D3 rect + color does not display - javascript

I am toying around with D3 to create a heat map. I am creating NxN squares which color I would like to change adjust. However, only the first square displays in blue, the remaining are there according to the html inspector and have the color set, but they dont show up on the page.
size = 30;
length = myJSON.length;
numRows = length /2;
numCols = length / 2;
var svg = d3.select("div#heatchart").append("svg").attr("width",size).attr("height",size);
svg.selectAll("rect").data(myJSON).enter().append("rect").attr("x",function(d,i){
var x = Math.floor(i%numRows) * (size+1);
return x;
}).attr("y",function(d,i){
var y = Math.floor(i/numCols) * (size+1);
return y;
}).attr("width",function(d,i){
return size;
}).attr("height",function(d,i){
return size;
}).attr("fill", function(d,i) {
return "rgb(0, 0, 255)";
});

The reason you're only seeing one square is that you've set the dimensions of your <svg> element to be equal to the variable size which is only 30. The other squares are being drawn, but they are outside the bounds of the svg document and so are invisible.
Once you fix that, you are still going to run into issues with the layout because you are setting the number of rows and columns based on dividing length in half. What you really want to do to make an NxN square is to base the number of rows and columns on the square root of length. You can use Math.ceil to round up in case your data length is not a perfect square. Try it like this:
var size = 30;
var n = myJSON.length;
var numRows = Math.ceil(Math.sqrt(n)),
numCols = numRows;
Then you can set the size of your svg based on how many rows and columns you need to display:
var svg = d3.select('div#heatchart').append('svg')
.attr('width', size * numCols)
.attr('height', size * numRows);
Finally, arrange them in a square, setting the fill to blue:
svg.selectAll('rect')
.data(myJSON)
.enter().append('rect')
.attr('x', function(d,i) { return (i % numCols) * size; })
.attr('y', function(d,i) { return Math.floor(i / numRows) * size; })
.attr('width', size)
.attr('height', size)
.attr('fill', 'blue');
HERE is an example.

You need an svg group element (<g> - this is not true see edit).
Modify so it looks like this
var svg = d3.select("div#heatchart")
.append("svg")
.append("g")
.attr("width", size)
.attr("height", size);
e.g. http://jsfiddle.net/4tz5wk91/
edit
This example works but not for the reason stated. The attr functions no longer affect the svg element and as a result it gets a default size which is big enough to display all elements. The width and height attributes applied to the group actually have no effect in this case. See #jshanley's more complete and correct solution.

