Related
Although I am working with the HTTP promise object in AngularJS, I don't have a clear concept of what an HTTP promise object actually is and what the is difference between an HTTP promise object and a traditional object in AngularJS!
Would anybody explain this, please?
A Promise is a concept for asynchronous operations. Basically it represents an object that can be available at any point from now into the future.
It has three states:
Pending
Fulfilled (it completed successfully)
Rejected (it failed)
You handle the states of your Promise with two methods, then() and catch().
then() provides you with the expected object from your asynchronous call if successful, and catch() will allow you to handle the error.
A scenario where you might use a Promise is when you're making a network call, for example:
getData(): Promise<Array<string>> {
return this.http.get("http://a-test-api.com/api/getdata").toPromise();
}
You'd then use it like this:
this.getData().then(function (stringArray) {
self.data = stringArray;
});
You can find some more information on the concept here: https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
Promises are a concept. This is a question on AngularJS Promises, which are a bit different from other promises, but the concept across libraries are fundamentally the same.
What are Asynchronous Processes?
If you know what this is, skip it and read the next header, otherwise:
When you have code, it generally runs in sequential order like so:
object.method() // First,
variable = "something"; // Second,
for(var i=0; i<2; i++) {
resp = object.makeHttpRequest();
console.log(resp.data + " was #" + i);
} // Third,
console.log("Done"); // Last.
Each step is performed after the previous finishes. This can be a problem when that for loop takes a long time (imagine the HTTP request takes a long time). The request would hang an entire process until the HTTP request is finished. Very bad.
Node.js handles this by default using a callback pattern. When you call a function that is blocking (takes a long time, like reading a file on disk or making an HTTP request), you register a callback function it will call after finishing. It will apply the function with the data from the blocking function when it finishes. This allows you to run other code while that blocking function finishes.
As many Node.js developers will tell you, this code can get very messy, very fast. Instead, AngularJS (and other libraries) will return you a Promise for when the code will finish. It allows you to use a Promise Pattern.
I know what asynchronous stuff is
Promises are conceptually similar to callbacks, but much cleaner and allow a greater degree of control. Consider this:
var url = getUrlFunction();
makeHttpRequest(url, function onResponse(data) {
dataHandler(data);
console.log("done");
}, function onError(err) {
errHandler(err);
console.log("uh oh");
});
showTheUserWeAreLoading();
// Or in node.js
var url = getUrlFunction();
makeHttpRequest(url, function onResponse(err, data) {
(err) ? handleErr(err): null;
dataHandler(data);
console.log("done");
});
showTheUserWeAreLoading();
It is not very intuitive that the showTheUserWeAreLoading function will (sometimes) happen before the HTTP request if fulfilled. This leaves much to be desired when rereading your own code.
The same code, but with the makeHttpRequest returns a promise:
var url = getUrlFunction(), prom = makeHttpRequest(url);
showTheUserWeAreLoading();
prom.then(function onSuccess(data) {
dataHandler(data);
console.log("done");
}, function onError(err) {
errHandler(err);
console.log("uh oh");
});
The promise object helps track the state of the operation. You assign handlers for when the operations reaches one of two states: Fulfilled or Rejected.
It should be noted that makeHttpRequest is a stand-in for $http() in AngularJS or $.ajax in jQuery. Before the standard for promises was created in the ECMAScript standard, each library (and library version) had its own opinion on which pattern you should/can use. AngularJS previously used the .success(<function>).error(<function>) naming pattern, while jQuery used .done(<function>).fail(<function>). These naming schemes have been depreciated a very long time ago, therefore making the current difference between libraries unnoticeable (thank you ECMAScript).
The $http API is based on the deferred/promise APIs exposed by the $q service.
1.then(successCallback, [errorCallback], [notifyCallback])
2.catch(errorCallback) – shorthand for promise.then(null, errorCallback)
3.finally(callback, notifyCallback)
$q promise method
I have situation where I believe I need to create a Deferred object with a "then" handler, but wait until the "then" handler has completed it's own promise before moving on.
