Related
I need to create line segments within a shape and not just a visual pattern - I need to know start and end coordinates for those lines that are within a given boundary (shape). I'll go through what I have and explain the issues I'm facing
I have a closed irregular shape (can have dozens of sides) defined by [x, y] coordinates
shape = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
];
I calculate and draw the bounding box of this shape
I then draw my shape on the canvas
Next, I cast rays within the bounding box with a set spacing between each ray. The ray goes from left to right incrementing by 1 pixel.
Whenever a cast ray gets to a pixel with RGB values of 100, 255, 100 I then know it has entered the shape. I know when it exits the shape if the pixel value is not 100, 255, 100. Thus I know start and end coordinates for each line within my shape and if one ray enters and exits the shape multiple times - this will generate all line segments within that one ray cast.
For the most part it works but there are issues:
It's very slow. Perhaps there is a better way than casting rays? Or perhaps there is a way to optimize the ray logic? Perhaps something more intelligent than just checking for RGB color values?
How do I cast rays at a different angle within the bounding box? Now it's going left to right, but how would I fill my bounding box with rays cast at any specified angle? i.e.:
I don't care about holes or curves. The shapes will all be made of straight line segments and won't have any holes inside them.
Edit: made changes to the pixel RGB sampling that improve performance.
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 15;
shape = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
];
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
// display bounding box
ctx.fillStyle = 'rgba(255,0,0,.2)';
ctx.fillRect(boundingBox[0][0], boundingBox[0][1], boundingBox[1][0]-boundingBox[0][0], boundingBox[1][1]-boundingBox[0][1]);
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
canvasData = ctx.getImageData(0, 0, canvas.width, canvas.height).data;
// loop through the shape in vertical slices
for(var i = boundingBox[0][1]+lineSpacing; i <= boundingBox[1][1]; i += lineSpacing) {
// send ray from left to right
for(var j = boundingBox[0][0], start = false; j <= boundingBox[1][0]; j++) {
x = j, y = i;
pixel = y * (canvas.width * 4) + x * 4;
// if pixel is within boundary (shape)
if(canvasData[pixel] == 100 && canvasData[pixel+1] == 255 && canvasData[pixel+2] == 100) {
// arrived at start of boundary
if(start === false) {
start = [x,y]
}
} else {
// arrived at end of boundary
if(start !== false) {
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.beginPath();
ctx.moveTo(start[0], start[1]);
ctx.lineTo(x, y);
ctx.closePath();
ctx.stroke();
start = false;
}
}
}
// show entire cast ray for debugging purposes
ctx.strokeStyle = 'rgba(0,0,0,.2)';
ctx.beginPath();
ctx.moveTo(boundingBox[0][0], i);
ctx.lineTo(boundingBox[1][0], i);
ctx.closePath();
ctx.stroke();
}
<canvas id="canvas" width="350" height="350"></canvas>
This is a pretty complex problem that I am trying to simplify as much as possible. Using the line intersection formula we can determin where the ray intersects with the shape at every edge. What we can do is loop through each side of the shape while check every rays intersection. If they intersect we push those coordinates to an array.
I have tried to make this as dynamic as possible. You can pass the shape and change the number of rays and the angle. As for the angle it doesn't take a specific degree (i.e. 45) but rather you change the start and stop y axis. I'm sure if you must have the ability to put in a degree we can do that.
It currently console logs the array of intersecting coordinates but you can output them however you see fit.
The mouse function is just to verify that the number match up. Also be aware I am using toFixed() to get rid of lots of decimals but it does convert to a string. If you need an integer you'll have to convert back.
let canvas = document.getElementById("canvas");
let ctx = canvas.getContext("2d")
canvas.width = 300;
canvas.height = 300;
ctx.fillStyle = "violet";
ctx.fillRect(0,0,canvas.width,canvas.height)
//Shapes
let triangleish = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
]
let star = [ [ 0, 85 ], [ 75, 75 ], [ 100, 10 ], [ 125, 75 ],
[ 200, 85 ], [ 150, 125 ], [ 160, 190 ], [ 100, 150 ],
[ 40, 190 ], [ 50, 125 ], [ 0, 85 ] ];
let coords = [];
//Class that draws the shape on canvas
function drawShape(arr) {
ctx.beginPath();
ctx.fillStyle = "rgb(0,255,0)";
ctx.moveTo(arr[0][0], arr[0][1]);
for (let i=1;i<arr.length;i++) {
ctx.lineTo(arr[i][0], arr[i][1]);
}
ctx.fill();
ctx.closePath();
}
//pass the shape in here to draw it
drawShape(star)
//Class to creat the rays.
class Rays {
constructor(x1, y1, x2, y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
this.w = canvas.width;
this.h = 1;
}
draw() {
ctx.beginPath();
ctx.strokeStyle = 'black';
ctx.moveTo(this.x1, this.y1)
ctx.lineTo(this.x2, this.y2)
ctx.stroke();
ctx.closePath();
}
}
let rays = [];
function createRays(angle) {
let degrees = angle * (Math.PI/180)
//I am currently creating an array every 10px on the Y axis
for (let i=0; i < angle + 45; i++) {
//The i will be your start and stop Y axis. This is where you can change the angle
let cx = canvas.width/2 + (angle*2);
let cy = i * 10;
let x1 = (cx - 1000 * Math.cos(degrees));
let y1 = (cy - 1000 * Math.sin(degrees));
let x2 = (cx + 1000 * Math.cos(degrees));
let y2 = (cy + 1000 * Math.sin(degrees));
rays.push(new Rays(x1, y1, x2, y2))
}
}
//enter angle here
createRays(40);
//function to draw the rays after crating them
function drawRays() {
for (let i=0;i<rays.length; i++) {
rays[i].draw();
}
}
drawRays();
//This is where the magic happens. Using the line intersect formula we can determine if the rays intersect with the objects sides
function intersectLines(coord1, coord2, rays) {
let x1 = coord1[0];
let x2 = coord2[0];
let y1 = coord1[1];
let y2 = coord2[1];
let x3 = rays.x1;
let x4 = rays.x2;
let y3 = rays.y1;
let y4 = rays.y2;
//All of this comes from Wikipedia on line intersect formulas
let d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) {
return
}
let t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
let u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
//if this statement is true then the lines intersect
if (t > 0 && t < 1 && u > 0) {
//I have currently set it to fixed but if a string does not work for you you can change it however you want.