Related

D3js force simulation with specific targeted destination

I'm trying to render a d3js force simulation but I'd like to ensure my nodes don't relay false information.
With the following code used to display the nodes but due to the dynamic nature of force layouts, it occasionally pushes some nodes out of its appropriate x-coordinate location.
inOrder(){
this.simulation
.force("x", d3.forceX(d => this.xScale(d.value)))
.force("y", d3.forceY(this.height / 2))
.alpha(1).restart();
},
Here is an egregious example of this happening:
The numbers should be in order from left to right.
I made an attempt to use the fx property on a node to lock the position in place:
inOrder(){
this.releases.forEach(x => {
x.fx = this.xScale(x.value)
})
this.simulation
.force("x", d3.forceX(d => this.xScale(d.value)))
.force("y", d3.forceY(this.height / 2))
.alpha(1).restart();
},
This works as intended for preserving the x position but when the inOrder method is called, the nodes instantly jump to their final x position. This ruins the fluid and dynamic nature of the force simulation.
Is there a way to get the best of both worlds? Perhaps by using the .on("end", () => {}) or the .on("tick", () => {})? event handlers?
Mike Bostock (https://stackoverflow.com/users/365814/mbostock) and Shan Carter created some of the work that serves as the inspiration to what I'm trying to do here:
Click between the Changes and Department totals tabs
https://archive.nytimes.com/www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html?hp
Click betweeen The Overall Picture and the View By Industry tabs
https://archive.nytimes.com/www.nytimes.com/interactive/2013/05/25/sunday-review/corporate-taxes.html
I may be missing something here, but tinkering with the strength of the x positioning force (and the y) can help ensure that your ordering is completed properly. The default strength of forceX or forceY is 0.1, the strength is implemented as follows:
a value of 0.1 indicates that the node should move a tenth of the way from its current x-position to the target x-position with each application. Higher values moves nodes more quickly to the target position, often at the expense of other forces or constraints. A value outside the range [0,1] is not recommended. (docs)
So we could increase the forceX strength, and to allow freer movement of nodes on the x axis we could decrease the forceY - allowing nodes to hop over each other with greater ease - decreasing the collision strength could help too.
I don't label the circle below (instead they are sequentially shaded), but I do run a check to see if they are in order (logs to console on end of simulation), the below snippet modifies only the x and y forces (not the collision force):
var height = 300;
var width = 500;
var data = d3.range(30).map(function(d,i) {
return { size: Math.random()+1, index: i}
});
var svg = d3.select("body")
.append("svg")
.attr("width",width)
.attr("height",height);
var x = d3.scaleLinear()
.domain([1,30])
.range([50,width-50]);
var color = d3.scaleLinear()
.domain([0,29])
.range(["#ccc","#000"])
var simulation = d3.forceSimulation()
.force("x", d3.forceX(d => x(d.index)).strength(0.20))
.force("y", d3.forceY(height / 2).strength(0.05))
.force("collide", d3.forceCollide().radius(d=> d.size*10))
.alpha(1).restart();
var circles = svg.selectAll(null)
.data(data)
.enter()
.append("circle")
.attr("r", function(d) { return d.size * 10; })
.attr("fill", function(d,i) { return color(i); })
simulation.nodes(data)
.on("tick",tick)
.on("end",verify);
function tick() {
circles
.attr("cx", function(d) { return d.x; })
.attr("cy", function(d) { return d.y; })
}
function verify() {
var n = 0;
for(var i = 0; i < data.length - 1; i++) {
if(data[i].x > data[i+1].x) n++;
}
console.log(n + " out of place");
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.7.0/d3.min.js"></script>
The snippet places 30 circles in a 500x300 area without much issue: I've tested a handful of times with 0 out of place. Placing 100 circles in here will cause issues: the circles will not be able to change places in such a cramped area: further modification of the forces might be required, but a larger size plot might be preferential (as opposed to a tiny snippet view) too.
Another option would be to modify forces throughout the maturation of the simulation: start with strong x force strength and low collision force strength, then dial up collision slowly so that subsequent jostling is minimized. Here's an example of modifying the forces in the tick function - though, this example is for link length rather than placement on the x - but adaptation shouldn't be too hard.
Yet another possibility would be to keep alpha high until all circles are properly ordered on the x axis and then begin to cool down, again this would have to occur in the tick function.

How to achieve disc shape in D3 force simulation?