The use case is a record object, and the above function is it's save method. The record object has an attribute called saveQueue, which is set to $.Deferred() on the record's instantiation. The resolve call on saveQueue was supposed to make sure the Deferred there is always executing every new handler attached to it as soon as it could. The idea being that you can call save several times on the record in short succession, but the calls will run one after another, and not overlap.
I am using a Deferred to enqueue Ajax calls, so that one does not run until the previous one call finished. However, from the same method, I want to return a Deferred that can be resolved/rejected by the jQuery Ajax object, like so:
record.saveQueue = $.Deferred();
self.save = function( record ){
var deferredAction = $.Deferred();
deferredAction.then(function() {
return $.post("/example_save_endpoint");
});
record.saveQueue.always(function(){
deferredAction.resolve();
}).resolve();
return deferredAction;
}
However, when I use this code, the deferredAction promise always ends up resolved, presumably because the #then handler is returning a "pending" (and thus non-rejecting) promise. Is there any way to force the Deferred to wait until the Ajax promise is complete before resolving/rejecting? Or is there another, better way to thread this needle?
Your idea might work, but
the queue must not be resolved using .resolve() every time the method is called, instead it should be initialised only with a resolved promise.
to actually queue on the record.saveQueue, it needs to be changed (overwritten) on every method call, to represent the end of the latest request.
And we don't need any deferreds for that, as we can work with the promises that $.post returns.
So use this:
var emptyQueue = $.when(undefined); // an already fulfilled promise as the start
// equivalent: = $.Deferred().resolve().promise();
function startQueue() {
return emptyQueue; // yes, this delibaretely returns a constant, the begin
// of the queue always looks the same (and is never mutated)
}
// every time you create a record, do
record.saveQueue = startQueue();
// and use that in your methods:
this.save = function(record) {
var queuedRequestResult = record.saveQueue.then(function() {
return $.post("/example_save_endpoint");
// ^^^^^^ promises chain :-)
});
// Magic happens here:
record.saveQueue = queuedRequestResult // we swap the previous queue promise for a new
// one that resolves only after the request
.then(startQueue, startQueue); // and make sure it then starts with a fresh
// queue, especially when the request failed
//.then(null, startQueue) is similar, except unnecessarily remembering the last result
return queuedRequestResult;
}
I would probably choose not to do it this way, but a deferred/promise can indeed be used as a queuing device.
You need a slight(?) variation of what you already tried.
self.queue = $.when();//A resolved promise, used to form a queue of functions in a .then() chain.
self.save = function(data) {
var dfrd = $.Deferred();//A Deferred dedicated to this particular save.
self.queue = self.queue.then(function() {
return $.post("/example_save_endpoint", data) //Make the AJAX call, and return a jqXHR to ensure the downstream queue waits for this jqXHR to resolve/reject.
.then(dfrd.resolve, dfrd.reject) //Resolve/reject the Deferred for the caller's benefit
.then(null, function() {
//Force failure down the success path to ensure the queue is not killed by an AJAX failure.
return $.when();//Return a resolved promsie, for the queue's benefit.
});
});
return dfrd.promise();//allow the caller to do something when the AJAX eventually responds
}
For explanation, see comments in code
I would like to get a deeper understanding of how Promises work internally.
Therefore I have some sample code:
var p1 = new Promise(
function(resolve, reject) {
window.setTimeout(
function() {
resolve('res called')
}, 2000);
});
var p2 = new Promise(
function(resolve, reject) {
window.setTimeout(
function() {
resolve('res called')
}, 2000);
});
function chainPromises() {
return p1.then(function(val) {
console.log("p1");
return p2.then(function(val) {
console.log("p2");
return val;
});
});
}
chainPromises().then(function(val) {
console.log(val);
});
Here a link to execute this code.
As you would predict, first p1 is resolved, afterwards p2 and in the end the final then prints the resolv value.
But the API ref states the following:
"then" returns a new promise equivalent to the value you return from
onFulfilled/onRejected after being passed through Promise.resolve
So it would be interesting to know WHEN exactly the "then" function is executed?
Because the final "then" in the code is chained to the chainPromises(), I first thought that
it would execute after the function chainPromises() returns something (in this case another promise).
