get a smooth animation for a canvas game - javascript

How to get a better animation, dinamically, even when browser is busy or idle, for different devices which have different hardware capacity.
I have tried many ways and still cannot find the right way to make the game to display a better animation.
This is what i tried:
var now;
var then = Date.now();
var delta;
window.gamedraw = function(){
now = Date.now();
delta = now - then;
if(delta > 18){
then = now - (delta % 18);
game_update();
}
}
window.gameloop = setInterval(window.gamedraw,1);
18 is the interval value to update the game, but when browser is busy this interval is not good, and it needs to lower. How to get a better animation dinamically, even when browser is idle or busy ?
I suppose that the interval value is the problem, because if interval is lower then game animation is very fast, if this value is 18 then game animation is good but not when browser is busy, and I do not have idea how to change it dinamically.

To get a smooth animation, you must :
• Synchronise on the screen.
• Compute the time elapsed within your game.
• Animate only using this game time.
Synchronizing with the screen is done by using requestAnimationFrame (rAF).
When you write :
requestAnimationFrame( myCalbBack ) ;
You are registering myCalbBack to be called once, the next time the screen is available to draw on.
( If you know about double buffering (canvas are always double-buffered), this time is the next time the GPU will swap the draw buffer with the display buffer. )
If, on the other hand, you don't use rAF but a interval/timeout to schedule the draws, what will happen is that the draws won't get actually displayed until next display refresh. Which might happen (on a 60Hz display) any time from right now to 16.6 ms later.
Below with a 20ms interval and a 16 ms screen, you can see that the images actually displayed will be alternatively 16ms away OR 2*16ms away - never 20, for sure-. You just can't know, from the interval callback, when the actual draw will show. Since both rAF and Intervals are not 100% accurate, you can even have a 3 frames delta.
So now that you are on sync with the screen, here's a bad news : the requestAnimationFrame does not tick exactly regularly. For various reasons the elapsed time in between two frames might change of 1ms or 2, or even more. So if you are using a fixed movement each frame, you'll move by the same distance during a different time : the speed is always changing.
(expl : +10 px on each rAF,
16.6 display -->> rAF time of 14, 15, 16 or 17 ms
--> the apparent speed varies from 0.58 to 0.71 px/ms. )
Answer is to measure time... And use it !
Hopefully requestAnimationFrame provides you the current time so you don't even have to use Date.now(). Secondary benefit is that this time will be very accurate on Browsers having an accurate timer (Chrome desktop).
The code below shows how you could know the time elapsed since last frame, and compute an application time :
function animate(time) {
// register to be called again on next frame.
requestAnimationFrame(animate);
// compute time elapsed since last frame.
var dt = time-lastTime;
if (dt<10) return;
if (dt >100) dt=16; // consider only 1 frame elapsed if unfocused.
lastTime=time;
applicationTime+=dt;
//
update(dt);
draw();
}
var lastTime = 0;
var applicationTime = 0;
requestAnimationFrame(animate);
Now last step is to always use time inside all you formulas. So instead of doing
x += xSpeed ;
you'll have to do :
x += dt * xSpeed ;
And now not only the small variations in between frames will be taken into account, but your game will run at the same apparent speed whatever the device's screen (20Hz, 50Hz, 60 Hz, ...).
I did a small demo where you can choose both the sync and if using fixed time, you'll be able to judge of the differences :
http://jsbin.com/wesaremune/1/

You should use requestAnimationFrame instead of setInterval.
Read this article or this one.
The latter one is in fact exactly discussing your approach (with the delta time), and then introduces the animation frame as a more reliable alternative.
The first article is really a great resource. For starters, with your interval of 18 ms you're apparently aiming for something close to 60 fps. This is in fact the default for requestAnimationFrame, so you don't need to write anything special:
function gamedraw() {
requestAnimationFrame(gamedraw); //self-reference
game_update(); //your update logic, propably needs to handle time intervals internally
}
gamedraw(); //this starts the animation
If you want to set the update interval explicitly, you can do so by wrapping the requestAnimationFrame inside a setInterval, like this:
var interval = 18;
function gamedraw() {
setTimeout(function() {
requestAnimationFrame(gamedraw);
game_update(); //must handle time difference internally
}, interval);
}
gamedraw();
Note that the game_update() function must keep track of when it was last called in order to e.g. move everything twice as far as normal in case a frame had to be skipped.
Actually, this means you could (and probably should) refactor your game_update() function to take the time that has actually passed as an argument instead of determining that internally. (There's no functional difference, it just is better, clearer code IMO because it doesn't hide the timing magic.)
var time;
function gamedraw() {
requestAnimationFrame(gamedraw);
var now = new Date().getTime(),
dt = now - (time || now);
time = now; //reset the timer
game_update(dt); //update with explicit and variable time step
}
gamedraw();
(Here I dropped the explicit frames again.)
Still, I urge you to read the first article because it also deals with cross-browser issues that I haven't gotten into here.