I'm trying to recreate the awesome 'dot flow' visualizations from Bussed out by Nadieh Bremer and Shirely Wu.
I'm especially intrigued by the very circular shape of the 'bubbles' and the fluid-dynamics-like compression in the spot where the dots arrive to the bubble (black arrow).
My take was to create (three) fixed nodes by .fx and .fy (black dots) and link all the other nodes to a respective fixed node. The result looks quite disheveled and the bubbles even don't form around their center nodes, when I lower the forces so the animation runs a little slower.
const simulation = d3.forceSimulation(nodes)
.force("collide", d3.forceCollide((n, i) => i < 3 ? 0 : 7))
.force("links", d3.forceLink(links).strength(.06))
Any ideas on force setup which would yield more aesthetically pleasing results?
I do understand that I'll have to animate the group assignment over time to get the 'trickle' effect (otherwise all the points would just swarm to their destination), but i'd like to start with a nice and round steady state of the simulation.
EDIT
I did check the source code, and it's just replaying pre-recorded simulation data, I guess for performance reasons.
Building off of Gerardo's start,
I think that one of the key points, to avoid excessive entropy is to specify a velocity decay - this will help avoid overshooting the desired location. Too slow, you won't get an increase in density where the flow stops, too fast, and you have the nodes either get too jumbled or overshoot their destination, oscillating between too far and too short.
A many body force is useful here - it can keep the nodes spaced (rather than a collision force), with the repulsion between nodes being offset by positioning forces for each cluster. Below I have used two centering points and a node property to determine which one is used. These forces have to be fairly weak - strong forces lead to over correction quite easily.
Rather than using a timer, I'm using the simulation.find() functionality each tick to select one node from one cluster and switch which center it is attracted to. After 1000 ticks the simulation below will stop:
var canvas = d3.select("canvas");
var width = +canvas.attr("width");
var height = +canvas.attr("height");
var context = canvas.node().getContext('2d');
// Key variables:
var nodes = [];
var strength = -0.25; // default repulsion
var centeringStrength = 0.01; // power of centering force for two clusters
var velocityDecay = 0.15; // velocity decay: higher value, less overshooting
var outerRadius = 250; // new nodes within this radius
var innerRadius = 100; // new nodes outside this radius, initial nodes within.
var startCenter = [250,250]; // new nodes/initial nodes center point
var endCenter = [710,250]; // destination center
var n = 200; // number of initial nodes
var cycles = 1000; // number of ticks before stopping.
// Create a random node:
var random = function() {
var angle = Math.random() * Math.PI * 2;
var distance = Math.random() * (outerRadius - innerRadius) + innerRadius;
var x = Math.cos(angle) * distance + startCenter[0];
var y = Math.sin(angle) * distance + startCenter[1];
return {
x: x,
y: y,
strength: strength,
migrated: false
}
}
// Initial nodes:
for(var i = 0; i < n; i++) {
nodes.push(random());
}
var simulation = d3.forceSimulation()
.force("charge", d3.forceManyBody().strength(function(d) { return d.strength; } ))
.force("x1",d3.forceX().x(function(d) { return d.migrated ? endCenter[0] : startCenter[0] }).strength(centeringStrength))
.force("y1",d3.forceY().y(function(d) { return d.migrated ? endCenter[1] : startCenter[1] }).strength(centeringStrength))
.alphaDecay(0)
.velocityDecay(velocityDecay)
.nodes(nodes)
.on("tick", ticked);
var tick = 0;
function ticked() {
tick++;
if(tick > cycles) this.stop();
nodes.push(random()); // create a node
this.nodes(nodes); // update the nodes.
var migrating = this.find((Math.random() - 0.5) * 50 + startCenter[0], (Math.random() - 0.5) * 50 + startCenter[1], 10);
if(migrating) migrating.migrated = true;
context.clearRect(0,0,width,height);
nodes.forEach(function(d) {
context.beginPath();
context.fillStyle = d.migrated ? "steelblue" : "orange";
context.arc(d.x,d.y,3,0,Math.PI*2);
context.fill();
})
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.7.0/d3.min.js"></script>
<canvas width="960" height="500"></canvas>
Here's a block view (snippet would be better full page, the parameters are meant for it). The initial nodes are formed in the same ring as later nodes (so there is a bit of jostle at the get go, but this is an easy fix). On each tick, one node is created and one attempt is made to migrate a node near the middle to other side - this way a stream is created (as opposed to any random node).