If this would have been the case the "val" of the final "then" function would be the returned promise.
But instead, the final "then" waits until all promises inside the first "then" which are returned have been resolved.
This absolutely makes sense because in this way, the "then" functions can be stacked, but
I do not really get how this is done, since the API spec. does not really cover what "then" returns and when the "then" functions is executed.
Or in other words, why does the final "then" function wait until all the Promises are resolved inside the chainPromises() function instead of just waiting for the first returned object as the API doc says.
I hope I could make clear what I mean.. :)
About Promise resolution
The thing you're witnessing here is called recursive thenable resolution. The promise resolution process in the Promises/A+ specification contains the following clause:
onFulfilled or onRejected returns a value x, run the Promise Resolution Procedure [[Resolve]](promise2, x)
The ES6 promise specification (promises unwrapping) contains a similar clause.
This mandates that when a resolve operation occurs: either in the promise constructor, by calling Promise.resolve or in your case in a then chain a promise implementation must recursively unwrap the returned value if it is a promise.
In practice
This means that if onFulfilled (the then) returns a value, try to "resolve" the promise value yourself thus recursively waiting for the entire chain.
This means the following:
promiseReturning().then(function(){
alert(1);
return foo(); // foo returns a promise
}).then(function(){
alert(2); // will only run after the ENTIRE chain of `foo` resolved
// if foo OR ANY PART OF THE CHAIN rejects and it is not handled this
// will not run
});
So for example:
promiseReturning().then(function(){
alert(1);
return Promise.resolve().then(function(){ throw Error(); });
}).then(function(){
alert("This will never run");
});
And that:
promiseReturning().then(function(){
alert(1);
return Promise.resolve().then(function(){ return delay(2000); });
}).then(function(){
alert("This will only run after 2000 ms");
});
Is it a good idea?
It's been the topic of much debate in the promises specification process a second chain method that does not exhibit this behavior was discussed but decided against (still available in Chrome, but will be removed soon). You can read about the whole debate in this esdiscuss thread. This behavior is for pragmatic reasons so you wouldn't have to manually do it.
In other languages
It's worth mentioning that other languages do not do this, neither futures in Scala or tasks in C# have this property. For example in C# you'd have to call Task.Unwrap on a task in order to wait for its chain to resolve.
Let's start with an easy perspective: "chainPromises" returns a promise, so you could look at it this way:
// Do all internal promises
var cp = chainPromises();
// After everything is finished you execute the final "then".
cp.then(function(val) {
console.log(val);
});
Generally speaking, when returning a promise from within a "then" clause, the "then" function of the encapsulating promise will be marked as finished only after the internal "then" has finished.
So, if "a" is a promise, and "b" is a promise:
// "a"'s "then" function will only be marked as finished after "b"'s "then" function has finished.
var c = a.then(function () {
return b.then(function () {
console.log("B!");
};
};
// c is a promise, since "then" always returns a promise.
c.then(function() {
console.log("Done!");
};
So the output will be:
B!
Done!
Notice btw, that if you don't "return" the internal promise, this will not be the case:
// "a"'s "then" function will only be marked as finished without waiting for "b"'s "then" to finish.
var c = a.then(function () {
// Notice we're just calling b.then, and don't "return" it.
b.then(function () {
console.log("B!");
};
};
// c is a promise, since "then" always returns a promise.
c.then(function() {
console.log("Done!");
};
Here we can't know what would be outputted first. It could be either "B!" or "Done!".
Please check the below example regarding how promises works:
The Promise object represents the eventual completion (or failure) of an asynchronous operation, and its resulting value.
console.log('person1: shoe ticket');
console.log('person2: shoe ticket');
const promiseGirlFriendBringingTickets = new Promise((resolve, reject) => {
setTimeout(() => {
resolve('ticket');
}, 3000);
});
promiseGirlFriendBringingTickets.then((t) => {
console.log(`person3: show ${t}`);
})
console.log('person4: shoe ticket');
console.log('person5: shoe ticket');
Promise then return promise object, not promise's resolved value. I forked your JsFiddle, and added some of mine try this.
promise.then is executed right after that promise object is resolved.
