Lets say I have a 2D coordinate system with lots of Rects on it. Take this as an example representation. I now want to get the nearest next element in a given direction. Lets use this image as an example:
S defines the element at which I currently am. If I press up I should now be at the closest element in upwards direction which is A. My current approach was something like this:
Distance = abs((S.x-A.x)+(S.y-A.y);
Angle = abs(atan2((A.y - S.y), (A.x - S.x)) * 180 / Math.PI);
Score = Distance + abs(DirectionAngle-Angle)
Then I choose the candidate based on the lowest score. Now there are multiple problems:
Iteration happens for ALL elements, not only those upwards. The elements are not considered if they're in the opposite direction but the elements to the left and right are still in the calculation.
If A for some reason extends 3 more pieces to the left it won't work anymore and B is selected.
So what I need is a solution to only iterate over elements in the direction AND a smart solution to only select the closest element and then stop and return the element.
Btw. the elements are actually divs so canvas is not an option.
Might this giant overkill example help?
You can find it here: http://jsfiddle.net/Icepickle/Cu88x/
where i first determine the position of the clicked element, get all elements matching a certain direction (check if the point is inside the rectangle)
var offset = helper.offset(element),
rect = new helper.simpleRect(offset.left - (3 * 20), offset.top - (3 * 20), 6 * 20, 6 * 20),
left = getElements(DIRECTION.LEFT, element, rect),
right = getElements(DIRECTION.RIGHT, element, rect),
up = getElements(DIRECTION.UP, element, rect),
down = getElements(DIRECTION.DOWN, element, rect);
and then calculate the distance between the elements that already match the direction (in case 2 are the same distance away, they also get highlighted as the closest):
function highlightClosest(arr, direction, rect) {
var i = 0, l = arr.length, min = 10000, el, minScoreElement = [], o, a, b, c;
for (i = 0; i < l; i++) {
el = arr[i];
o = helper.offset(el);
a = Math.abs(o.left - rect.center.left);
b = Math.abs(o.top - rect.center.top);
c = (a * a) + (b * b);
if (c < min) {
min = c;
minScoreElement = [el];
} else if (c == min) {
minScoreElement.push(el);
}
}
if (minScoreElement) {
for (i = 0; i < minScoreElement.length; i++) {
minScoreElement[i].className = direction;
}
}
}
Related
Im creating an object that randomly moves in a natural way using noise like this (works as intended):
The objects encounter a collision and their trajectory is manipulated, the movement path now changes to straight line (words as intended)
thisRabbit.x = _world.width * (noise(thisRabbit.t));
thisRabbit.y = _world.height * (noise(thisRabbit.t+5));
thisRabbit.t += 0.001;
The problem is after this movement , i want the object to start moving in a random direction again as it was initially. If i use the same function, the object jumps to the last location before the trajectory was modified.
let vx = this.acquiredFood[0] - this.x;
let vy = this.acquiredFood[1] - this.y;
let f = (this.genes.speed + 10) / Math.sqrt(vx*vx+vy*vy);
vx = vx * f;
vy = vy * f;
let newX = this.x + vx;
let newY = this.y + vy;
So how do i get the object to move as before, given a starting position
edit: snippet here: https://editor.p5js.org/vince.chinner/sketches/HPFKR8eIw
Your problem is that you used a factor from 0 to 1 generated with noise and an incremented seed to generate the position by multiplying directly the world dimentions. When reaching food, you cannot increment the seed as to be in the exact position where the movement to get your food led you (I found no inverse function for noise to get the seed from the return value).
What you need to do instead is use the noise to increment or decrement the coordinates, so that no matter where the seed is, you don't loose your current position.