For fluids, unlinked nodes are probably best (I've been using it for wind simulation) - linked nodes are ideal for structured materials like nets or cloth. And, like Gerardo, I'm also a fan of Nadieh's work, but will have to keep an eye on Shirley's work as well in the future.
Nadieh Bremer is my idol in D3 visualisations, she's an absolute star! (correction after OP's comment: it seems that this datavis was created by Shirley Wu... anyway, that doesn't change what I said about Bremer).
The first attempt to find out what's happening on that page is having a look at the source code, which, unfortunately, is an herculean job. So, the option that remains is trying to reproduce that.
The challenge here is not creating a circular pattern, that's quite easy: you only need to combine forceX, forceY and forceCollide:
const svg = d3.select("svg")
const data = d3.range(500).map(() => ({}));
const simulation = d3.forceSimulation(data)
.force("x", d3.forceX(200))
.force("y", d3.forceY(120))
.force("collide", d3.forceCollide(4))
.stop();
for (let i = 300; i--;) simulation.tick();
const circles = svg.selectAll(null)
.data(data)
.enter()
.append("circle")
.attr("r", 2)
.style("fill", "tomato")
.attr("cx", d => d.x)
.attr("cy", d => d.y);
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.7.0/d3.min.js"></script>
<svg width="400" height="300"></svg>
The real challenge here is moving those circles to a given simulation one by one, not all at the same time, as I did here.
So, this is my suggestion/attempt:
We create a simulation, that we stop...
simulation.stop();
Then, in a timer...
const timer = d3.interval(function() {etc...
... we add the nodes to the simulation:
const newData = data.slice(0, index++)
simulation.nodes(newData);
This is the result, click the button:
const radius = 2;
let index = 0;
const limit = 500;
const svg = d3.select("svg")
const data = d3.range(500).map(() => ({
x: 80 + Math.random() * 40,
y: 80 + Math.random() * 40
}));
let circles = svg.selectAll(null)
.data(data);
circles = circles.enter()
.append("circle")
.attr("r", radius)
.style("fill", "tomato")
.attr("cx", d => d.x)
.attr("cy", d => d.y)
.style("opacity", 0)
.merge(circles);
const simulation = d3.forceSimulation()
.force("x", d3.forceX(500))
.force("y", d3.forceY(100))
.force("collide", d3.forceCollide(radius * 2))
.stop();
function ticked() {
circles.attr("cx", d => d.x)
.attr("cy", d => d.y);
}
d3.select("button").on("click", function() {
simulation.on("tick", ticked).restart();
const timer = d3.interval(function() {
if (index > limit) timer.stop();
circles.filter((_, i) => i === index).style("opacity", 1)
const newData = data.slice(0, index++)
simulation.alpha(0.25).nodes(newData);
}, 5)
})
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.7.0/d3.min.js"></script>
<button>Click</button>
<svg width="600" height="200"></svg>
Problems with this approach
As you can see, there is too much entropy here, particularly at the centre. Nadieh Bremer/Shirley Wu probably used a way more sofisticated code. But these are my two cents for now, let's see if other answers will show up with different approaches.
With the help of other answers here I went on experimenting, and I'd like to summarize my findings:
Disc shape
forceManyBody seems to be more stable than forceCollide. The key for using it without distorting the disc shapes is .distanceMax. With the downside that your visualization is not 'scale-free' any more and it has to be tuned by hand. As a guidance, overshooting in each direction causes distinct artifacts:
Setting distanceMax too high deforms the neighboring discs.
Setting distanceMax too low (lower than expected disc diameter):
This artifact can be seen in the Guardian visualization (when the red and blue dots form a huge disc in the end), so I'm quite sure distanceMax was used.
Node positioning
I still find using forceX with forceY and custom accessor functions too cumbersome for more complex animations. I decided to go with 'control' nodes, and with little tuning (chargeForce.strength(-4), link.strength(.2).distance(1)) it works ok.
Fluid feeling
While experimenting with the settings I noticed that the fluid feeling (incoming nodes push boundary of accepting disc) depends especially on simulation.velocityDecay, but lowering it too much adds too much entropy to the system.
Final result
My sample code splits one 'population' into three, and then into five - check it on blocks. Each of the sinks is represented by a control node. The nodes are re-assigned to new sinks in batches, which gives more control over the visual of the 'stream'. Starting to pick nodes to assign closer to the sinks looks more natural (single sort at the beginning of each animation).