I do not know how this is done in actual promises libraries, but I was able to re-create this functionality in the following way:
1) each promise has a waitingPromises property;
2) then method returns a new promise, and the original promise's waitingPromises property points to the new promise.
In this way, the chain of .then()s creates a structure that is similar to a linked list or rather a tree (each promise can have several waiting promises). A promise can be resolved only after its 'parent' promise has been resolved. The .then method itself is executed immediately, but the corresponding promise that it creates is resolved only later.
I am not sure this is a good explanation and would love to learn about other possible approaches.
Normally code is synchronous - one statement executes like (fileopen) and there is a guarantee that the next statement will execute immediately afterwards like filewrite()
but in asynchronous operations like nodejs, you should assume that
you have no idea when the operation will complete.
You can't even assume that just because you send out one request first, and another request second, that they will return in that order
Callbacks are the standard way of handling asynchrnous code in JavaScript
but promises are the best way to handle asynchronous code.
This is because callbacks make error handling difficult, and lead to ugly nested code.
which user and programmer not readble easily so promises is the way
You can think of Promise as a wrapper on some background task. It takes in a function which needs to be executed in the background.
The most appropriate place to use a promise is where some code is dependent on some background processing and it needs to know the status of the background task which was executed. For that, the background task itself accepts two callback resolve and reject in order to convey its status to the code which is dependent on it. In layman terms, this code is the one behind it in the promise chain.
When a background task invokes resolve callback with some parameter. it's marking the background operation successful and passing the result of the background operation to the next then block which will be executed next. and if it calls reject, marking it as unsuccessful then the first catch block will be executed.
In your custom promise, you can pass an error obj to the reject callback so that next catch block is aware of the error happened in the background task.
I have a number of async tasks that need to be completed, so I'm using promises.
I need to detect when each one of the promises has been executed (both resolved and rejected). I must not continue execution until that point.
I was using something like this:
$.when(promise1, promise2, ...).always();
But this code is wrong, because the when method has lazy evaluation, and it returns as soon as one of the promises fails. So the always callback also runs as soon as one of the promises fail.
I was thinking in coding a workaround, but this use case is so common that maybe somebody has done it already, or maybe there's even a way of doing this using just jQuery (if not, it would be nice to add a Promise.whenNonLazy or a Promise.when(promise1, promise2, ..., false) in the future.
Is this possible?
More sophisticated promise libraries have an allSettled() function like Q or Promise.settle like Bluebird.
In jQuery, you could implement such a function yourself as well and extend the $ namespace with it, but that will only be necessary if you need it often and performance-optimized.
A simpler solution would be to create a new promise for each of the ones you are waiting for, and fulfilling them even when the underlying one is rejected. Then you can use $.when() on them without problems. In short:
// using Underscore's .invoke() method:
$.when.apply(null, _.invoke(promises, "then", null, $.when)).done(…)
More stable:
$.when.apply($, $.map(promises, function(p) {
return p.then(null, function() {
return $.Deferred().resolveWith(this, arguments);
});
})).then(…);
You might change the then callbacks a bit to distinguish between fulfilled and rejected results in the final done.
Smithy,
First let's assume your promises are in an array.
var promises = [....];
What you appear to want is .when() applied to some transform of these promises, such that any rejected promise is converted to resolved, whilst being transparent to promises that are already resolved.
The required operation can be written very succinctly as follows :
$.when.apply(null, $.map(promises, resolvize)).done(...);
//or, if further filtering by .then() is required ...
$.when.apply(null, $.map(promises, resolvize)).then(...);
where resolvize is the transform mechanism.
So what should resolvize(), look like? Let's exploit the characteristics of .then() to make the distinction beteween a resolved and a rejected promise, and respond accordingly.
function resolvize(promise) {
//Note: null allows a resolved promise to pass straight through unmolested;
return promise.then(null, function() {
return $.Deferred().resolve.apply(null, arguments).promise();
});
}
untested
With resolvize in some outer scope, it can be made available to be used in a $.when.apply($.map(promises, resolvize)) expression wherever it is needed. This is most likely adequate, without going to the extent of extending jQuery with a new method.