//the first formula is the X coord of the interect the second is the Y
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return
}
//function to call the intersect function by passing in the shapes sides and each ray
function callIntersect(shape) {
for (let i=0;i<shape.length;i++) {
for (let j=0;j<rays.length;j++) {
if (i < shape.length - 1) {
intersectLines(shape[i], shape[i+1], rays[j]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rays[j]);
}
}
}
}
callIntersect(star);
//just to sort them by the Y axis so they they show up as in-and-out
function sortCoords() {
coords.sort((a, b) => {
return a[1] - b[1];
});
}
sortCoords()
console.log(coords)
//This part is not needed only added to verify number matched the mouse posit
let mouse = {
x: undefined,
y: undefined
}
let canvasBounds = canvas.getBoundingClientRect();
addEventListener('mousemove', e => {
mouse.x = e.x - canvasBounds.left;
mouse.y = e.y - canvasBounds.top;
ctx.clearRect(0, 0, canvas.width, canvas.height)
drawCoordinates();
})
function drawCoordinates() {
ctx.font = '15px Arial';
ctx.fillStyle = 'black';
ctx.fillText('x: '+mouse.x+' y: '+mouse.y, mouse.x, mouse.y)
}
function animate() {
ctx.clearRect(0, 0, canvas.width, canvas.height)
ctx.fillStyle = "violet";
ctx.fillRect(0,0,canvas.width,canvas.height)
for (let i=0;i<rays.length; i++) {
rays[i].draw();
}
drawShape(star)
drawCoordinates();
requestAnimationFrame(animate)
}
animate()
<canvas id="canvas"></canvas>
I'm not an expert, but maybe you could do something like this:
Generate the points that constitute the borders.
Organize them in a convenient structure, e.g. an object with the y as key, and an array of x as values.
2.1. i.e. each item in the object would constitute all points of all borders in a single y.
Iterate over the object and generate the segments for each y.
3.1. e.g. if the array of y=12 contains [ 10, 20, 60, 80 ] then you would generate two segments: [ 10, 12 ] --> [ 20, 12 ] and [ 60, 12 ] --> [ 80, 12 ].
To generate the borders' points (and to answer your second question), you can use the line function y = a*x + b.
For example, to draw a line between [ 10, 30 ] and [ 60, 40 ], you would:
Solve a and b by substituting x and y for both points and combining these two formulas (with standard algebra):
For point #1: 30 = a*10 + b
For point #2: 40 = a*60 + b
b = 30 - a*10
40 = a*60 + (30 - a*10)
a*60 - a*10 = 40 - 30
50*a = 10
a = 0.2
30 = a*10 + b
30 = 0.2*10 + b
b = 30 - 2
b = 28
With a and b at hand, you get the function for your specific line:
y = 0.2*x + 28
With that, you can calculate the point of the line for any y. So, for example, the x of the point right under the first point ([ 10, 30 ]) would have a y of 31, and so: 31 = 0.2*x + 28, and so: x = 15. So you get: [ 15, 31 ].
You may need a bit of special handling for:
Vertical lines, because the slope is "infinite" and calculating it would cause division by zero.
Rounding issues. For some (probably most) pixels you will get real x values (i.e. non-integer). You can Math.round() them, but it can cause issues, like:
8.1. Diagonal rays may not actually hit a border point even when they go through a border. This will probably require additional handling (like checking points around and not just exactly the pixels the ray lies on).
8.2. The points your algorithm generate may (slightly) differ from the points that appear on the screen when you use libraries or built-in browser functionality to draw the shape (depending on the implementation of their drawing algorithms).
This is a mashup of Justin's answer and code from my proposed question.
One issue was generating rays at a set angle and a set distance from each other. To have rays be equal distances apart at any angle we can use a vector at a 90 degree angle and then place a new center point for the next line.
We can start at the exact midpoint of our boundary and then spread out on either side.
Red line is the center line, green dots are the vector offset points for the next line.
Next I modified Justin's intersect algorithm to iterate by ray and not side, that way I get interlaced coordinates where array[index] is the start point of a segment and array[index+1] is the end point.
And by connecting the lines we get a shape that is filled with lines inside its boundaries at set distances apart
Issues:
I had to inflate the boundary by 1 pixel otherwise certain shapes would fail to generate paths
I'd like rays to be some what aligned. It's hard to explain, but here's an example of 6 triangles rotated at 60 degree increments that form a hexagon with their inner lines also offset by 60 degree increments. The top and bottom triangle inner lines do not join those of the outside triangles. This is an issue with the cast rays. Ideally I'd like them to join and be aligned with the outer most edge if that makes sense. Surely there is a better way to cast rays than this...
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 12;
angle = 45;
shapes = [
[[143.7,134.2], [210.4,18.7], [77.1,18.7]],
[[143.7,134.2], [77.1,18.7], [10.4,134.2]],
[[143.7,134.2], [10.4,134.2], [77.1,249.7]],
[[143.7,134.2], [77.1,249.7], [210.4,249.7]],
[[143.7,134.2], [210.4,249.7], [277.1,134.2]],
[[143.7,134.2], [277.1,134.2], [210.4,18.7]]
];
for(var i in shapes) {
lines = getLineSegments(shapes[i], 90+(-60*i), lineSpacing);
for(var i = 0; i < lines.length; i += 2) {
start = lines[i];
end = lines[i+1];
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.moveTo(start[0], start[1]);
ctx.lineTo(end[0], end[1]);
ctx.closePath();
ctx.stroke();
}
}
function getLineSegments(shape, angle, lineSpacing) {
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
boundingBox[0][0] -= 1, boundingBox[0][1] -= 1;
boundingBox[1][0] += 1, boundingBox[1][1] += 1;
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
rayPaths = [];
path = getPathCoords(boundingBox, 0, 0, angle);
rayPaths.push(path);
/*ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'red';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
getPaths:
for(var i = 0, lastPaths = [path, path]; true; i++) {
for(var j = 0; j < 2; j++) {
pathMidX = (lastPaths[j][0][0] + lastPaths[j][1][0]) / 2;
pathMidY = (lastPaths[j][0][1] + lastPaths[j][1][1]) / 2;
pathVectorX = lastPaths[j][1][1] - lastPaths[j][0][1];
pathVectorY = lastPaths[j][1][0] - lastPaths[j][0][0];
pathLength = Math.sqrt(pathVectorX * pathVectorX + pathVectorY * pathVectorY);
pathOffsetPointX = pathMidX + ((j % 2 === 0 ? pathVectorX : -pathVectorX) / pathLength * lineSpacing);
