Pick 4 values in an array with a random starter index - javascript

My array looke like :
var arr = [0,1,2,3,4,5];
So I random starter point (index) like :
var start = getRandomInt(0,5);
function getRandomInt (min,max) {
return Math.floor(Math.random() * (max - min + 1)) + min;
}
For example :
if start is 0, so return 0,1,2,3
if start is 1, so return 1,2,3,4
if start is 2, so return 2,3,4,5
if start is 3, so return 3,4,5,0
if start is 4, so return 4,5,0,1
if start is 5, so return 5,0,1,2
Just random a start index so loop that array
I wonder any easy way to do this ?
Playground : http://jsfiddle.net/2tSdb/

The main issue here is to move from the last index back to 0, which you can do with the modulo operation. You should do something similar to the following:
var data = [0,1,2,3,4,5];
var NUM_VALUES = 4; // Amount of values to take
var start = 3; // Replace with getRandomInt function
var values = [];
for(var i = start, j = 0; j < NUM_VALUES; j++, i = (i+1) % data.length) {
values.push(data[i]);
}
console.log(values); // [ 3, 4, 5, 0 ]
Variable i contains the current index of the Array we are going to access. It is initialized to start like you want. The variable j is only there to make sure we grab the number of values you want, 4 in this case. As you can see, j is incremented by 1 after each loop and we keep going until it is equal to NUM_VALUES. Nothing fancy there.
Variable i is also incremented by 1 (i = i+1), but we apply the modulo operation after that in order to keep the resulting number between 0 and data.length-1. Modulo simply results in the remainder after integer division, so 6 % 4 would be 2, 6 % 6 would be 0, etc. This is done so the index can never be higher than the last index. When i hits 6 here, the modulo would push it back to 0 like we want.

Related

Alternate numbers into two rows

I think I'm having a brain fart, because I can't figure out a simple formula to be able sort a sequence of number into specific order so it can be printed 2 numbers per sheet of paper (one number on one half and second number on second half), so when the printed stack of paper cut in half, separating the numbers, and then these halves put together, the numbers would be in sequence.
So, let's say I have 5 numbers: 3,4,5,6,7, the expected result would be 3,6,4,7,5 or
0,1,2,3,4,5,6,7 would become 0,4,1,5,2,6,3,7
My thought process is:
create a loop from 0 to total number of numbers
if current step is even, then add to it total numbers divided in 2
Obviously, I'm missing a step or two here, or there is a simple mathematical formula for this and hopefully someone could nudge me in a right direction.
This is what I have so far, it doesn't work properly if start number set to 1 or 3
function show()
{
console.clear();
for(let i = 0, count = end.value - start.value, half = Math.round(count/2); i <= count; i++)
{
let result = Math.round((+start.value + i) / 2);
if (i && i % 2)
result = result + half -1;
console.log(i, "result:", result);
}
}
//ignore below
for(let i = 0; i < 16; i++)
{
const o = document.createElement("option");
o.value = i;
o.label = i;
start.add(o);
end.add(o.cloneNode(true));
}
start.value = 0;
end.value = 7;
function change(el)
{
if (+start.value > +end.value)
{
if (el === start)
end.value = start.value;
else
start.value = end.value;
}
}
<select id="start" oninput="change(this)"></select> -
<select id="end" oninput="change(this)"></select>
<button onclick="show()">print</button>
P.S. Sorry, about the title, couldn't come up with anything better to summarize this.
You could get the value form the index
if odd by using the length and index shifted by one to rigth (like division by two and get the integer value), or
if even by the index divided by two.
function order(array) {
return array.map((_, i, a) => a[(i % 2 * a.length + i) >> 1]);
}
console.log(...order([3, 4, 5, 6, 7]));
console.log(...order([0, 1, 2, 3, 4, 5, 6, 7]));

If statement involving modulo behaving erratically [duplicate]