D3: Select a circle by x and y coordinates in a scatter plot

Is there any possibility in d3.js to select the elements by their position, i.e. by their x and y coordinates? I have a scatter plot which contains a large amount of data. And i have also an array of coordinates. the dots with these coordinates should be red. I am doing something like this for that:
bestHistory() {
var that = this;
var best = d3.select("circle")
.attr("cx", that.runData[0].best_history[0].scheduling_quality)
.attr("cy", that.runData[0].best_history[0].staffing_cost)
.classed("highlighted", true)
}
This method should set the class attribute of the circles on this certain positions equal to highlighted.
And then the appropriate CSS:
circle.highlighted {
fill: red;
}
But instead getting red this dot just disappears.
How can I achieve that what I want to ?
You can calculate the actual distance of each point to the point of interest and determine points color based on this distance like:
var threshold=...
var p =...
d3.select('circle').each(function(d){
var x = p.x - d.x;
var y = p.y - d.y;
d.distance = Math.sqrt(x*x + y*y);
}).attr('fill', function(d){
return d.distance < threshold? 'red' : 'blue'
})
Ps. Sorry, answered from mobile

Color scale not working appropriately in D3/JavaScript [duplicate]

This question already has answers here:
d3.scale.category10() not behaving as expected
(3 answers)
Closed 8 years ago.
Im using a color scale :
var color = d3.scale.category10();
Im using this to color the edges of a force layout graph according to their value
var links = inner.selectAll("line.link")
.style("stroke", function(d) { return color(d.label); });
Now I need a 'legend' to show the user what each color means:
edgesArray = [];
edgesArrayIndex = [];
for (i=0;i<data.edges.length;i++) {
if(!edgesArray[data.edges[i].name])
{
edgesArray[data.edges[i].name]=1;
edgesArrayIndex.push(data.edges[i].name);
}
}
var colourWidth = 160;
var colourHeight = 25;
for(i=0; i<edgesArrayIndex.length; i++){
if (edgeColour == true){
svg.append('rect')
.attr("width", colourWidth)
.attr("height", colourHeight)
.attr("x", Marg*2)
.attr("y", Marg*2 + [i]*colourHeight)
.style("fill", color(i))
;
svg.append("text")
.attr("x", Marg*3)
.attr("y", Marg*2 + [i]*colourHeight + colourHeight/2)
.attr("dy", ".35em")
.text(color(i) + " : " + data.edges[i].name);
}
//console.log(edgesArrayIndex);
}
The colors are all wrong. When I attach the colors to the graph the first 6 colors get attached to the edges as there are 6 different types of edges.
But when I apply the color scale to the 6 'rects' I appended to the SVG its as if the first 6 colors of the color scale array got used up when applying then to the edges and when i do the for loop starting at color(0) it actually gives me the color at color(5) (as 0 is first).
For example, say ive got red,blue,green,white,black,pink,orange,yellow,indigo,aqua.
My edges get - red,blue,green,white,black,pink
and now when i want to apply the scale to the rects I made, I would expect the rects to have the same values - red,blue,green,white,black,pink.
But they actually have : orange,yellow,indigo,aqua, red, blue.
They start at color[5] and its as if they wrap round to the beginning and go back to red, blue and so on.
You are using two different parts of the data for the colour scale -- first the label, then the name. By definition, this will give you different colours (different inputs map to different outputs as far as possible given the output range).
To get the same colours, pass in the same attributes, e.g. the labels (if I understood your data structure correctly):
svg.append('rect')
.style("fill", color(data.edges[i].label))
this question helped me -
d3.scale.category10() not behaving as expected
basically you have to put a domain on the scale. So instead of
var color = d3.scale.category10();
Change it to:
var color = d3.scale.category10().domain([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);//-colour scale