You should use requestAnimationFrame. It will queue up a callback to run on the next time the browser renders a frame. To achieve constant updating, call the update function recursively.
var update = function(){
//Do stuff
requestAnimationFrame(update)
}

Related

Making a clock that takes 2560ms to complete a revolution in JavaScript

I'm trying to make a clock for a Libet task - a cognitive task used by psychologists. By convention these clocks take 2560 ms to complete a revolution. Mine seems to be running quite a lot slower and I can figure out why.
I have made an example of the issue here: https://jsfiddle.net/Sumoza/re4v7Lcj/8/
On each iteration of a setInterval with a 1ms delay, I increase the angle of rotation of the hand by (Math.PI*2)/2560, i.e. 1/2560th of a circle in radians. So, incrementing one of these each ms should complete the circle in that number of ms. As you can see from the clock, this runs a fair bit slower. Can anyone shed any light as to why. Interestingly, *10 seems to look a lot closer to what I want - but that doesn't make much sense to me so I'm wary of the fix. Relevant JS from the fiddle below. Thanks for any help.
var time = 0;
var rad_tick = (Math.PI*2)/2560; //radians per tick: last number is ms per revolution
// Draw Clock
const clock = document.getElementById('clock')
const clock_ctx = clock.getContext('2d')
clock_ctx.translate(clock.width/2, clock.height/2);
radius = (clock.height/2) * 0.7;
function drawClock() {
clock_ctx.clearRect(-clock.width/2, -clock.height/2, clock.width, clock.height);
clock.style.backgroundColor = 'transparent';
clock_ctx.beginPath();
clock_ctx.arc(0, 0, radius, 0 , 2 * Math.PI);
clock_ctx.stroke();
}
drawClock();
// Draw Hand
const hand = document.getElementById('hand')
const hand_ctx = hand.getContext('2d')
hand_ctx.translate(hand.width/2, hand.height/2);
function drawHand(time){
hand_ctx.clearRect(-hand.width/2, -hand.height/2, hand.width, hand.height);
hand_ctx.beginPath();
hand_ctx.moveTo(0,0);
hand_ctx.rotate(time);
hand_ctx.lineTo(0, -radius*0.9);
hand_ctx.stroke();
hand_ctx.rotate(-time);
}
function drawTime(){
time+=rad_tick;//*10
drawHand(time)
}
var intervalId = setInterval(drawTime, 1);
Try this
var starttime = new Date().getTime();
function drawTime() {
var elapsed = new Date().getTime() - starttime;
var time = elapsed % 2560;
time = time * rad_tick;
console.log(elapsed + "->" + time);
drawHand(time)
}
Base things on the current time, and don't depend on setInterval to fire at the exact time you set it to fire. If there are things in-queue at the time that setInterval is supposed to fire, it will do those things in-queue first and only then run the function you've wired to setIterval (causing the delays you see --which build up more and more over time). Learn about the event loop and requestAnimationFrame.
Instead, get the time (freshly) prior to doing something, and calculate how much time has passed since the start time. Base your animations on these calculations. This way, even if there are slight delays, your last action will always sync things to the way they're supposed to look right now.
When you do it this way, you might lose some frames (skipping things the engine didn't have time to do), but it will likely complete much closer to the expected completion time.
The bottom line is, if you tell the browser to do more than it can do in a particular amount of time, there will be delays. However, you can skip frames of an animation to make things complete much closer to the expected completion time.
You ask setInterval to call your callback every 1ms, but does it actually call it every 1ms?
Try this code:
let cnt = 0;
setInterval(() => cnt++, 1);
setTimeout(() => { console.log(cnt); }, 1000);
For me, it prints something between 230 and 235. So looks like the actual (average) minimum interval for me is a bit over 4ms.
Adding on to Stig, since javascript isn't super fast when it comes to these things, it won't be super accurate. Using something like getTime() will allow proper timing. How about you call getTime in your drawTime function, so that around every millisecond, it will check the actual time and use that value.