This question already has answers here:
Looping through array and removing items, without breaking for loop
(17 answers)
Closed 2 years ago.
I'm making a function to create a list of prime numbers from 0 to num. I start off with a list of integers from 2 to num, and iterate over each one that goes from 2 to i < num; if at any point item % i === 0, the item is removed from the list. This works fine:
function getPrimes(num) {
// get list of ints from 2 to num
let primes = [...Array(num + 1).keys()];
primes = primes.splice(2);
let lastNumber = primes[primes.length - 1];
// make iterable, run its loop
// for each number in primes
for (let number of primes) {
// use iterable to remove if not prime
for (let i = 2; i < num; i++) {
if (number % i === 0) {
primes.splice(primes.indexOf(number), 1);
}
}
}
// add back two
primes.unshift(2);
return primes;
But when I try and make the iterable for each number only to up to Math.floor(num / 2) for the sake of efficiency, it breaks the code somehow:
function getPrimes(num) {
// get list of ints from 2 to num
let primes = [...Array(num + 1).keys()];
primes = primes.splice(2);
let lastNumber = primes[primes.length - 1];
// make iterable, run its loop
// for each number in primes
for (let number of primes) {
// use iterable to remove if not prime
for (let i = 2; i < Math.floor(num / 2); i++) {
if (number % i === 0) {
primes.splice(primes.indexOf(number), 1);
}
}
}
// add back two
primes.unshift(2);
return primes;
When I tried it out, getPrimes(10) gives me [ 2, 3, 5 ]. So seven is missing from the list of prime numbers from 0 to 10. Why is that? I checked and 7 modulo 2, 3, and 4 returns 1, 1, and 3, respectively. So why is the code in the loop running that removes 7 from primes? It's the only place in the code where I put that I wanted to remove a number from the array.
The first issue is that you are looping while removing items, which causes some items to be skipped. Loop backwards instead, so that only items that have already been checked are shifted. Second, num / 2 should be changed to Math.sqrt(number), as that is the maximum factor that needs to be checked before we can be sure that a number is prime. With this method, there is no need to add 2 back to the array.
function getPrimes(num) {
// get list of ints from 2 to num
let primes = [...Array(num + 1).keys()];
primes = primes.splice(2);
let lastNumber = primes[primes.length - 1];
// make iterable, run its loop
// for each number in primes
for(let i = primes.length - 1; i >= 0; i--){
let number = primes[i];
// use iterable to remove if not prime
for (let j = 2; j * j <= number; j++) {
if (number % j === 0) {
primes.splice(i, 1);
break;
}
}
}
return primes;
}
console.log(...getPrimes(10));

Addition with carryover in arrays in pure Javascript

I want to create simple addition of array with carryover. Also need carryover and result value for display.
Something like this:-
e.g var input = [[0,0,9],[0,9,9]];
var carryover = [];
var result = [];
Thanks...
The two parts you might have been struggling with, I assume would be how you get the carry, and how you get the result..
result [diget] = t % 10;
The % 10 part is what is called modulus, here I'm doing a modulus by 10, so that gets you the 10's unit value.
carryover [diget] = Math.trunc(t / 10);
For the carryover, you just then divide by 10, and then we strip the decimals,. That's what Math.trunc does.
var input = [[0,0,0,9],[0,9,9]];
var carryover = [];
var result = [];
var digetlength = Math.max(input[0].length, input[1].length);
//lets padd inputs to be same size
input[0].unshift(
...new Array(digetlength - input[0].length).fill(0));
input[1].unshift(
...new Array(digetlength - input[1].length).fill(0));
for (var diget = digetlength - 1; diget >= 0; diget -= 1) {
var t = input[0][diget] + input[1][diget];
if (diget < digetlength - 1)
t += carryover[diget + 1];
result [diget] = t % 10;
carryover [diget] = Math.trunc(t / 10);
}
result.unshift(carryover[0]);
console.log('result: ' + result.join(', '));
console.log('carry: ' + carryover.join(', '));
1.turn both numbers into array of digits, reverse them.
2.determine the end index of the for-loop with max length of above 2 arrays.
3.create the 3rd carryover digits array of zeros (don't forget the extra digit).
4.Add the respective digits from step1 and step3,
as you iterate through each of digits from right to left,
4.1 if the sum is greater than 9 then add 1 into next carryover slot.
5. you should have array of carried over digits when the for-loop is done
count the number of 1s you have in them.
function numberOfCarryOperations(num1, num2) {
const dd1 = [...num1.toString()].reverse()
const dd2 = [...num2.toString()].reverse()
const end = Math.max(dd1.length, dd2.length)
const carry = Array(end+1).fill(0)
for (let i = 0; i < end; i++) {
//console.log(i,(Number(dd1[i]?dd1[i]:0)),Number(dd2[i]?dd2[i]:0),carry)
if (((Number(dd1[i]?dd1[i]:0)) + Number(dd2[i]?dd2[i]:0) + carry[i]) > 9) {
carry[i+1] = 1
}
//console.log('-----',carry)
}
//console.log(num1, num2,carry)
return carry.reduce((sum,curr)=>sum+curr)
}
Here is my attempt. It will accept the following as input:
Any number of input arrays
The input arrays don't all need to have the same number of items
I've added code comments to explain what goes on, I hope they're informative enough to explain the answer.
const
input = [
[0,0,9],
[0,9,9],
[1,0,9,9]
];
function getMaxArrayLength(values) {
// Determine the number of items in the longest array. Initialize the reduce with 0.
return values.reduce((maxLength, array) => {
// Return the largets number between the last largest number and the
// length of the current array.
return Math.max(maxLength, array.length);
}, 0);
}
function sumValues(values) {
const
// Determine the number of items in the longest array.
maxLength = getMaxArrayLength(values),
result = [],
carry = [];
// Loop over the length of the longest array. The value of index will be substracted from
// the length of the input arrays. Therefore it is easier to start at 1 as this will
// return a proper array index without needing to correct it.
for (let index = 1; index <= maxLength; index++) {
const
// Get the carryover value from the last sum or 0 in case there is no previous value.
carryValue = (carry.length === 0) ? 0 : carry[carry.length-1],
// Sum up all the values at the current index of all the input arrays. After summing up
// all the values, also add the carry over from the last sum.
sum = values.reduce((sum, array) => {
// Determine the index for the current array. Start at the end and substract the
// current index. This way the values in the array are processed last to first.
const
arrayIndex = array.length - index;
// It could be the current array doesn't have as many items as the longest array,
// when the arrayIndex is less than 0 just return the current result.
if (arrayIndex < 0) {
return sum;
}
// Return the accumulated value plus the value at the current index of the
// current source array.
return sum + array[arrayIndex];
}, 0) + carryValue;
// The carry over value is the number of times 10 fits into the sum. This should be rounded
// down so for instance 5/10=.5 becomes 0.
carry.push(Math.floor(sum / 10));
// Push the remainder of the sum divided by 10 into the result so 15 % 10 = 5.
result.push(sum % 10);
}
// Return the carry over and the result, reverse the arrays before returning them.
return {
carryOver: carry.reverse(),
result: result.reverse()
};
}
const
result = sumValues(input);
console.log(`Carry over: ${result.carryOver}`);
console.log(`Result: ${result.result}`);