pathOffsetPointY = pathMidY + ((j % 2 === 0 ? -pathVectorY : pathVectorY) / pathLength * lineSpacing);
offsetX = pathOffsetPointX-boundingMidX;
offsetY = pathOffsetPointY-boundingMidY;
path = getPathCoords(boundingBox, offsetX, offsetY, angle);
if(
path[0][0] < boundingBox[0][0] ||
path[1][0] > boundingBox[1][0] ||
path[0][0] > boundingBox[1][0] ||
path[1][0] < boundingBox[0][0]
) break getPaths;
/*ctx.fillStyle = 'green';
ctx.fillRect(pathOffsetPointX-2.5, pathOffsetPointY-2.5, 5, 5);
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'black';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
rayPaths.push(path);
lastPaths[j] = path;
}
}
coords = [];
function intersectLines(coord1, coord2, rays) {
x1 = coord1[0], x2 = coord2[0];
y1 = coord1[1], y2 = coord2[1];
x3 = rays[0][0], x4 = rays[1][0];
y3 = rays[0][1], y4 = rays[1][1];
d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) return;
t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
if (t > 0 && t < 1 && u > 0) {
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return;
}
function callIntersect(shape) {
for (var i = 0; i < rayPaths.length; i++) {
for (var j = 0; j< shape.length; j++) {
if (j < shape.length - 1) {
intersectLines(shape[j], shape[j+1], rayPaths[i]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rayPaths[i]);
}
}
}
}
callIntersect(shape);
return coords;
}
function getPathCoords(boundingBox, offsetX, offsetY, angle) {
coords = [];
// add decimal places otherwise can lead to Infinity, subtract 90 so 0 degrees is at the top
angle = angle + 0.0000000000001 - 90;
boundingBoxWidth = boundingBox[1][0] - boundingBox[0][0];
boundingBoxHeight = boundingBox[1][1] - boundingBox[0][1];
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
x = boundingMidX + offsetX, y = boundingMidY + offsetY;
dx = Math.cos(Math.PI * angle / 180);
dy = Math.sin(Math.PI * angle / 180);
for(var i = 0; i < 2; i++) {
bx = (dx > 0) ? boundingBoxWidth+boundingBox[0][0] : boundingBox[0][0];
by = (dy > 0) ? boundingBoxHeight+boundingBox[0][1] : boundingBox[0][1];
if(dx == 0) ix = x, iy = by;
if(dy == 0) iy = y, ix = bx;
tx = (bx - x) / dx;
ty = (by - y) / dy;
if(tx <= ty) {
ix = bx, iy = y + tx * dy;
} else {
iy = by, ix = x + ty * dx;
}
coords.push([ix, iy]);
dx = -dx;
dy = -dy;
}
return coords;
}
<canvas id="canvas" width="500" height="500"></canvas>
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 10;
angle = 45;
shape = [
[200,10], // x, y
[10,300],
[200,200],
[400,300]
];
lines = getLineSegments(shape, angle, lineSpacing);
for(var i = 0; i < lines.length; i += 2) {
start = lines[i];
end = lines[i+1];
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.moveTo(start[0], start[1]);
ctx.lineTo(end[0], end[1]);
ctx.closePath();
ctx.stroke();
}
function getLineSegments(shape, angle, lineSpacing) {
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
boundingBox[0][0] -= 1, boundingBox[0][1] -= 1;
boundingBox[1][0] += 1, boundingBox[1][1] += 1;
// display bounding box
ctx.fillStyle = 'rgba(255,0,0,.2)';
ctx.fillRect(boundingBox[0][0], boundingBox[0][1], boundingBox[1][0]-boundingBox[0][0], boundingBox[1][1]-boundingBox[0][1]);
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
rayPaths = [];
path = getPathCoords(boundingBox, 0, 0, angle);
rayPaths.push(path);
/*ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'red';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
getPaths:
for(var i = 0, lastPaths = [path, path]; true; i++) {
for(var j = 0; j < 2; j++) {
pathMidX = (lastPaths[j][0][0] + lastPaths[j][1][0]) / 2;
pathMidY = (lastPaths[j][0][1] + lastPaths[j][1][1]) / 2;
pathVectorX = lastPaths[j][1][1] - lastPaths[j][0][1];
pathVectorY = lastPaths[j][1][0] - lastPaths[j][0][0];
pathLength = Math.sqrt(pathVectorX * pathVectorX + pathVectorY * pathVectorY);
pathOffsetPointX = pathMidX + ((j % 2 === 0 ? pathVectorX : -pathVectorX) / pathLength * lineSpacing);
pathOffsetPointY = pathMidY + ((j % 2 === 0 ? -pathVectorY : pathVectorY) / pathLength * lineSpacing);
offsetX = pathOffsetPointX-boundingMidX;
offsetY = pathOffsetPointY-boundingMidY;
path = getPathCoords(boundingBox, offsetX, offsetY, angle);
if(
path[0][0] < boundingBox[0][0] ||
path[1][0] > boundingBox[1][0] ||
path[0][0] > boundingBox[1][0] ||
path[1][0] < boundingBox[0][0]
) break getPaths;
/*ctx.fillStyle = 'green';
ctx.fillRect(pathOffsetPointX-2.5, pathOffsetPointY-2.5, 5, 5);
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'black';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
rayPaths.push(path);
lastPaths[j] = path;
}
}
coords = [];
function intersectLines(coord1, coord2, rays) {
x1 = coord1[0], x2 = coord2[0];
y1 = coord1[1], y2 = coord2[1];
x3 = rays[0][0], x4 = rays[1][0];
y3 = rays[0][1], y4 = rays[1][1];
d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) return;
t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
if (t > 0 && t < 1 && u > 0) {
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return;
}
function callIntersect(shape) {
for (var i = 0; i < rayPaths.length; i++) {
for (var j = 0; j< shape.length; j++) {
if (j < shape.length - 1) {
intersectLines(shape[j], shape[j+1], rayPaths[i]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rayPaths[i]);
}
}
}
}
callIntersect(shape);
return coords;
}
function getPathCoords(boundingBox, offsetX, offsetY, angle) {
coords = [];
// add decimal places otherwise can lead to Infinity, subtract 90 so 0 degrees is at the top
angle = angle + 0.0000000000001 - 90;
boundingBoxWidth = boundingBox[1][0] - boundingBox[0][0];
boundingBoxHeight = boundingBox[1][1] - boundingBox[0][1];
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
x = boundingMidX + offsetX, y = boundingMidY + offsetY;
dx = Math.cos(Math.PI * angle / 180);
dy = Math.sin(Math.PI * angle / 180);
for(var i = 0; i < 2; i++) {
bx = (dx > 0) ? boundingBoxWidth+boundingBox[0][0] : boundingBox[0][0];
by = (dy > 0) ? boundingBoxHeight+boundingBox[0][1] : boundingBox[0][1];
if(dx == 0) ix = x, iy = by;
if(dy == 0) iy = y, ix = bx;
tx = (bx - x) / dx;
ty = (by - y) / dy;
if(tx <= ty) {
ix = bx, iy = y + tx * dy;
} else {
iy = by, ix = x + ty * dx;
}
coords.push([ix, iy]);
dx = -dx;
dy = -dy;
}
return coords;
}
<canvas id="canvas" width="500" height="500"></canvas>
I create this animaiton using canvas and converting svg's to canvas shapes. Most times it runs it heats up my computer and the fan starts going.
Just wondering if there is something about the code, html5 canvas, canvas paths or the animation recursion that is so intensive?