Why does millisecond counter keep going in requestAnimationFrame()?

I'm making a game in JavaScript, using the great requestAnimationFrame(callback) function.
Today I learned that the callback passed to requestAnimationFrame() gets a high resolution time measured since we opened that page. Let's call it ms:
function paint(ms) {
// draw my game
requestAnimationFrame(paint);
}
requestAnimationFrame(paint);
It's all great, but there's one thing I don't quite get.
Function requestAnimationFrame() doesn't do anything when we go to another tab, so the rendering is paused. On the other hand, the time passed to the callback still goes on when we leave. Because of this, I'm not sure how would I make any use of that value. If it worked proportionally with rendering engine, I could use ms to calculate logical time of my game, because relying on requestAnimationFrame() as a rock stable 60 FPS doesn't sound like the greatest idea.
Am I missing something? What's the purpose of the ms parameter if it continues to count when we leave our tab?
That's just a timestamp, it doesn't really count anything. It's indeed generally the same as performance.now() which gives the amount of time since the page is active. As to why, it's just how the DOMHighResTimeStamp's origin has been defined.
We usually use it as a way to know how long time has elapsed since some prior event occurred, that is we store a start_time, then check the current timestamp and we can get the delta time of our animation, regardless of the actual frame-rate.
By the way, no, relying on requestAnimationFrame to be at any fixed frame-rate is really not a good idea, requestAnimationFrame is not tied to any frame-rate by specs, and actually it is recommended to align it with the screen refresh-rate (though only Blink does so).
So you actually need to rely on such a timestamp in order to have a consistent speed across different setups. Doing a simple pos++ at every frame will make your animation run twice faster on a 120Hz monitor than on a 60Hz one (at least in Chrome).
This only makes your idea more complex to perceive how it could be implemented: would your paint-timer go twice faster when the window is moved to a 120Hz monitor?
This timestamp may also help to catch up on long frames, it's not because the system had a hiccup that you necessarily want your animation to last longer.
Similarly, not all cases want the animation logic to stop when the window is blurred. Let's say I have a header with a background animation powered by rAF, I don't really want it to pause when going off-screen, even though it didn't have been painted.
If you want your game logic to pause when the window is blurred, listen for the onvisibilitychange, and save the current timestamp (using performance.now() since we're outside of rAF).
To add to Kaiido's answer. It's also common in apps to limit the time delta. For example a common way framerate independant calculations in apps is to compute the time between frames
let previousTime = 0;
function loop(currentTime) {
const deltaTime = currenTime - previousTime;
previousTime = currentTime;
// use deltaTime in various calculations
posX = posX + velX * deltaTime;
requestAnimationFrame(loop);
}
requestAnimationFrame(loop);
But, sometimes collision and or other math can break if deltaTime is too large so games will often add a limiter
// don't let deltaTime be more than a 1/10 of a second
const deltaTime = Math.min(currenTime - previousTime, 1000 / 10);
This mostly removes the need for checking for onvisiblitiychange. Especially if you keep your own animation/game clock.
let previousTime = 0;
let clock = 0;
let clockRate = 1;
function loop(currentTime) {
const deltaTime = Math.min(currenTime - previousTime, 1000 / 10) * clockRate;
previousTime = currentTime;
clock += deltaTime; // update our own clock
requestAnimationFrame(loop);
}
requestAnimationFrame(loop);
Now not only will or clock not jump if the player hides the tab but we can set clockRate to 0 if we want things to pause.
Why use your own clock? It lets you easily slow down or speed up time for all calculations that depend on that clock (see clockRate above). Also many app (games) have multiple clocks. They'd compute a different deltaTime for each clock. For example one clock for all objects that need to pause vs clocks need to keep going even even with the app/game is pause. Another might be a clock for the player vs one for the enemies so that when the player uses their "slow time super power" the enemies motions go slow but the player's motions remain at the same speed.