Here are the different corrections I applied to the code, as there were also syntax errors, I can't really paste the whole stuff here for copyright reasons (you didn't share the whole code here and the sketch belongs to you)
MAIN CORRECTION:
used a var found because returning from the forEach callback doesn't make you leave the findFood function, but the callback one. And the forEach loop doesn't stop. Using this var prevents the further forEach tests to be made and allows you to return from findFood so that no further move is made after seeing food.
noise is now applied to a value of 4 and I subtract 2, so that x and y now change with a range of -2 to 2 each. Of course, with this method, you need to check against world dimentions or else the rabbit could leave the world. The seed increment has been changed too or else it would vary too slowly (adapt values as you wish)
findFood(){
var thisRabbit = this, found = false;
_world.food.forEach(f => {
if(!found){
let d = int(dist(f[0], f[1], thisRabbit.x, thisRabbit.y));
if(d < (thisRabbit.genes.vision / 2)+3){
thisRabbit.state = "foundFood";
this.acquiredFood = f;
found = true;
}
}
});
if(found){ return; }
thisRabbit.x += (noise(thisRabbit.t) * 4) - 2;
if(thisRabbit.x < 0){ thisRabbit.x = 0; }
if(thisRabbit.x > _world.width){ thisRabbit.x = _world.width; }
thisRabbit.y += (noise(thisRabbit.t + 5) * 4) - 2;
if(thisRabbit.y < 0){ thisRabbit.y = 0; }
if(thisRabbit.y > _world.height){ thisRabbit.y = _world.height; }
thisRabbit.t += 0.01;
}
SYNTAX ERRORS:
lines 23 / 24: assignment should be with a value (null or false)
this.genes = null;
this.acquiredFood = null;
lines 129 to 133: end you instructions with a ; instead of a ,
this.width = w;
this.height = h;
this.foodDensity = foodDensity;
this.food = [];
this.rabits = [];
line 156 to 160: there should be no space between rabbit and .t. Additionnally, because the coordinates are not directly linked to t, I would prefer to use random for starting position:
let x = this.width * random();
let y = this.height * random();
let _rabbit = new rabbit(x, y);
_rabbit.genes = genes;
_rabbit.t = t;
I am trying to write a script to place 100 circles of varying sizes onto a stage. I've outlined the concise requirements below.
Given the following:
var stage; // contains a "width" and "height" property.
var circle; // the circle class. contains x, y, radius & a unique id property.
var circleArray; // contains 100 circle instances
requirements:
write a function to place 100 circles of varying radius onto the stage.
placements must be random but evenly distributed (no clumping).
placement must be performant - this will be executing on a mobile web browser.
circles must not intersect/overlap other circles.
circle.x >= 0 must be true.
circle.y >= 0 && circle.y <= stage.height must be true.
circles may have any of the following radius sizes (assigned at creation):
150
120
90
80
65
My current attempt is a brute-force method, which does not operate efficiently. If I attempt to insert any more than ~10 circles, the browser hangs. Below is my current implementation, which I am completely OK with throwing away in favor of a more performant / better one.
Here is a live demo (NOTE: there is no actual drawing code, just the logic, but it will still lock up the browser so be warned!!) http://jsbin.com/muhiziduxu/2/edit?js,console
function adjustForOverlap (circleArray) {
// a reference to the circle that is invoking this function.
var _this = this;
// remove this circle from the array we are iterating over.
var arr = circleArray.filter(function (circle){
return circle.id !== _this.id;
});
// while repeat == true, the circle may be overlapping something.
var repeat = true;
while(repeat) {
var hasOverlap = false;
for (var i=0; i<arr.length; i++) {
var other = arr[i];
var dx = _self.x - other.x;
var dy = _self.y - other.y;
var rr = _self.radius + other.radius;
if (dx * dx + dy * dy < rr * rr) {
// if here, then an overlap was detected.
hit = true;
break;
}
}
// if hit is false, the circle didn't overlap anything, so break.
if (hit === false) {
repeat = false;
break;
} else {
// an overlap was detected, so randomize position.