View on codepen: https://codepen.io/benbyford-the-lessful/pen/ZjjVdR?editors=1010#
// check program is being run
console.log('bg animation running...');
// setup canvas
var canvas = document.getElementById('bgCanvas');
var ctx = canvas.getContext('2d')
// redo this - canvas size
//
var width = window.innerWidth,
height = window.innerHeight;
canvas.width = width * 2;
canvas.height = height * 2;
var gridSquareWidth = 20;
var gridWidth = (width * 2) / gridSquareWidth,
gridHeight = (height * 2) / gridSquareWidth;
var grid = [];
// create default grid array
for (var x = 0; x < gridWidth; x++) {
grid[x] = [];
for (var y = 0; y < gridHeight; y++) {
var rand = getRandomArbitrary(0,5);
var rand2 = getRandomArbitrary(0,2);
if(rand2 == 1 || x < (gridWidth / 4) || x > (gridWidth / 2) || y < (gridHeight / 4) || y > (gridHeight / 2)){
rand--;
}
if(rand > 2) grid[x][y] = 1;
}
}
//
// main update function
//
var animationSpeed = 0.1;
var animationSpeedCount = 0;
var running = true;
function update(dt) {
if(running){
animationSpeedCount += dt;
if(animationSpeedCount > animationSpeed){
moveGrid();
animationSpeedCount = 0;
}
draw();
}
}
var noOfFrames = 3;
var waveOffset = 15;
var increment = 0;
function moveGrid() {
var x = increment;
var x2 = increment - noOfFrames - waveOffset;
// add frmae wave
for (var i = 0; i < noOfFrames; i++) {
moveONeFrameForward(x, true);
x--;
}
// go back frmae wave
for (var i = 0; i < noOfFrames; i++) {
moveONeFrameForward(x2, false);
x2--;
}
// var x column, add of subtract by 1
function moveONeFrameForward(x, add){
if(x < 0){
x = Math.ceil(gridWidth + x);
}
if(x > 0 && x < gridWidth){
for (var y = 0; y < gridHeight; y++) {
if(grid[x][y] > 0){
if(add){
grid[x][y] = grid[x][y] + 1;
}else{
if(grid[x][y] > 1) grid[x][y] = grid[x][y] - 1;
}
}
}
}
}
// increment column
increment += 1;
if(increment > gridWidth){
increment = 0;
// stop running
// running = false;
}
}
var fills = ["#eeeeee","#efefef","#fefefe","#ffffff"];
function draw() {
// clear canvas to white
ctx.fillStyle = '#dddddd';
ctx.fillRect(0, 0, canvas.width, canvas.height);
for (var x = 0; x < gridWidth; x++) {
for (var y = 0; y < gridHeight; y++) {
var offsetX = x * gridSquareWidth;
var offsetY = y * gridSquareWidth;
var frame = 0;
switch (grid[x][y]) {
case 1:
frame = 1
break;
case 2:
frame = 2;
break;
case 3:
frame = 3;
break;
case 4:
frame = 4;
break;
default:
}
if(frame) drawframe(ctx, frame, offsetX, offsetY, fills);
}
}
}
// The main game loop
var lastTime = 0;
function gameLoop() {
var now = Date.now();
var dt = (now - lastTime) / 1000.0;
update(dt);
lastTime = now;
window.requestAnimationFrame(gameLoop);
};
// start game
gameLoop();
//
// UTILITIES
//
// cross browser requestAnimationFrame - https://gist.github.com/mrdoob/838785
if ( !window.requestAnimationFrame ) {
window.requestAnimationFrame = ( function() {
return window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.oRequestAnimationFrame ||
window.msRequestAnimationFrame ||
function(
/* function FrameRequestCallback */ callback, /* DOMElement Element */ element ) {
window.setTimeout( callback, 1000 / 60 );
};
})();
}
function getRandomArbitrary(min, max) {
return Math.floor(Math.random() * (max - min) + min);
}
var frame1Center = 4.1;
var frame2Center = 2.1;
function drawframe(ctx, frame, x, y, fills) {
ctx.strokeStyle = 'rgba(0,0,0,0)';
ctx.lineCap = 'butt';
ctx.lineJoin = 'miter';
ctx.miterLimit = 4;
ctx.fillStyle = fills[frame-1];
switch (frame) {
case 1:
ctx.beginPath();
ctx.moveTo(3.1+x+frame1Center,0+y);
ctx.lineTo(0.6+x+frame1Center,0+y);
ctx.bezierCurveTo(0.3+x+frame1Center,0+y,0+x+frame1Center,0.3+y,0+x+frame1Center,0.6+y);
ctx.lineTo(0.3+x+frame1Center,12.1+y);
ctx.bezierCurveTo(0.3+x+frame1Center,12.4+y,0.6+x+frame1Center,12.7+y,0.8999999999999999+x+frame1Center,12.7+y);
ctx.lineTo(3.4+x+frame1Center,12.7+y);
ctx.bezierCurveTo(3.6999999999999997+x+frame1Center,12.7+y,4+x+frame1Center,12.399999999999999+y,4+x+frame1Center,12.1+y);
ctx.lineTo(4+x+frame1Center,0.6+y);
ctx.bezierCurveTo(4.1+x+frame1Center,0.3+y,3.7+x+frame1Center,0+y,3.1+x+frame1Center,0+y);
ctx.closePath();
ctx.fill();
ctx.stroke();
break;
case 2 || 6:
ctx.beginPath();
ctx.moveTo(4.4+x+frame2Center,0+y);
ctx.bezierCurveTo(3.1+x+frame2Center,0+y,0+x+frame2Center,0.8+y,0+x+frame2Center,2.1+y);
ctx.bezierCurveTo(0+x+frame2Center,3.4000000000000004+y,0.3+x+frame2Center,12.5+y,1.6+x+frame2Center,12.799999999999999+y);
ctx.bezierCurveTo(2.8+x+frame2Center,13+y,6+x+frame2Center,12+y,6+x+frame2Center,10.7+y);
ctx.bezierCurveTo(6+x+frame2Center,9.1+y,5.7+x+frame2Center,0+y,4.4+x+frame2Center,0+y);
ctx.closePath();
ctx.fill();
ctx.stroke();
break;
case 3 || 5:
ctx.beginPath();
ctx.moveTo(5.2+x,0 +y);
ctx.bezierCurveTo(7.5 +x,0+y,9.3+x,6.5+y,9.3 +x,8.7+y);
ctx.bezierCurveTo(9.3+x,10.899999999999999+y,6.300000000000001+x,12.799999999999999+y,4.1000000000000005+x,12.799999999999999+y);
ctx.bezierCurveTo(1.9000000000000004+x,12.799999999999999+y,0+x,6.3+y,0+x,4.1+y);
ctx.bezierCurveTo(0+x,1.8999999999999995+y,3+x,0+y,5.2+x,0+y);
ctx.closePath();
ctx.fill();
ctx.stroke();
break;
case 4:
ctx.beginPath();
ctx.arc(5.9+x,6.3+y,5.8,0,6.283185307179586,true);
ctx.closePath();
ctx.fill();
ctx.stroke();
break;
default:
}
};
It's a bit hard to tell exactly "why", but there are definitely some things that could be improved.
First, you are drawing twice as big as what is needed.
Set you canvas size to the rendered one, and you'll probably see a big improvement in performances.
Then, you are drawing a lot of sub-path at every draw (and setting a lot of times the context's properties for nothing).
You could try to merge all these sub-paths in bigger ones, grouped by fillStyle, so that the rasterizer works only four times per frame. This can also improve performances a bit.