Javascript - gameloop using delta time

I am trying to implement a gameloop that uses delta time. I got the following code from this article, however I feel it does not explain this type of gameloop well. I have researched on requestAnimationFrame and none of the explenations seem to be useful. Can someone simply break down how this loop works?
function timestamp() {
return window.performance && window.performance.now ? window.performance.now() : new Date().getTime();
},
var now,
dt = 0,
last = timestamp(),
step = 1/60;
function frame() {
now = timestamp();
dt = dt + Math.min(1, (now - last) / 1000);
while(dt > step) {
dt = dt - step;
update(step);
}
render(dt);
last = now;
requestAnimationFrame(frame);
}
requestAnimationFrame(frame);
requestAnimationFrame is a special timer. Unlike setInterval which executes the callback repeatedly after a given minimum of milliseconds, requestAnimationFrame executes variably to achieve smooth framerates.
The problem is how requestAnimationFrame achieves that. Depending on the situation, it may run faster or slower. What this means is that if your update logic was tied to requestAnimationFrame directly, a character running at "one step per update" would travel 60 steps in one second when requestAnimationFrame is running at 60fps, but then would only do 40 when it throttles down to 40fps.
To counteract this sudden speed-up/slow-down of the timer, we use "delta time". Instead of depending on each iteration of requestAnimationFrame to call an update, you check the time between frames to see if it is the right time to call an update.
So lets say your character should do a step every 100ms. If the game ran at 60fps, 100ms is roughly every 6 frames. This means that for each iteration, your code checks to see if 100ms has elapsed. Around the 6th frame it does, and calls update. Now if the timer ran at 40fps, 100ms is around 4 frames. So same logic, on each iteration it checks if 100ms elapsed. At the 4th frame it does and calls update. With this, you are insured that update is consistently being called regardless of the fluctuations.

Javascript - Can't Adjust FrameRate - requestanimationframe

I start the loop
function gameLoop(){
update();
draw();
requestAnimFrame(gameLoop);
}
var requestAnimFrame = window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.oRequestAnimationFrame ||
window.msRequestAnimationFrame ||
function(callback) {
window.setTimeout(callback, 1000 / 1);
};
I can't adjust the frame rate. It is always really fast. Why can't I change it to 1 frame a second. I want to do this just for testing purposes.
Do I have to clear the canvas each time? It seems to work good without clearing it.
Thanks.
Here is a link to a fiddle for the complete code:
complete code
Thanks
rAF is locked to monitor's sync, typically 60 Hz, so we can't adjust the FPS for it in itself (browser may reduce FPS when tab is inactive or on batteries).
Also, what you are trying to change is the fallback for the poly-fill; that is: if rAF is not supported in the browser it will instead use setTimeout. However, most browsers nowadays do support rAF (even un-prefixed) so the setTimeout will never be used.
You can do two things:
Replace rAF in your loop by using setTimeout directly (when testing)
Example:
var FPS = 1;
function testLoop() {
... ordinary code
setTimeout(testLoop, 1000/FPS);
}
Throttle rAF by using a counter:
Example:
var framesToSkip = 60,
counter = 0;
function loop() {
if (counter < framesToSkip) {
counter++;
requestAnimationFrame(loop);
return;
}
/// do regular stuff
counter = 0;
requestAnimationFrame(loop);
}
MODIFIED FIDDLE HERE
There are most likely better ways to implement throttling, but I am trying to just show the basic principle. This will still run at full speed, 60 FPS, but your code will do minimal of operations and only when the counter has reached its count will it execute the main code.