d3.js spreading labels for pie charts

I'm using d3.js - I have a pie chart here. The problem though is when the slices are small - the labels overlap. What is the best way of spreading out the labels.
http://jsfiddle.net/BxLHd/16/
Here is the code for the labels. I am curious - is it possible to mock a 3d pie chart with d3?
//draw labels
valueLabels = label_group.selectAll("text.value").data(filteredData)
valueLabels.enter().append("svg:text")
.attr("class", "value")
.attr("transform", function(d) {
return "translate(" + Math.cos(((d.startAngle+d.endAngle - Math.PI)/2)) * (that.r + that.textOffset) + "," + Math.sin((d.startAngle+d.endAngle - Math.PI)/2) * (that.r + that.textOffset) + ")";
})
.attr("dy", function(d){
if ((d.startAngle+d.endAngle)/2 > Math.PI/2 && (d.startAngle+d.endAngle)/2 < Math.PI*1.5 ) {
return 5;
} else {
return -7;
}
})
.attr("text-anchor", function(d){
if ( (d.startAngle+d.endAngle)/2 < Math.PI ){
return "beginning";
} else {
return "end";
}
}).text(function(d){
//if value is greater than threshold show percentage
if(d.value > threshold){
var percentage = (d.value/that.totalOctets)*100;
return percentage.toFixed(2)+"%";
}
});
valueLabels.transition().duration(this.tweenDuration).attrTween("transform", this.textTween);
valueLabels.exit().remove();
As #The Old County discovered, the previous answer I posted fails in firefox because it relies on the SVG method .getIntersectionList() to find conflicts, and that method hasn't been implemented yet in Firefox.
That just means we have to keep track of label positions and test for conflicts ourselves. With d3, the most efficient way to check for layout conflicts involves using a quadtree data structure to store positions, that way you don't have to check every label for overlap, just those in a similar area of the visualization.
The second part of the code from the previous answer gets replaced with:
/* check whether the default position
overlaps any other labels*/
var conflicts = [];
labelLayout.visit(function(node, x1, y1, x2, y2){
//recurse down the tree, adding any overlapping labels
//to the conflicts array
//node is the node in the quadtree,
//node.point is the value that we added to the tree
//x1,y1,x2,y2 are the bounds of the rectangle that
//this node covers
if ( (x1 > d.r + maxLabelWidth/2)
//left edge of node is to the right of right edge of label
||(x2 < d.l - maxLabelWidth/2)
//right edge of node is to the left of left edge of label
||(y1 > d.b + maxLabelHeight/2)
//top (minY) edge of node is greater than the bottom of label
||(y2 < d.t - maxLabelHeight/2 ) )
//bottom (maxY) edge of node is less than the top of label
return true; //don't bother visiting children or checking this node
var p = node.point;
var v = false, h = false;
if ( p ) { //p is defined, i.e., there is a value stored in this node
h = ( ((p.l > d.l) && (p.l <= d.r))
|| ((p.r > d.l) && (p.r <= d.r))
|| ((p.l < d.l)&&(p.r >=d.r) ) ); //horizontal conflict
v = ( ((p.t > d.t) && (p.t <= d.b))
|| ((p.b > d.t) && (p.b <= d.b))
|| ((p.t < d.t)&&(p.b >=d.b) ) ); //vertical conflict
if (h&&v)
conflicts.push(p); //add to conflict list
}
});
if (conflicts.length) {
console.log(d, " conflicts with ", conflicts);
var rightEdge = d3.max(conflicts, function(d2) {
return d2.r;
});
d.l = rightEdge;
d.x = d.l + bbox.width / 2 + 5;
d.r = d.l + bbox.width + 10;
}
else console.log("no conflicts for ", d);
/* add this label to the quadtree, so it will show up as a conflict
for future labels. */
labelLayout.add( d );
var maxLabelWidth = Math.max(maxLabelWidth, bbox.width+10);
var maxLabelHeight = Math.max(maxLabelHeight, bbox.height+10);
Note that I've changed the parameter names for the edges of the label to l/r/b/t (left/right/bottom/top) to keep everything logical in my mind.
Live fiddle here: http://jsfiddle.net/Qh9X5/1249/
An added benefit of doing it this way is that you can check for conflicts based on the final position of the labels, before actually setting the position. Which means that you can use transitions for moving the labels into position after figuring out the positions for all the labels.
Should be possible to do. How exactly you want to do it will depend on what you want to do with spacing out the labels. There is not, however, a built in way of doing this.
The main problem with the labels is that, in your example, they rely on the same data for positioning that you are using for the slices of your pie chart. If you want them to space out more like excel does (i.e. give them room), you'll have to get creative. The information you have is their starting position, their height, and their width.