But the approach I would personally take, is to pre-render all the 4 different states on 4 different canvases. Then, use only drawImage to draw the required strip.
In best case, you end up with only 4 calls to drawImage, in worth one, with 8 calls.
Here is a rough proof of concept:
// setup canvas
var canvas = document.getElementById('bgCanvas');
var ctx = canvas.getContext('2d')
// don't set it twice as big as needed
var width = window.innerWidth,
height = window.innerHeight;
canvas.width = width;
canvas.height = height;
var gridSquareWidth = 10;
var gridWidth = (width) / gridSquareWidth,
gridHeight = (height) / gridSquareWidth;
var grid = [];
// create default grid array
for (var x = 0; x < gridWidth; x++) {
grid[x] = [];
for (var y = 0; y < gridHeight; y++) {
var rand = getRandomArbitrary(0, 5);
var rand2 = getRandomArbitrary(0, 2);
if (rand2 == 1 || x < (gridWidth / 4) || x > (gridWidth / 2) || y < (gridHeight / 4) || y > (gridHeight / 2)) {
rand--;
}
if (rand > 2) grid[x][y] = 1;
}
}
var fills = ["#eeeeee", "#efefef", "#fefefe", "#ffffff"];
var frame1Center = 4.1;
var frame2Center = 2.1;
// the 4 points drawers
var drawers = [draw0, draw1, draw2, draw3];
// initialise our four possible states
var states = [
initState(0),
initState(1),
initState(2),
initState(3)
];
//
// main update function
//
var running = true;
var speed = 2;
var waveWidth = 200;
var waveMargin = gridSquareWidth * 4;
var waveStart = 0;
var waveEnd = waveWidth;
// start game
update();
function initState(status) {
var c = canvas.cloneNode();
var ctx = c.getContext('2d');
ctx.scale(0.5, 0.5); // to circumvent values being set for scale(2)
ctx.beginPath(); // single path
ctx.fillStyle = fills[status];
for (var x = 0; x < gridWidth; x++) {
for (var y = 0; y < gridHeight; y++) {
if (grid[x][y]) {
drawers[status](ctx, x * gridSquareWidth * 2, y * gridSquareWidth * 2);
}
}
}
ctx.fill(); // single fill
return c;
}
function draw0(ctx, x, y) {
ctx.moveTo(3.1 + x + frame1Center, 0 + y);
ctx.lineTo(0.6 + x + frame1Center, 0 + y);
ctx.bezierCurveTo(0.3 + x + frame1Center, 0 + y, 0 + x + frame1Center, 0.3 + y, 0 + x + frame1Center, 0.6 + y);
ctx.lineTo(0.3 + x + frame1Center, 12.1 + y);
ctx.bezierCurveTo(0.3 + x + frame1Center, 12.4 + y, 0.6 + x + frame1Center, 12.7 + y, 0.8999999999999999 + x + frame1Center, 12.7 + y);
ctx.lineTo(3.4 + x + frame1Center, 12.7 + y);
ctx.bezierCurveTo(3.6999999999999997 + x + frame1Center, 12.7 + y, 4 + x + frame1Center, 12.399999999999999 + y, 4 + x + frame1Center, 12.1 + y);
ctx.lineTo(4 + x + frame1Center, 0.6 + y);
ctx.bezierCurveTo(4.1 + x + frame1Center, 0.3 + y, 3.7 + x + frame1Center, 0 + y, 3.1 + x + frame1Center, 0 + y);
ctx.closePath();
}
function draw1(ctx, x, y) {
ctx.moveTo(4.4 + x + frame2Center, 0 + y);
ctx.bezierCurveTo(3.1 + x + frame2Center, 0 + y, 0 + x + frame2Center, 0.8 + y, 0 + x + frame2Center, 2.1 + y);
ctx.bezierCurveTo(0 + x + frame2Center, 3.4000000000000004 + y, 0.3 + x + frame2Center, 12.5 + y, 1.6 + x + frame2Center, 12.799999999999999 + y);
ctx.bezierCurveTo(2.8 + x + frame2Center, 13 + y, 6 + x + frame2Center, 12 + y, 6 + x + frame2Center, 10.7 + y);
ctx.bezierCurveTo(6 + x + frame2Center, 9.1 + y, 5.7 + x + frame2Center, 0 + y, 4.4 + x + frame2Center, 0 + y);
ctx.closePath();
}
function draw2(ctx, x, y) {
ctx.moveTo(5.2 + x, 0 + y);
ctx.bezierCurveTo(7.5 + x, 0 + y, 9.3 + x, 6.5 + y, 9.3 + x, 8.7 + y);
ctx.bezierCurveTo(9.3 + x, 10.899999999999999 + y, 6.300000000000001 + x, 12.799999999999999 + y, 4.1000000000000005 + x, 12.799999999999999 + y);
ctx.bezierCurveTo(1.9000000000000004 + x, 12.799999999999999 + y, 0 + x, 6.3 + y, 0 + x, 4.1 + y);
ctx.bezierCurveTo(0 + x, 1.8999999999999995 + y, 3 + x, 0 + y, 5.2 + x, 0 + y);
ctx.closePath();
}
function draw3(ctx, x, y) {
ctx.moveTo(5.9 + x, 6.3 + y);
ctx.arc(5.9 + x, 6.3 + y, 5.8, 0, 2 * Math.PI);
}
function update(dt) {
if (running) {
draw();
moveGrid();
}
window.requestAnimationFrame(update);
}
function moveGrid() {
waveStart = (waveStart + speed) % canvas.width;
waveEnd = (waveStart + waveWidth) % canvas.width;
}
function draw() {
ctx.fillStyle = '#dddddd';
ctx.fillRect(0, 0, canvas.width, canvas.height);
var x = 0;
// the roll logic is a bit dirty... sorry.
if (waveEnd < waveStart) {
x = waveEnd - waveWidth;
drawStrip(1, x, waveMargin);
x = waveEnd - waveWidth + waveMargin;
drawStrip(3, x, (waveWidth - (waveMargin * 2)));
x = waveEnd - waveMargin;
drawStrip(2, x, waveMargin);
x = waveEnd;
}
drawStrip(0, x, waveStart - x);
drawStrip(1, waveStart, waveMargin);
drawStrip(3, waveStart + waveMargin, waveWidth - (waveMargin * 2));
drawStrip(2, waveStart + (waveWidth - waveMargin), waveMargin);
drawStrip(0, waveEnd, canvas.width - Math.max(waveEnd, waveStart));
}
function drawStrip(state, x, w) {
if(x < 0) w = w + x;
if (w <= 0) return;
x = Math.max(x, 0);
ctx.drawImage(states[state],
Math.max(x, 0), 0, w, canvas.height,
Math.max(x, 0), 0, w, canvas.height
);
}
function getRandomArbitrary(min, max) {
return Math.floor(Math.random() * (max - min) + min);
}
:root,body,canvas {margin: 0}
<canvas id="bgCanvas"></canvas>
I'm trying to convert svg path to canvas in javascript, however it's really hard to map svg path elliptical arcs to canvas path. One of the ways is to approximate using multiple bezier curves.