You do not need to clear the canvas each time if what you draw next will cover previously drawn content, or if you want to keep it of course. You can also clear a portion to optimize further, if needed.
A bit late to the party, but here's how to get the benefit of RAF while also controlling frames/second.
Note: requestAnimationFrame now has a better way of doing things than by using the code pattern in my original 3 year old original answer ... see my update below for the new and improved way.
[Update: requestAnimationFrame now has a better way of throttling]
The new version of requestAnimationFrame now automatically sends in a current timestamp that you can use to throttle your code execution.
Here is example code to execute your code every 1000ms:
var nextTime=0;
var delay=1000;
function gameLoop(currentTime){
if(currentTime<nextTime){requestAnimationFrame(gameLoop); return;}
nextTime=currentTime+delay;
// do stuff every 1000ms
requestAnimationFrame(looper);
}
}
You should look at this article which gives a proper treatment of the subject.
http://creativejs.com/resources/requestanimationframe/
var fps = 15;
function draw() {
setTimeout(function() {
requestAnimFrame(draw);
// Drawing code goes here
}, 1000 / fps);
}
Here is the code I think you want, but in the original article it said used requestAnimationFrame, but here I am using requestAnimFrame. I think maybe it changed and you're supposed to use requestAnimFrame now. requestAnimationFrame did not work for me while requestAnimFrame did.
The way browsers and javascript work makes it difficult to set up a fixed frame rate. Say you want to do something every one second, like updating and drawing. One way of doing that could be to call window.setTimeout() with a setting of one second. But the problem is that this is not that reliable, even if you configure a callback every second you can't be sure all callbacks will be in time. A high processor load, for example, could make the callbacks arrive much later than they should. And even if the callbacks would be on time, you have no control of when the actual drawing to the screen will happen.
A better way of handling it is to accept the fact that you can't get a very precise timing of your calls, and instead, whenever you get a call, you calculate how much time has passed and act according to that. This means you'll let the system decide the frame rate, and you just take care of updating your animation or game depending on how much time that has passed.
requestAnimationFrame is a newer functionality supported by most browsers by now that is especially useful for games. It will be called every time the browser is ready to draw, which is good. Then you will know that the updates and drawing you are doing will happen right before the actual frame is drawn to screen.
Here's an example on how you could update your gameLoop to take the time difference into account.
var lastTimestamp = +new Date;
function gameLoop(timestamp) {
var now = +new Date;
var dt = now - lastTimestamp;
// dt is the amount of time in ms that has passed since last call.
// update takes this time difference (in seconds) and can then perform its
// updates based on time passed.
update(dt / 1000);
draw();
lastTimestamp = now;
requestAnimationFrame(gameLoop);
}
That's how requestAnimationFrame works. If you want a specific framerate, use setTimeout only.
Usually you would take a parameter, which is the current time. Compare it to the last frame's time to find out how far along the animation should move.
Quite handy js library if you need to control Framrate in javascript
https://github.com/aaronGoshine/Javascript-OnEnterFrame-Event-Manager/blob/master/index.html
requestAnimationFrame will run with the maximum achievable frame rate (up to 60 fps). This is because it will always give you the next animation frame.
The parameter you adjusted is only for the polyfill, which will be active if your browser has no implementation of requestAnimationFrame.
If you want to try painting at one second for testing purposes, try setInterval instead.