A really fun (my definition of fun) way to go about solving this would be to create a stochastic solver for an optimal arrangement of labels. You could do this with an energy-based method. Define an energy function where energy increases based on two criteria: distance from start point and overlap with nearby labels. You can do simple gradient descent based on that energy criteria to find a locally optimal solution with regards to your total energy, which would result in your labels being as close as possible to their original points without a significant amount of overlap, and without pushing more points away from their original points.
How much overlap is tolerable would depend on the energy function you specify, which should be tunable to give a good looking distribution of points. Similarly, how much you're willing to budge on point closeness would depend on the shape of your energy increase function for distance from the original point. (A linear energy increase will result in closer points, but greater outliers. A quadratic or a cubic will have greater average distance, but smaller outliers.)
There might also be an analytical way of solving for the minima, but that would be harder. You could probably develop a heuristic for positioning things, which is probably what excel does, but that would be less fun.
One way to check for conflicts is to use the <svg> element's getIntersectionList() method. That method requires you to pass in an SVGRect object (which is different from a <rect> element!), such as the object returned by a graphical element's .getBBox() method.
With those two methods, you can figure out where a label is within the screen and if it overlaps anything. However, one complication is that the rectangle coordinates passed to getIntersectionList are interpretted within the root SVG's coordinates, while the coordinates returned by getBBox are in the local coordinate system. So you also need the method getCTM() (get cumulative transformation matrix) to convert between the two.
I started with the example from Lars Khottof that #TheOldCounty had posted in a comment, as it already included lines between the arc segments and the labels. I did a little re-organization to put the labels, lines and arc segments in separate <g> elements. That avoids strange overlaps (arcs drawn on top of pointer lines) on update, and it also makes it easy to define which elements we're worried about overlapping -- other labels only, not the pointer lines or arcs -- by passing the parent <g> element as the second parameter to getIntersectionList.
The labels are positioned one at a time using an each function, and they have to be actually positioned (i.e., the attribute set to its final value, no transitions) at the time the position is calculated, so that they are in place when getIntersectionList is called for the next label's default position.
The decision of where to move a label if it overlaps a previous label is a complex one, as #ckersch's answer outlines. I keep it simple and just move it to the right of all the overlapped elements. This could cause a problem at the top of the pie, where labels from the last segments could be moved so that they overlap labels from the first segments, but that's unlikely if the pie chart is sorted by segment size.
Here's the key code:
labels.text(function (d) {
// Set the text *first*, so we can query the size
// of the label with .getBBox()
return d.value;
})
.each(function (d, i) {
// Move all calculations into the each function.
// Position values are stored in the data object
// so can be accessed later when drawing the line
/* calculate the position of the center marker */
var a = (d.startAngle + d.endAngle) / 2 ;
//trig functions adjusted to use the angle relative
//to the "12 o'clock" vector:
d.cx = Math.sin(a) * (that.radius - 75);
d.cy = -Math.cos(a) * (that.radius - 75);
/* calculate the default position for the label,
so that the middle of the label is centered in the arc*/
var bbox = this.getBBox();
//bbox.width and bbox.height will
//describe the size of the label text
var labelRadius = that.radius - 20;
d.x = Math.sin(a) * (labelRadius);
d.sx = d.x - bbox.width / 2 - 2;
d.ox = d.x + bbox.width / 2 + 2;
d.y = -Math.cos(a) * (that.radius - 20);
d.sy = d.oy = d.y + 5;
/* check whether the default position
overlaps any other labels*/
//adjust the bbox according to the default position
//AND the transform in effect
var matrix = this.getCTM();
bbox.x = d.x + matrix.e;
bbox.y = d.y + matrix.f;
var conflicts = this.ownerSVGElement
.getIntersectionList(bbox, this.parentNode);
/* clear conflicts */
if (conflicts.length) {
console.log("Conflict for ", d.data, conflicts);
var maxX = d3.max(conflicts, function(node) {
var bb = node.getBBox();
return bb.x + bb.width;
})
d.x = maxX + 13;
d.sx = d.x - bbox.width / 2 - 2;
d.ox = d.x + bbox.width / 2 + 2;
}
/* position this label, so it will show up as a conflict
for future labels. (Unfortunately, you can't use transitions.) */
d3.select(this)
.attr("x", function (d) {
return d.x;
})
.attr("y", function (d) {
return d.y;
});
});
And here's the working fiddle: http://jsfiddle.net/Qh9X5/1237/

Categories