_self.x = Math.random() * (stage.width*2);
_self.y = Math.random() * stage.height;
}
}
}
There are lots of efficient collision detection algorithms. Many of them work by dividing up the space into cells and maintaining a separate data structure with efficient lookup of other objects in the cell. The basic steps are:
Identify a random spot for your new circle
Determine which cells it's in
Look in each of those cells for a collision
If there's a collision, goto 1.
Else, add the new circle to each of the cells it overlaps.
You can use a simple square grid (i.e. a 2-d array) for the cell data structure, or something else like a quadtree. You can also in some cases get a bit of extra speed by trying a cheap-but-coarse collision check first (do the bounding boxes overlap), and if that returns true try the slightly more expensive and exact check.
Update
For quadtrees, check out d3-quadtree, which ought to give you a pretty good implementation, with examples.
For a (very quick, untested) 2-d array implementation:
function Grid(radius, width, height) {
// I'm not sure offhand how to find the optimum grid size.
// Let's use a radius as a starting point
this.gridX = Math.ceil(width / radius);
this.gridY = Math.ceil(height / radius);
// Determine cell size
this.cellWidth = width / this.gridX;
this.cellHeight = height / this.gridY;
// Create the grid structure
this.grid = [];
for (var i = 0; i < gridY; i++) {
// grid row
this.grid[i] = [];
for (var j = 0; j < gridX; j++) {
// Grid cell, holds refs to all circles
this.grid[i][j] = [];
}
}
}
Grid.prototype = {
// Return all cells the circle intersects. Each cell is an array
getCells: function(circle) {
var cells = [];
var grid = this.grid;
// For simplicity, just intersect the bounding boxes
var gridX1Index = Math.floor(
(circle.x - circle.radius) / this.cellWidth
);
var gridX2Index = Math.ceil(
(circle.x + circle.radius) / this.cellWidth
);
var gridY1Index = Math.floor(
(circle.y - circle.radius) / this.cellHeight
);
var gridY2Index = Math.ceil(
(circle.y + circle.radius) / this.cellHeight
);
for (var i = gridY1Index; i < gridY2Index; i++) {
for (var j = gridX1Index; j < gridX2Index; j++) {
// Add cell to list
cells.push(grid[i][j]);
}
}
return cells;
},
add: function(circle) {
this.getCells(circle).forEach(function(cell) {
cell.push(circle);
});
},
hasCollisions: function(circle) {
return this.getCells(circle).some(function(cell) {
return cell.some(function(other) {
return this.collides(circle, other);
}, this);
}, this);
},
collides: function (circle, other) {
if (circle === other) {
return false;
}
var dx = circle.x - other.x;
var dy = circle.y - other.y;
var rr = circle.radius + other.radius;
return (dx * dx + dy * dy < rr * rr);
}
};
var g = new Grid(150, 1000, 800);
g.add({x: 100, y: 100, radius: 50});
g.hasCollisions({x: 100, y:80, radius: 100});
Here's a fully-functional example: http://jsbin.com/cojoxoxufu/1/edit?js,output
Note that this only shows 30 circles. It looks like the problem is often unsolvable with your current radii, width, and height. This is set up to look for up to 500 locations for each circle before giving up and accepting a collision.
Given an array of circles (x,y,r values), I want to place a new point, such that it has a fixed/known Y-coordinate (shown as the horizontal line), and is as close as possible to the center BUT not within any of the existing circles. In the example images, the point in red would be the result.
Circles have a known radius and Y-axis attribute, so easy to calculate the points where they intersect the horizontal line at the known Y value. Efficiency is important, I don't want to have to try a bunch of X coords and test them all against each item in the circles array. Is there a way to work out this optimal X coordinate mathematically? Any help greatly appreciated. By the way, I'm writing it in javascript using the Raphael.js library (because its the only one that supports IE8) - but this is more of a logic problem so the language doesn't really matter.