Regardless of how the transform is achieved, you end up with a potential issue; namely knowing for each argument of the .done() callback, whether its corresponding promise was originally resolved or rejected. That's the price you pay for converting rejection to resolution. You may, however, be able to detect the original status from the parameter(s) with which the original promises were resolved/rejected.
That's an interesting property of always - I hadn't expected that behaviour.
I suppose you could use a master, top-level deferred to monitor the states of the main deferreds, which is resolved only once the main deferreds are all either resolved or rejected. Something like:
//set up master deferred, to observe the states of the sub-deferreds
var master_dfd = new $.Deferred;
master_dfd.done(function() { alert('done'); });
//set up sub-deferreds
var dfds = [new $.Deferred, new $.Deferred, new $.Deferred];
var cb = function() {
if (dfds.filter(function(dfd) {
return /resolved|rejected/.test(dfd.state());
}).length == dfds.length)
master_dfd.resolve();
};
dfds.forEach(function(dfd) { dfd.always(cb); });
//resolve or reject sub-deferreds. Master deferred resolves only once
//all are resolved or rejected
dfds[0].resolve();
dfds[1].reject();
dfds[2].resolve();
Fiddle: http://jsfiddle.net/Wtxfy/3/
I’ve been seeing code that looks like:
myObj.doSome("task").then(function(env) {
// logic
});
Where does then() come from?
The traditional way to deal with asynchronous calls in JavaScript has been with callbacks.
Say we had to make three calls to the server, one after the other, to set up our
application. With callbacks, the code might look something like the following (assuming
a xhrGET function to make the server call):
// Fetch some server configuration
xhrGET('/api/server-config', function(config) {
// Fetch the user information, if he's logged in
xhrGET('/api/' + config.USER_END_POINT, function(user) {
// Fetch the items for the user
xhrGET('/api/' + user.id + '/items', function(items) {
// Actually display the items here
});
});
});
In this example, we first fetch the server configuration. Then based on that, we fetch
information about the current user, and then finally get the list of items for the current
user. Each xhrGET call takes a callback function that is executed when the server
responds.
Now of course the more levels of nesting we have, the harder the code is to read, debug,
maintain, upgrade, and basically work with. This is generally known as callback hell.
Also, if we needed to handle errors, we need to possibly pass in another function to each
xhrGET call to tell it what it needs to do in case of an error. If we wanted to have just one
common error handler, that is not possible.
The Promise API was designed to solve this nesting problem and the
problem of error handling.
The Promise API proposes the following:
Each asynchronous task will return a promise object.
Each promise object will have a then function that can take two arguments, a success
handler and an error handler.
The success or the error handler in the then function will be called only once, after
the asynchronous task finishes.
The then function will also return a promise, to allow chaining multiple calls.
Each handler (success or error) can return a value, which will be passed to the next
function as an argument, in the chain of promises.
If a handler returns a promise (makes another asynchronous request), then the next
handler (success or error) will be called only after that request is finished.
So the previous example code might translate to something like the following, using
promises and the $http service(in AngularJs):
$http.get('/api/server-config').then(
function(configResponse) {
return $http.get('/api/' + configResponse.data.USER_END_POINT);
}
).then(
function(userResponse) {
return $http.get('/api/' + userResponse.data.id + '/items');
}
).then(
function(itemResponse) {
// Display items here
},
function(error) {
// Common error handling
}
);
Propagating Success and Error
Chaining promises is a very powerful technique that allows us to accomplish a lot of
functionality, like having a service make a server call, do some postprocessing of the
data, and then return the processed data to the controller. But when we work with
promise chains, there are a few things we need to keep in mind.
Consider the following hypothetical promise chain with three promises, P1, P2, and P3.
Each promise has a success handler and an error handler, so S1 and E1 for P1, S2 and
E2 for P2, and S3 and E3 for P3:
xhrCall()
.then(S1, E1) //P1
.then(S2, E2) //P2
.then(S3, E3) //P3
In the normal flow of things, where there are no errors, the application would flow
through S1, S2, and finally, S3. But in real life, things are never that smooth. P1 might
encounter an error, or P2 might encounter an error, triggering E1 or E2.