I have successfully implemented the approximation of elliptical arcs with bezier curves however the approximation isn't very accurate.
My code:
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
canvas.width = document.body.clientWidth;
canvas.height = document.body.clientHeight;
ctx.strokeWidth = 2;
ctx.strokeStyle = "#000000";
function clamp(value, min, max) {
return Math.min(Math.max(value, min), max)
}
function svgAngle(ux, uy, vx, vy ) {
var dot = ux*vx + uy*vy;
var len = Math.sqrt(ux*ux + uy*uy) * Math.sqrt(vx*vx + vy*vy);
var ang = Math.acos( clamp(dot / len,-1,1) );
if ( (ux*vy - uy*vx) < 0)
ang = -ang;
return ang;
}
function generateBezierPoints(rx, ry, phi, flagA, flagS, x1, y1, x2, y2) {
var rX = Math.abs(rx);
var rY = Math.abs(ry);
var dx2 = (x1 - x2)/2;
var dy2 = (y1 - y2)/2;
var x1p = Math.cos(phi)*dx2 + Math.sin(phi)*dy2;
var y1p = -Math.sin(phi)*dx2 + Math.cos(phi)*dy2;
var rxs = rX * rX;
var rys = rY * rY;
var x1ps = x1p * x1p;
var y1ps = y1p * y1p;
var cr = x1ps/rxs + y1ps/rys;
if (cr > 1) {
var s = Math.sqrt(cr);
rX = s * rX;
rY = s * rY;
rxs = rX * rX;
rys = rY * rY;
}
var dq = (rxs * y1ps + rys * x1ps);
var pq = (rxs*rys - dq) / dq;
var q = Math.sqrt( Math.max(0,pq) );
if (flagA === flagS)
q = -q;
var cxp = q * rX * y1p / rY;
var cyp = - q * rY * x1p / rX;
var cx = Math.cos(phi)*cxp - Math.sin(phi)*cyp + (x1 + x2)/2;
var cy = Math.sin(phi)*cxp + Math.cos(phi)*cyp + (y1 + y2)/2;
var theta = svgAngle( 1,0, (x1p-cxp) / rX, (y1p - cyp)/rY );
var delta = svgAngle(
(x1p - cxp)/rX, (y1p - cyp)/rY,
(-x1p - cxp)/rX, (-y1p-cyp)/rY);
delta = delta - Math.PI * 2 * Math.floor(delta / (Math.PI * 2));
if (!flagS)
delta -= 2 * Math.PI;
var n1 = theta, n2 = delta;
// E(n)
// cx +acosθcosη−bsinθsinη
// cy +asinθcosη+bcosθsinη
function E(n) {
var enx = cx + rx * Math.cos(phi) * Math.cos(n) - ry * Math.sin(phi) * Math.sin(n);
var eny = cy + rx * Math.sin(phi) * Math.cos(n) + ry * Math.cos(phi) * Math.sin(n);
return {x: enx,y: eny};
}
// E'(n)
// −acosθsinη−bsinθcosη
// −asinθsinη+bcosθcosη
function Ed(n) {
var ednx = -1 * rx * Math.cos(phi) * Math.sin(n) - ry * Math.sin(phi) * Math.cos(n);
var edny = -1 * rx * Math.sin(phi) * Math.sin(n) + ry * Math.cos(phi) * Math.cos(n);
return {x: ednx, y: edny};
}
var n = [];
n.push(n1);
var interval = Math.PI/4;
while(n[n.length - 1] + interval < n2)
n.push(n[n.length - 1] + interval)
n.push(n2);
function getCP(n1, n2) {
var en1 = E(n1);
var en2 = E(n2);
var edn1 = Ed(n1);
var edn2 = Ed(n2);
var alpha = Math.sin(n2 - n1) * (Math.sqrt(4 + 3 * Math.pow(Math.tan((n2 - n1)/2), 2)) - 1)/3;
console.log(en1, en2);
return {
cpx1: en1.x + alpha*edn1.x,
cpy1: en1.y + alpha*edn1.y,
cpx2: en2.x - alpha*edn2.x,
cpy2: en2.y - alpha*edn2.y,
en1: en1,
en2: en2
};
}
var cps = []
for(var i = 0; i < n.length - 1; i++) {
cps.push(getCP(n[i],n[i+1]));
}
return cps;
}
// M100,200
ctx.moveTo(100,200)
// a25,100 -30 0,1 50,-25
var rx = 25, ry=100 ,phi = -30 * Math.PI / 180, fa = 0, fs = 1, x = 100, y = 200, x1 = x + 50, y1 = y - 25;
var cps = generateBezierPoints(rx, ry, phi, fa, fs, x, y, x1, y1);
var limit = 4;
for(var i = 0; i < limit && i < cps.length; i++) {
ctx.bezierCurveTo(cps[i].cpx1, cps[i].cpy1,
cps[i].cpx2, cps[i].cpy2,
i < limit - 1 ? cps[i].en2.x : x1, i < limit - 1 ? cps[i].en2.y : y1);
}
ctx.stroke()
With the result:
The red line represents the svg path elliptical arc and the black line represents the approximation
How can I accurately draw any possible elliptical arc on canvas?
Update:
Forgot to mention the original source of the algorithm: https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/
So both bugs are simply:
n2 should be declare n2 = theta + delta;
The E and Ed functions should use rX rY rather than rx ry.
And that fixes everything. Though the original should have obviously opted to divide up the arcs into equal sized portions rather than pi/4 sized elements and then appending the remainder. Just find out how many parts it will need, then divide the range into that many parts of equal size, seems like a much more elegant solution, and because error goes up with length it would also be more accurate.
See: https://jsfiddle.net/Tatarize/4ro0Lm4u/ for working version.
It's not just off in that one respect it doesn't work most anywhere. You can see that depending on phi, it does a lot of variously bad things. It's actually shockingly good there. But, broken everywhere else too.
https://jsfiddle.net/Tatarize/dm7yqypb/
The reason is that the declaration of n2 is wrong and should read:
n2 = theta + delta;
https://jsfiddle.net/Tatarize/ba903pss/
But, fixing the bug in the indexing, it clearly does not scale up there like it should. It might be that arcs within the svg standard are scaled up so that there can certainly be a solution whereas in the relevant code they seem like they are clamped.
https://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters
"If rx, ry and φ are such that there is no solution (basically, the
ellipse is not big enough to reach from (x1, y1) to (x2, y2)) then the
ellipse is scaled up uniformly until there is exactly one solution
(until the ellipse is just big enough)."