JavaScript Duration of animation isn't exact

First of all I want to mention two things,
One: My code isn't perfect (esspechially the eval parts) - but I wanted to try something for my self, and see if I could duplicate the jQuery Animation function, so please forgive my "bad" practices, and please don't suggest that I'll use jQuery, I wanted to experiment.
Two: This code isn't done yet, and I just wanted to figure out what makes it work badly.
So the animation runs for about 12 seconds while the duration parameter I entered was 15 seconds, What am I doing wrong?
function animate(elem, attr, duration){
if(attr.constructor === Object){//check for object literal
var i = 0;
var cssProp = [];
var cssValue = [];
for(key in attr) {
cssProp[i] = key;
cssValue[i] = attr[key];
}
var fps = (1000 / 60);
var t = setInterval(function(){
for(var j=0;j<cssProp.length;j++){
if(document.getElementById(elem).style[cssProp[j]].length == 0){
//asign basic value in css if the object dosn't have one.
document.getElementById(elem).style[cssProp[j]]= 0;
}
var c = document.getElementById(elem).style[cssProp[j]];
//console.log(str +" | "+c+"|"+cssValue[j]);
if(c > cssValue[j]){
document.getElementById(elem).style[cssProp[j]] -= 1/((duration/fps)*(c-cssValue[j]));
}else if(c < cssValue[j]){
document.getElementById(elem).style[cssProp[j]] += 1/((duration/fps)*(c-cssValue[j]));
}else if(c == cssValue[j]){
window.clearInterval(t);
}
}
},fps);
}
}
animate('hello',{opacity:0},15000);
html:
<p id="hello" style="opacity:1;">Hello World</p>
Note: I guess there is a problem with the
(duration/fps)*(c-cssValue[j])
Part or/and the interval of the setInterval (fps variable).
Thanks in advance.
I'm not gonna try and refactor that and figure it out, cause it's pretty wonky. That said... a few things.
Don't rely on the value you are animating to let you know animation progress
In general your approach is unsound. You are better off keeping track of progress yourself. Also, as a result of your approach your math seems like it's trying too hard, and should be much simpler.
Think of it like this: your animation is complete when the time has elapsed, not when the animated value seems to indicate that it's at the final position.
Don't increment, set
Floating point math is inexact, and repeated addition cumulation like this is going accumulate floating point errors as well. And it's far more readable to make some variables to keep track of progress for you, which you can use in calculations.
animatedValue += changeOnThisFrame // BAD!
animatedValue = valueOnThisFrame // GOOD!
Don't do the positive/negative conditional dance
It turns out that 10 + 10 and 10 - (-10) is really the same thing. Which means you can always add the values, but the rate of change can be negative or positive, and the value will animate in the appropriate direction.
timeouts and intervals aren't exact
Turns out setTimeout(fn, 50) actually means to schedule the fn to be call at least 50ms later. The next JS run loop to execute after those 50ms will run the function, so you can't rely on it to be perfectly accurate.
That said it's usually within a few milliseconds. But 60fps is about 16ms for frame, and that timer may actually fire in a variable amount of time from 16-22ms. So when you do calculations based on frame rate, it's not matching the actual time elapsed closely at all.
Refactor complex math
Deconstructing this line here is gonna be hard.
document.getElementById(elem).style[cssProp[j]] -= 1/((duration/fps)*(c-cssValue[j]));
Why for more complex break it up so you can easily understand what's going on here. refactoring this line alone, I might do this:
var style = document.getElementById(elem).style;
var changeThisFrame = duration/fps;
var someOddCalculatedValue = c-cssValue[j];
style[cssProp[j]] -= 1 / (changeThisFrame * someOddCalculatedValue);
Doing this makes it clearer what each expression in your math means and what it's for. And because you didn't do it here, I had a very hard time wondering why c-cssValue[j] was in there and what it represents.
Simple Example
This is less capable than what you have, but it shows the approach you should be taking. It uses the animation start time to create the perfect value, depending on how complete the animation should be, where it started, and where it's going. It doesn't use the current animated value to determine anything, and is guaranteed to run the full length of the animation.
var anim = function(elem, duration) {
// save when we started for calculating progress
var startedAt = Date.now();
// set animation bounds
var startValue = 10;
var endValue = 200;
// figure out how much change we have over the whole animation
var delta = endValue - startValue;
// Animation function, to run at 60 fps.
var t = setInterval(function(){
// How far are we into the animation, on a scale of 0 to 1.
var progress = (Date.now() - startedAt) / duration;
// If we passed 1, the animation is over so clean up.
if (progress > 1) {
alert('DONE! Elapsed: ' + (Date.now() - startedAt) + 'ms');
clearInterval(t);
}
// Set the real value.
elem.style.top = startValue + (progress * delta) + "px";
}, 1000 / 60);
};
anim(document.getElementById('foo'), 5000);
​
JSFiddle: http://jsfiddle.net/DSRst/
You cannot use setInterval for accurate total timing. Because JS is single threaded and multiple things compete for cycles on the one thread, there is no guarantee that the next interval call will be exactly on time or that N intervals will consume the exact duration of time.
Instead, pretty much all animation routines get the current time and use the system clock to measure time for the total duration. The general algorithm is to get the start time, calculate a desired finish time (starttime + duration). Then, as you've done, calculate the expected step value and number of iterations. Then, upon each step, you recalculate the remaining time left and the remaining step value. In this way, you ensure that the animation always finishes exactly (or nearly exactly) on time and that you always get exactly to the final position. If the animation gets behind the ideal trajectory, then it will self correct and move slightly more for the remaining steps. If it gets ahead for any reason (rounding errors, etc...), it will dial back the step size and likewise arrive at the final position on time.
You may also need to know that browsers don't always support very small timing amounts. Each browser has some sort of minimum time that they will allow for a timer operation. Here's an article on minimum timer levels.
Here's an article on tweening (the process of continually recalculating the step to fit the duration exactly).
I'd also suggest that you look at the code for doing animation in some libraries (jQuery, YUI or any other one you find) as they can all show you how this is done in a very general purpose way, including tweening, easing functions, etc...

Categories