Consider the following cases:
• We receive a successful response from the server in P1, but the data returned is not
correct, or there is no data available on the server (think empty array). In such a
case, for the next promise P2, it should trigger the error handler E2.
• We receive an error for promise P2, triggering E2. But inside the handler, we have
data from the cache, ensuring that the application can load as normal. In that case,
we might want to ensure that after E2, S3 is called.
So each time we write a success or an error handler, we need to make a call—given our
current function, is this promise a success or a failure for the next handler in the promise
chain?
If we want to trigger the success handler for the next promise in the chain, we can just
return a value from the success or the error handler
If, on the other hand, we want to trigger the error handler for the next promise in the
chain, we can do that using a deferred object and calling its reject() method
Now What is deferred object?
Deferred objects in jQuery represents a unit of work that will be
completed later, typically asynchronously. Once the unit of work
completes, the deferred object can be set to resolved or failed.
A deferred object contains a promise object. Via the promise object
you can specify what is to happen when the unit of work completes. You
do so by setting callback functions on the promise object.
Deferred objects in Jquery : https://api.jquery.com/jquery.deferred/
Deferred objects in AngularJs : https://docs.angularjs.org/api/ng/service/$q
then() function is related to "Javascript promises" that are used in some libraries or frameworks like jQuery or AngularJS.
A promise is a pattern for handling asynchronous operations. The promise allows you to call a method called "then" that lets you specify the function(s) to use as the callbacks.
For more information see: http://wildermuth.com/2013/8/3/JavaScript_Promises
And for Angular promises: http://liamkaufman.com/blog/2013/09/09/using-angularjs-promises/
As of ECMAScript6
The .then() method has been included with pure JavaScript with Promises.
From the Mozilla documentation:
The then() method returns a Promise. It takes two arguments: callback
functions for the success and failure cases of the Promise.
The Promise object, in turn, is defined as
The Promise object is used for deferred and asynchronous
computations. A Promise represents an operation that hasn't completed
yet, but is expected in the future.
That is, the Promise acts as a placeholder for a value that is not yet computed, but shall be resolved in the future. And the .then() function is used to associate the functions to be invoked on the Promise when it is resolved - either as a success or a failure.
Before ECMAScript6
To my knowledge, there isn't a built-in then() method in javascript (at the time of this writing).
It appears that whatever it is that doSome("task") is returning has a method called then.
If you log the return result of doSome() to the console, you should be able to see the properties of what was returned.
console.log( myObj.doSome("task") ); // Expand the returned object in the
// console to see its properties.
Here is a thing I made for myself to clear out how things work. I guess others too can find this concrete example useful:
doit().then(function() { log('Now finally done!') });
log('---- But notice where this ends up!');
// For pedagogical reasons I originally wrote the following doit()-function so that
// it was clear that it is a promise. That way wasn't really a normal way to do
// it though, and therefore Slikts edited my answer. I therefore now want to remind
// you here that the return value of the following function is a promise, because
// it is an async function (every async function returns a promise).
async function doit() {
log('Calling someTimeConsumingThing');
await someTimeConsumingThing();
log('Ready with someTimeConsumingThing');
}
function someTimeConsumingThing() {
return new Promise(function(resolve,reject) {
setTimeout(resolve, 2000);
})
}
function log(txt) {
document.getElementById('msg').innerHTML += txt + '<br>'
}
<div id='msg'></div>
Here is a small JS_Fiddle.
then is a method callback stack which is available after a promise is resolved it is part of library like jQuery but now it is available in native JavaScript and below is the detail explanation how it works
You can do a Promise in native JavaScript : just like there are promises in jQuery, Every promise can be stacked and then can be called with Resolve and Reject callbacks, This is how you can chain asynchronous calls.
I forked and Edited from MSDN Docs on Battery charging status..