I'd approach your problem as follows:
Initialize a set of intervals S, sorted by the X coordinate of the interval, to the empty set
For each circle c, calculate the interval of intersection Ic of c with with the X axis. If c does not intersect, go on to the next circle. Otherwise, test whether Ic overlaps with any interval(s) in S (this is quick because S is sorted); if so, remove all intersecting intervals from S, collapse Ic and all removed intervals into a new interval I'c and add I'c to S. If there are no intersections, add Ic to S.
Check whether any interval in S includes the center (again, fast because S is sorted). If so, select the interval endpoint closest to the center; if not, select the center as the closest point.
Basically the equation of a circle is (x - cx)2 + (y - cy)2 = r2. Therefore you can easily find the intersection points between the circle and X axis by substituting y with 0. After that you just have a simple quadratic equation to solve: x2 - 2cxx + cx2 + cy2 - r2 = 0 . For it you have 3 possible outcomes:
No intersection - the determinant will be irrational number (NaN in JavaScript), ignore this result;
One intersection - both solutions match, use [value, value];
Two intersections - both solutions are different, use [value1, value2].
Sort the newly calculated intersection intervals, than try merge them where it is possible. However take in mind that in every program language there approximation, therefore you need to define delta value for your dot approximation and take it into consideration when merging the intervals.
When the intervals are merged you can generate your x coordinates by subtracting/adding the same delta value to the beginning/end of every interval. And lastly from all points, the one closest to zero is your answer.
Here is an example with O(n log n) complexity that is oriented rather towards readability. I've used 1*10-10 for delta :
var circles = [
{x:0, y:0, r:1},
{x:2.5, y:0, r:1},
{x:-1, y:0.5, r:1},
{x:2, y:-0.5, r:1},
{x:-2, y:0, r:1},
{x:10, y:10, r:1}
];
console.log(getClosestPoint(circles, 1e-10));
function getClosestPoint(circles, delta)
{
var intervals = [],
len = circles.length,
i, result;
for (i = 0; i < len; i++)
{
result = getXIntersection(circles[i])
if (result)
{
intervals.push(result);
}
}
intervals = intervals.sort(function(a, b){
return a.from - b.from;
});
if (intervals.length <= 0) return 0;
intervals = mergeIntervals(intervals, delta);
var points = getClosestPoints(intervals, delta);
points = points.sort(function(a, b){
return Math.abs(a) - Math.abs(b);
});
return points[0];
}
function getXIntersection(circle)
{
var d = Math.sqrt(circle.r * circle.r - circle.y * circle.y);
return isNaN(d) ? null : {from: circle.x - d, to: circle.x + d};
}
function mergeIntervals(intervals, delta)
{
var curr = intervals[0],
result = [],
len = intervals.length, i;
for (i = 1 ; i < len ; i++)
{
if (intervals[i].from <= curr.to + delta)
{
curr.to = Math.max(curr.to, intervals[i].to);
} else {
result.push(curr);
curr = intervals[i];
}
}
result.push(curr);
return result;
}
function getClosestPoints(intervals, delta)
{
var result = [],
len = intervals.length, i;
for (i = 0 ; i < len ; i++)
{
result.push( intervals[i].from - delta );
result.push( intervals[i].to + delta );
}
return result;
}
create the intersect_segments array (normalizing at x=0 y=0)
sort intersectsegments by upperlimit and remove those with upperlimit<0
initialize point1 = 0 and segment = 0
loop while point1 is inside intersectsegment[segment]
4.1. increment point1 by uppper limit of intersectsegment[segment]
4.2. increment segment
sort intersectsegments by lowerlimit and remove those with loerlimit>0
initialize point2 = 0 and segment = 0
loop while point2 is inside intersectsegments[segment]
7.1. decrement point2 by lower limit of segment
7.2. decrement segment
the point is minimum absolute value of p1 and p2
I am creating a new "whack-a-mole" style game where the children have to hit the correct numbers in accordance to the question. So far it is going really well, I have a timer, count the right and wrong answers and when the game is started I have a number of divs called "characters" that appear in the container randomly at set times.