Testing this, since it does properly have code that should scale it up, I changed it green when that code got called. And it turns green when it screws up. So yeah, it's failure to scale for some reason:
https://jsfiddle.net/Tatarize/tptroxho/
Which means something is using rx rather than the scaled rX and it's the E and Ed functions:
var enx = cx + rx * Math.cos(phi) * Math.cos(n) - ry * Math.sin(phi) * Math.sin(n);
These rx references must read rX and rY for ry.
var enx = cx + rX * Math.cos(phi) * Math.cos(n) - rY * Math.sin(phi) * Math.sin(n);
Which finally fixes the last bug, QED.
https://jsfiddle.net/Tatarize/4ro0Lm4u/
I got rid of the canvas, moved everything to svg and animated it.
var svgNS = "http://www.w3.org/2000/svg";
var svg = document.getElementById("svg");
var arcgroup = document.getElementById("arcgroup");
var curvegroup = document.getElementById("curvegroup");
function doArc() {
while (arcgroup.firstChild) {
arcgroup.removeChild(arcgroup.firstChild);
} //clear old svg data. -->
var d = document.createElementNS(svgNS, "path");
//var path = "M100,200 a25,100 -30 0,1 50,-25"
var path = "M" + x + "," + y + "a" + rx + " " + ry + " " + phi + " " + fa + " " + fs + " " + " " + x1 + " " + y1;
d.setAttributeNS(null, "d", path);
arcgroup.appendChild(d);
}
function doCurve() {
var cps = generateBezierPoints(rx, ry, phi * Math.PI / 180, fa, fs, x, y, x + x1, y + y1);
while (curvegroup.firstChild) {
curvegroup.removeChild(curvegroup.firstChild);
} //clear old svg data. -->
var d = document.createElementNS(svgNS, "path");
var limit = 4;
var path = "M" + x + "," + y;
for (var i = 0; i < limit && i < cps.length; i++) {
if (i < limit - 1) {
path += "C" + cps[i].cpx1 + " " + cps[i].cpy1 + " " + cps[i].cpx2 + " " + cps[i].cpy2 + " " + cps[i].en2.x + " " + cps[i].en2.y;
} else {
path += "C" + cps[i].cpx1 + " " + cps[i].cpy1 + " " + cps[i].cpx2 + " " + cps[i].cpy2 + " " + (x + x1) + " " + (y + y1);
}
}
d.setAttributeNS(null, "d", path);
d.setAttributeNS(null, "stroke", "#000");
curvegroup.appendChild(d);
}
setInterval(phiClock, 50);
function phiClock() {
phi += 1;
doCurve();
doArc();
}
doCurve();
doArc();
I'm drawing lines on an HTML canvas, and use a less precise 2d-array (representing blocks of 10x10 pixels) in which I 'draw' lines with Bresenham's algorithm to store line-ids, so I can use that array to see which line is selected.
This works, but I would like it to be more accurate - not in the 10x10 size that I use (I like that I don't exactly have to click on the line), but when I draw a representation of that array over my actual canvas, I see that there are a lot of the 10x10 blocks not filled, even though the line is crossing them:
Is there a better solution to this? What I want is to catch ALL grid blocks that the actual line passes through.
Without seeing your code, I think you made a rounding error while filling the lookup table using the Bresenham algorithm or you scaled the coordinates before running the algorithm.
This jsFiddle shows what I came up with and the squares are perfectly aligned.
HTML
<canvas id="myCanvas"></canvas>
CSS
#myCanvas {
width: 250px;
height: 250px;
}
JavaScript
var $canvas = $("#myCanvas"),
ctx = $canvas[0].getContext("2d");
ctx.canvas.width = $canvas.width();
ctx.canvas.height = $canvas.height();
function Grid(ctx) {
this._ctx = ctx;
this._lines = [];
this._table = [];
this._tableScale = 10;
this._createLookupTable();
}
Grid.prototype._createLookupTable = function() {
this._table = [];
for (var y = 0; y < Math.ceil(ctx.canvas.height / this._tableScale); y++) {
this._table[y] = [];
for (var x = 0; x < Math.ceil(ctx.canvas.width / this._tableScale); x++)
this._table[y][x] = null;
}
};
Grid.prototype._updateLookupTable = function(line) {
var x0 = line.from[0],
y0 = line.from[1],
x1 = line.to[0],
y1 = line.to[1],
dx = Math.abs(x1 - x0),
dy = Math.abs(y1 - y0),
sx = (x0 < x1) ? 1 : -1,
sy = (y0 < y1) ? 1 : -1,
err = dx - dy;
while(true) {
this._table[Math.floor(y0 / 10)][Math.floor(x0 / 10)] = line;
if ((x0 == x1) && (y0 == y1)) break;
var e2 = 2 * err;
if (e2 >- dy) { err -= dy; x0 += sx; }
if (e2 < dx) { err += dx; y0 += sy; }
}
};
Grid.prototype.hitTest = function(x, y) {
var ctx = this._ctx,
hoverLine = this._table[Math.floor(y / 10)][Math.floor(x / 10)];
ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
this._lines.forEach(function(line) {
line.draw(ctx, line === hoverLine ? "red" : "black");
});
};
Grid.prototype.drawLookupTable = function() {
ctx.beginPath();
for (var y = 0; y < this._table.length; y++)
for (var x = 0; x < this._table[y].length; x++) {
if (this._table[y][x])
ctx.rect(x * 10, y * 10, 10, 10);
}
ctx.strokeStyle = "rgba(0, 0, 0, 0.2)";
ctx.stroke();
};
Grid.prototype.addLine = function(line) {
this._lines.push(line);
this._updateLookupTable(line);
};
Grid.prototype.draw = function() {
var ctx = this._ctx;
ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
this._lines.forEach(function(line) {
line.draw(ctx);
});
};
function Line(x0, y0, x1, y1) {
this.from = [ x0, y0 ];
this.to = [ x1, y1];
}
Line.prototype.draw = function(ctx, style) {
ctx.beginPath();
ctx.moveTo(this.from[0], this.from[1]);
ctx.lineTo(this.to[0], this.to[1]);
ctx.strokeStyle = style || "black";
ctx.stroke();
};
var grid = new Grid(ctx);
grid.addLine(new Line(80, 10, 240, 75));
grid.addLine(new Line(150, 200, 50, 45));
grid.addLine(new Line(240, 10, 20, 150));
grid.draw();
grid.drawLookupTable();
$canvas.on("mousemove", function(e) {
grid.hitTest(e.offsetX, e.offsetY);
grid.drawLookupTable();
});
Your best option is to treat the mouse-cursor-position as a small circle (f.e. with a 5px radius) and check if the line intersects with the circle.
Use the math as explained in this Q&A
JavaScript
A simple function to detect intersection would be:
function lineCircleIntersects(x1, y1, x2, y2, cx, cy, cr) {
var dx = x2 - x1,
dy = y2 - y1,
a = dx * dx + dy * dy,
b = 2 * (dx * (x1 - cx) + dy * (y1 - cy)),
c = cx * cx + cy * cy,
bb4ac;
c += x1 * x1 + y1 * y1;
c -= 2 * (cx * x1 + cy * y1);
c -= cr * cr;
bb4ac = b * b - 4 * a * c;
return bb4ac >= 0; // true: collision, false: no collision
}
See it working in this jsFiddle, but note that this function will also return true if the cursor is on the slope of the line outside [x1, y1], [x2, y2]. I'll leave this up to you :)
You can also try line-circle-collision library on github which should give you what you want.
for this project http://biduleohm.free.fr/ledohm/ (sorry, the user interface is in french but the code is in english) I need an angular gradient but it doesn't exists in native so I've implemented it using a linear gradient on a line and I draw the lines more and more longer to form a triangle. The result is graphically OK but the speed isn't really good (1850 ms for 125 triangles). It's in the tab [Répartition], it redraws if there is a keyup event on one of the inputs, don't be afraid of the apparent slowness, I've limited to maximum one redraw every 2000 ms.