What this does is try to find out if user laptop or device is charging battery. then is called and you can do your work post success.
navigator
.getBattery()
.then(function(battery) {
var charging = battery.charging;
alert(charging);
})
.then(function(){alert("YeoMan : SINGH is King !!");});
Another es6 Example
function fetchAsync (url, timeout, onData, onError) {
…
}
let fetchPromised = (url, timeout) => {
return new Promise((resolve, reject) => {
fetchAsync(url, timeout, resolve, reject)
})
}
Promise.all([
fetchPromised("http://backend/foo.txt", 500),
fetchPromised("http://backend/bar.txt", 500),
fetchPromised("http://backend/baz.txt", 500)
]).then((data) => {
let [ foo, bar, baz ] = data
console.log(`success: foo=${foo} bar=${bar} baz=${baz}`)
}, (err) => {
console.log(`error: ${err}`)
})
Definition :: then is a method used to solve Asynchronous callbacks
this is introduced in ES6
Please find the proper documentation here Es6 Promises
.then returns a promise in async function.
Good Example would be:
var doSome = new Promise(function(resolve, reject){
resolve('I am doing something');
});
doSome.then(function(value){
console.log(value);
});
To add another logic to it, you can also add the reject('I am the rejected param') call the function and console.log it.
It's about the use of curly braces {} in our arrow functions:
Those 3 examples are doing the same thing (nothing, but have valid grammar, and are a valid Promise chain!)
new Promise(function(ok) {
ok(
/* myFunc1(param1, param2, ..) */
)
}).then(function(){
/* myFunc1 succeed */
/* Launch something else */
/* console.log(whateverparam1) */
/* myFunc2(whateverparam1, otherparam, ..) */
}).then(function(){
/* myFunc2 succeed */
/* Launch something else */
/* myFunc3(whatever38, ..) */
})
console.log("This code has no errors GG!")
The same logic using arrow functions shorthand without {}
new Promise((ok) =>
ok(
/* myFunc1(param1, param2, ..) */
).then(() =>
0 // HEY DID YOU NOTICE! A number that does nothing,
// but otherwise the parsing will fail!
// The code is pretty clean but have a major downside
// As arrow functions without {} can contains only one declaration
// console.log("something") will FAIL here
).then(() =>
"" // HEY DID YOU NOTICE! An empty string that does nothing,
// but otherwise the parsing will fail!
// As arrow functions without {} can contains only one declaration
// We can't add more code here, hence:
// console.log("something")
// Will break the whole promise
// This is likely the error in y(our) code ;)
))
console.log("This code has no errors GG!")
Arrow function with {}
new Promise( (ok) => {
ok(
/* myFunc1(param1, param2, ..) */
)
}).then( () => {
/* myFunc1 succeed */
/* Launch something else */
}).then( () => {
/* myFunc2 succeed */
/* Launch something else */
/* myFunc3(whatever38, ..) */
console.log("something")
/* More console logs! */
console.log("something else")
})
console.log("This code has no errors GG!")
I suspect doSome returns this, which is myObj, which also has a then method. Standard method chaining...
if doSome is not returning this, being the object on which doSome was executed, rest assured it is returning some object with a then method...
as #patrick points out, there is no then() for standard js
doSome("task")must be returning a promise object , and that promise always have a then function .So your code is just like this
promise.then(function(env) {
// logic
});
and you know this is just an ordinary call to member function .
In this case then() is a class method of the object returned by doSome() method.
The ".then()" function is wideley used for promised objects in Asynchoronus programming For Windows 8 Store Apps.
As far as i understood it works some way like a callback.
Find Details in this Documentantion
http://msdn.microsoft.com/en-us/library/windows/apps/hh700330.aspx
Of Cause it could also be the name for any other defined function.
I am about 8 years late, well...anyways, I don't really know what then() does but maybe MDN might have an answer. Actually, I might actually understand it a little more.
This will show you all the information (hopefully), you need. Unless someone already posted this link.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
The format is promise.prototype.then()
The promise and prototype are kind of like variables but not like variables in javascript, I mean like other things go there like navigator.getBattery().then() where this one actually exists but is barely used on the web, this one shows statuses about the battery of the device, more information and more on MDN if you are curious.