The problem I am having is that because it is completely random, sometimes the "characters" appear overlapped with one another. Is there a way to organize them so that they appear in set places in the container and don't overlap when they appear.
Here I have the code that maps the divs to the container..
function randomFromTo(from, to) {
return Math.floor(Math.random() * (to - from + 1) + from);
}
function scramble() {
var children = $('#container').children();
var randomId = randomFromTo(1, children.length);
moveRandom('char' + randomId);
}
function moveRandom(id) {
var cPos = $('#container').offset();
var cHeight = $('#container').height();
var cWidth = $('#container').width();
var pad = parseInt($('#container').css('padding-top').replace('px', ''));
var bHeight = $('#' + id).height();
var bWidth = $('#' + id).width();
maxY = cPos.top + cHeight - bHeight - pad;
maxX = cPos.left + cWidth - bWidth - pad;
minY = cPos.top + pad;
minX = cPos.left + pad;
newY = randomFromTo(minY, maxY);
newX = randomFromTo(minX, maxX);
$('#' + id).css({
top: newY,
left: newX
}).fadeIn(100, function () {
setTimeout(function () {
$('#' + id).fadeOut(100);
window.cont++;
}, 1000);
});
I have a fiddle if it helps.. http://jsfiddle.net/pUwKb/8/
As #aug suggests, you should know where you cannot place things at draw-time, and only place them at valid positions. The easiest way to do this is to keep currently-occupied positions handy to check them against proposed locations.
I suggest something like
// locations of current divs; elements like {x: 10, y: 40}
var boxes = [];
// p point; b box top-left corner; w and h width and height
function inside(p, w, h, b) {
return (p.x >= b.x) && (p.y >= b.y) && (p.x < b.x + w) && (p.y < b.y + h);
}
// a and b box top-left corners; w and h width and height; m is margin
function overlaps(a, b, w, h, m) {
var corners = [a, {x:a.x+w, y:a.y}, {x:a.x, y:a.y+h}, {x:a.x+w, y:a.y+h}];
var bWithMargins = {x:b.x-m, y:b.y-m};
for (var i=0; i<corners.length; i++) {
if (inside(corners[i], bWithMargins, w+2*m, h+2*m) return true;
}
return false;
}
// when placing a new piece
var box;
while (box === undefined) {
box = createRandomPosition(); // returns something like {x: 15, y: 92}
for (var i=0; i<boxes.length; i++) {
if (overlaps(box, boxes[i], boxwidth, boxheight, margin)) {
box = undefined;
break;
}
}
}
boxes.push(box);
Warning: untested code, beware the typos.
The basic idea you will have to implement is that when a random coordinate is chosen, theoretically you SHOULD know the boundaries of what is not permissible and your program should know not to choose those places (whether you find an algorithm or way of simply disregarding those ranges or your program constantly checks to make sure that the number chosen isn't within the boundary is up to you. the latter is easier to implement but is a bad way of going about it simply because you are entirely relying on chance).
Let's say for example coordinate 50, 70 is selected. If the picture is 50x50 in size, the range of what is allowed would exclude not only the dimensions of the picture, but also 50px in all directions of the picture so that no overlap may occur.
Hope this helps. If I have time, I might try to code an example but I hope this answers the conceptual aspect of the question if that is what you were having trouble with.
Oh and btw forgot to say really great job on this program. It looks awesome :)
You can approach this problem in at least two ways (these two are popped up in my head).
How about to create a 2 dimensional grid segmentation based on the number of questions, the sizes of the question panel and an array holding the position of each question coordinates and then on each time frame to position randomly these panels on one of the allowed coordinates.
