){
function secondaryfunction1() {
// use param1, param2, ..., param16
}
secondaryfunction1();
}
Update:
As #dystroy pointed out, this is viable if you don't need to call secondaryfunction1 somewhere else. Where the list of parameters would be coming from in this case - I don't know.
You could use arguments to pass to secondaryFunction1 all the arguments of mainfunction. But that would be silly.
What you should probably do, and what is usually done, is embed all the parameters in an "options" object :
function mainfunction(options){
secondaryfunction1(options);
}
function secondaryfunction1(options) {
// use options.param1, etc.
}
// let's call it
mainfunction({param1: 0, param2: "yes?"});
This leds to other advantages, like
naming the parameters you pass, it's not a good thing for maintenance to have to count the parameters to know which one to change. No sane library would let you pass 16 parameters as direct unnamed arguments to a function
enabling you to pass only the needed parameters (the other ones being default)
#Igor 's answer (or some variation) is the way to go. If you have to use the functions elsewhere, though (as #dystroy pointed out), then there is another possibility. Combine your parameters together into an object, and pass that object to the secondary functions.
function combineEm() {
// Get all parameters into an array.
var args = [].slice.call(arguments, 0),
output = {},
i;
// Now put them in an object
for (i = 0; i < args.length; i++) {
output["param" + i] = args[i];
}
return output;
}
From your main function, you can do:
function mainfunction(param1, param2, ..., param16) {
var params = combineEm(param1, param2, ..., param16);
var output = secondaryfunction(params);
// etc.
return output;
}
Edit: I just wanted to clarify that all of the proposed suggestions so far do work. They just each have their own trade-offs/benefits.
I tried just suggesting some changes to other answers, but ultimately I felt like I needed to just post my solution to this.
var externalFn = function(options) {
var str = options.str || 'hello world';
alert(str);
};
var main = function(options) {
var privateMethod = function() {
var str = options.str || "foobar";
alert("str: " + str);
};
// Bind a private version of an external function
var privateMethodFromExternal = externalFn.bind(this, options);
privateMethod();
privateMethodFromExternal();
};
main({ str: "abc123"});
// alerts 'str: abc123'
// alerts 'abc123'
main({});
// alerts 'str: foobar'
// alerts 'hello world'
It seems like the main point of the question is that the functions used by the 'main function' shouldn't have to keep having the options/context passed to them.
This example shows how you can use privateMethods inside the function
It also shows how you can take external functions (that you presumably use outside of main) and bind a private method version of them for use inside main.
I prefer using some sort of 'options' object, but that aspect isn't really that important to the question of scoping that the OP was really asking about. You could use 'regular' parameters as well.
This example can be found on codepen.
Here's an incredibly naughty solution, if you're interested in that sort of thing.
var f1 = function() {
var a = 1;
var _f2 = f2.toString().replace(/^function[^{}]+{/, '');
_f2 = _f2.substr(0, _f2.length - 2);
eval(_f2);
}
var f2 = function(a) {
var a = a || 0;
console.log(a);
}
f2(); // logs 0
f1(); // logs 1
It executes the contents of some external function entirely in the current scope.
However, this sort of trickery is almost definitely an indicator that your project is mis-organized. Calling external functions should usually be no more difficult than passing an object around, as dystroy's answer suggests, defining the function in-scope, as Igor's answer suggests, or by attaching some external function to this and writing your functions primarily against the properties of this. Like so:
var FunLib = {
a : 0,
do : function() {
console.log(this.a);
}
}
var Class = function() {
this.a = 1;
this.do = FunLib.do;
this.somethingThatDependsOnDo = function() {
this.a++;
this.do();
}
}
var o = new Class();
FunLib.do() // 0
o.do() // 1
o.somethingThatDependsOnDo(); // 2
o.do() // 2 now
Similarly, and possibly better-solved with a class hierarchy.
function BasicShoe {
this.steps_taken = 0;
this.max_steps = 100000;
this.doStep = function() {
this.steps_taken++;
if (this.steps_taken > this.max_steps) {
throw new Exception("Broken Shoe!");
}
}
}
function Boot {
this.max_steps = 150000;
this.kick_step_equivalent = 10;
this.doKick = function() {
for (var i = 0; i < this.kick_step_equivalent; i++) {
this.doStep();
}
}
}
Boot.prototype = new BasicShoe();
function SteelTippedBoot {
this.max_steps = 175000;
this.kick_step_equivalent = 0;
}
SteelTippedBoot.prototype = new Boot();
Functions in javascript are objects:
var x = function(){};
x.y = 1;
console.log(x.y); //Prints 1
Is there any way to call a function when y changes?
My reason for doing this is that I'm trying to override jquery's "$" function so that I can benchmark performance. It works fine when the JS runs $('mySelector'). However, plugins that are created using $.fn.myPlugin will change the attributes in the object I overrided, rather than the original.
I believe what you're looking for are JavaScript setters. Be careful to study browser support tough.
The following example is from the MDN documentation. First, when you create your own objects:
var o = {a: 7,
get b() {return this.a + 1;},
set c(x) {this.a = x / 2}};
Second, when you augment an existing prototype:
var d = Date.prototype;
d.__defineGetter__("year", function() { return this.getFullYear(); });
d.__defineSetter__("year", function(y) { this.setFullYear(y); });
There is no way to do this that will work in all browsers. Getters and setters are nice, but are completely useless when you have to support IE6 or IE7.
The approach I settled on used bandi's defineGetter suggestion, but looped through the attributes of the original object.
getAttr = function(att) {
return function() { return eval("originalObject."+att) };
}
//Delegate all attribute access to original object
for (var att in originalObject) {
overRiddenObject.__defineGetter__(att.toString(), getAttr(att));
}
And here is the full snippet that I can stick in my code to profile jQuery selectors:
var original$ = $;
$ = function() {
//Ignore document.ready function calls
if (typeof(arguments)[0] === 'function') {
return original$.apply( this, arguments );
}
t1 = new Date().getTime();
// Run each selector 100 times since we can only time it to the millisecond
for (var i=0; i<100; i++)
x = original$.apply( this, arguments );
t = new Date().getTime()-t1;
// Print selector name, time taken and number of elements matched
console.log(arguments," "+t+"ms"+" ("+x.length+" element(s))");
return x;
};
getAttr = function(att) {
return function() { return eval("original$."+att) };
}
//Delegate all attribute access to original object
for (var att in original$) {
$.__defineGetter__(att.toString(), getAttr(att));
}
It could probably be done with better style using closure's, but it works.
Also it will only work on jQuery plugins when you remove the "$" from (function($) {...))(jQUery).
This could be worked around by rewriting this to use .extend and override methods that are called during selection - something I'm looking into to make this pluggable.