Before I used a simple linear gradient on the whole triangle (but this doesn't match the reality) and the speed was OK, it draws thousands of triangles in less than a second. This function was used :
drawFrontLightForColor : function(x, y, w, h, color) {
var x2 = x - w;
var x3 = x + w;
var gradient = Distri.frontCanvas.createLinearGradient(x2, y, x3, y);
gradient.addColorStop(0, 'rgba(' + color + ', ' + Distri.lightEdgeAlpha + ')');
gradient.addColorStop(0.5, 'rgba(' + color + ', ' + (color == Distri.lightColors.cw ? Distri.lightCenterAlphaCw : Distri.lightCenterAlphaOther) + ')');
gradient.addColorStop(1, 'rgba(' + color + ', ' + Distri.lightEdgeAlpha + ')');
Distri.frontCanvas.fillStyle = gradient;
Distri.frontCanvas.beginPath();
Distri.frontCanvas.moveTo(x, y);
Distri.frontCanvas.lineTo(x2, (y + h));
Distri.frontCanvas.lineTo(x3, (y + h));
Distri.frontCanvas.lineTo(x, y);
Distri.frontCanvas.fill();
Distri.frontCanvas.closePath();
},
Then I switched to this function :
drawFrontLightForColor : function(x, y, w, h, centerColor, edgeColor) {
var ratio = w / h;
var tmpY;
var tmpW;
var x2;
var x3;
var gradient;
Distri.frontCanvas.lineWidth = 1;
for (var tmpH = 0; tmpH < h; tmpH++) {
tmpY = y + tmpH;
tmpW = Math.round(tmpH * ratio);
x2 = x - tmpW;
x3 = x + tmpW;
gradient = Distri.frontCanvas.createLinearGradient(x2, tmpY, x3, tmpY);
gradient.addColorStop(0, edgeColor);
gradient.addColorStop(0.5, centerColor);
gradient.addColorStop(1, edgeColor);
Distri.frontCanvas.beginPath();
Distri.frontCanvas.moveTo(x2, tmpY);
Distri.frontCanvas.lineTo(x, tmpY);
Distri.frontCanvas.lineTo(x3, tmpY);
Distri.frontCanvas.strokeStyle = gradient;
Distri.frontCanvas.stroke();
Distri.frontCanvas.closePath();
}
},
You can find the whole source here
I can't put the beginPath, stroke, closePath out of the loop because of the gradient which is changing every iteration (I've tried but it used the last gradient for every line (which, ironically, is identical to the first function...) which is understandable but not what I want).
I accept any advice (including redo the whole function and modify his caller to outsource some code) to improve the speed let's say 5x (ideally more).
I think you took the wrong way from the start : when doing so much changes of color, you have better operate at the pixel level.
So yes that could be with a webgl pixel shader, but you'll have to fight just to get the boilerplate running ok on all platform (or get a lib to do that for you).
And anyway there's a solution perfect for your need, and fast enough (a few ms) : use raw pixel data, update them one by one with the relevant function, then draw the result.
The steps to do that are :
- create a buffer same size as the canvas.
- iterate through it's pixel, keeping track of the x,y of the point.
- normalize the coordinates so they match your 'space'.
- compute the value for the normalized (x,y) out of all the data that you have.
- write a color (in my example i choose greyscale) out of that value.
- draw the whole buffer to canvas.
I did a jsfiddle, and here's the result with 4 data points :
fiddle is here :
http://jsfiddle.net/gamealchemist/KsM9c/3/
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext('2d');
var width = canvas.width,
height = canvas.height;
// builds an image for the target canvas
function buildImage(targetCanvas, valueForXY, someData) {
var width = targetCanvas.width;
var height = targetCanvas.height;
var tempImg = ctx.createImageData(width, height);
var buffer = tempImg.data;
var offset = 0;
var xy = [0, 0];
function normalizeXY(xy) {
xy[0] = xy[0] / width ;
xy[1] = xy[1] / height;
}
for (var y = 0; y < height; y++)
for (var x = 0; x < width; x++, offset += 4) {
xy[0] = x; xy[1]=y;
normalizeXY(xy);
var val = Math.floor(valueForXY(xy, someData) * 255);
buffer[offset] = val;
buffer[offset + 1] = val;
buffer[offset + 2] = val;
buffer[offset + 3] = 255;
}
ctx.putImageData(tempImg, 0, 0);
}
// return normalized (0->1) value for x,y and
// provided data.
// xy is a 2 elements array
function someValueForXY(xy, someData) {
var res = 0;
for (var i = 0; i < someData.length; i++) {
var thisData = someData[i];
var dist = Math.pow(sq(thisData[0] - xy[0]) + sq(thisData[1] - xy[1]), -0.55);
localRes = 0.04 * dist;
res += localRes;
}
if (res > 1) res = 1;
return res;
}
var someData = [
[0.6, 0.2],
[0.35, 0.8],
[0.2, 0.5],
[0.6, 0.75]
];
buildImage(canvas, someValueForXY, someData);
// ------------------------
function sq(x) {
return x * x
}
In fact the GameAlchemist's solution isn't fast or I do something really wrong. I've implemented this algo only for the top view because the front view is much more complex.
For 120 lights the top view take 100-105 ms with the old code and it take 1650-1700 ms with this code (and moreover it still lacks a few things in the new code like the color for example):
drawTopLightForColor_ : function(canvasW, canvasD, rampX, rampY, rampZ, ledsArrays, color) {
function sq(x) {
return x * x;
}
var tmpImg = Distri.topCanvasCtx.createImageData(canvasW, canvasD);
var rawData = tmpImg.data;
var ledsArray = ledsArrays[color];
var len = ledsArray.length;
var i = 0;
for (var y = 0; y < canvasD; y++) {
for (var x = 0; x < canvasW; x++, i += 4) {
var intensity = 0;
for (var j = 0; j < len; j++) {
intensity += 2 * Math.pow(
sq((rampX + ledsArray[j].x) - x) +
sq((rampZ + ledsArray[j].y) - y),
-0.5
);
}
if (intensity > 1) {
intensity = 1;
}
intensity = Math.round(intensity * 255);
rawData[i] = intensity;
rawData[i + 1] = intensity;
rawData[i + 2] = intensity;
rawData[i + 3] = 255;
}
}
Distri.topCanvasCtx.putImageData(tmpImg, 0, 0);
},
Am I doing something wrong?