Note: read this article for further information: http://eloquentjavascript.net/chapter8.html
The second approach follow the same principle, but this time to check if the panel overlap the existing panel before you place it on the canvas.
var _grids;
var GRID_SIZE = 20 //a constant holding the panel size;
function createGrids() {
_grids = new Array();
for (var i = 0; i< stage.stageWidth / GRID_SIZE; i++) {
_grids[i] = new Array();
for (var j = 0; j< stage.stageHeight / GRID_SIZE; j++) {
_grids[i][j] = new Array();
}
}
}
Then on a separate function to create the collision check. I've created a gist for collision check in Actionscript, but you can use the same principle in Javascript too. I've created this gist for inspirational purposes.
Just use a random number which is based on the width of your board and then modulo with the height...
You get a cell which is where you can put the mole.
For the positions the x and y should never change as you have 9 spots lets say where the mole could pop up.
x x x
x x x
x x x
Each cell would be sized based on % rather then pixels and would allow re sizing the screen
1%3 = 1 (x)
3%3 = 0 (y)
Then no overlap is possible.
Once the mole is positioned it can be show or hidden or moved etc based on some extended logic if required.
If want to keep things your way and you just need a quick re-position algorithm... just set the NE to the SW if the X + width >= x of the character you want to check by setting the x = y+height of the item which overlaps. You could also enforce that logic in the drawing routine by caching the last x and ensuring the random number was not < last + width of the item.
newY = randomFromTo(minY, maxY);
newX = randomFromTo(minX, maxX); if(newX > lastX + characterWidth){ /*needful*/}
There could still however be overlap...
If you wanted to totally eliminate it you would need to keep track of state such as where each x was and then iterate that list to find a new position or position them first and then all them to move about randomly without intersecting which would would be able to control with just padding from that point.
Overall I think it would be easier to just keep X starting at 0 and then and then increment until you are at a X + character width > greater then the width of the board. Then just increase Y by character height and Set X = 0 or character width or some other offset.
newX = 0; newX += characterWidth; if(newX + chracterWidth > boardWidth) newX=0; newY+= characterHeight;
That results in no overlap and having nothing to iterate or keep track of additional to what you do now, the only downside is the pattern of the displayed characters being 'checker board style' or right next to each other (with possible random spacing in between horizontal and vertical placement e.g. you could adjust the padding randomly if you wanted too)
It's the whole random thing in the first place that adds the complexity.
AND I updated your fiddle to prove I eliminated the random and stopped the overlap :)
http://jsfiddle.net/pUwKb/51/
I am creating a circular menu in Javascript and have decided to use a combination of absolute positioning and -webkit-transforms to position the list items around the outside of a circle.
Here is a demo that has been hacked into shape for a JSFiddle: http://jsfiddle.net/5XnKZ/6/
You can see that the placement of the list items is loosely circular, but they don't appear in order or with the equal widths between that I was expecting. If you experiment with adding and removing the items from the list you will see that different numbers of list items have vastly different effects on how they are displayed.
I am positioning the items in the center of the circle with absolute positioning, then translating them into their positions on the circle with webkit transforms. The x and y for the transforms are obtained like this:
var x = Math.cos(d) * r;
var y = Math.sin(d) * r;
Where d is the angle in radians that the item should be at, and r is the radius of the circle I am positioning them on.
Can anyone see what is going wrong?
Your index was not calculated right.
(function() {
//A foreach alternative function
var each = function(a, b) {
for (var i = 0; i < a.length; i++) {
b(a[i]);
}
};
//Get an array of all the circlr elements
var circles = document.getElementsByClassName('circle');
//Iterate over these elements
each(circles, function(circle) {
//For each of their children
var i = 0;
each(circle.children, function(child) {
//Get child's index as a percentage of 2 PI radian
var p = (i) / circle.children.length * (2*Math.PI);
var r = 80;
child.style.webkitTransform = 'translatey(' + Math.sin(p) * r + 'px) translatex(' + Math.cos(p) * r + 'px)';
i++;
});
});
})();
Check the corrected JsFiddle.