Algorithm that involves rounding and multiples

So I have a problem where I have an array of some length (usually long). I have an initial start index into that array and a skip value. So, if I have this:
var initial = 5;
var skip = 10;
Then I'd iterate over my array with indexes 5, 15, 25, 35, etc.
But then I may get a new start value and I need to find the closest value to the initial plus or minus a multiple of the skip and then start my skip. So if my new value is 23 then I'd iterate 25, 35, 45, etc.
The algorithm I have for this is:
index = (round((start - initial) / skip) * skip) + initial
And then I need a check to see if index has dropped below zero:
while(index < 0) index += skip;
So my first question is if there's a name for this? A multiple with random start?
My second question is if there's a better way? I don't think what I have is terribly complicated but if I'm missing something I'd like to know about it.
If it matters I'm using javascript.
Thanks!
Edit
Instead of
while(index < 0) index += skip;
if we assume that both initial and skip are positive you can use:
if (index < 0) index = initial % skip;
To get the closest multiple of a number to a test number: See if the modulo of your test number is greater than number/2 and if so, return number - modulo:
function closestMultiple(multipleTest,number)
{
var modulo = multipleTest%number;
if(0 == modulo )
{
return multipleTest;
}
else
{
var halfNumber = number/2;
if(modulo >= halfNumber)
{
return multipleTest + (number-modulo);
}
else
{
return multipleTest - modulo;
}
}
}
To check if a number is a multiple of another then compare their modulo to 0:
function isMultiple(multipleTest,number)
{
return 0 == multipleTest%number;
}
You might want to add some validations for 0 in case you expect any inside closestMultiple.
The value of index computed as you put it
index = round((start - initial)/skip) * skip + initial
is indeed the one that minimizes the distance between the sequence with general term
aj = j * skip + initial
and start.
Therefore, index can only be negative if start lies to the left of
(a-1 + a0)/2 = initial - skip/2
in other words, if
start < initial - skip/2.
So, only in that case you have to redefine index to 0. In pseudo code:
IF (start < (initial - skip/2))
index = 0
ELSE
index = round((start - initial)/skip) * skip + initial
Alternatively, you could do
index = round((start - initial)/skip) * skip + initial
IF index < 0 THEN index = 0
which is the same.
No while loop required:
function newNum(newstart, initial, skip) {
var xLow = newstart + Math.abs(newstart - initial) % skip;
var xHi = newstart + skip;
var result = (xLow + xHi) / 2 > newstart ? xLow : xHi;
if (result < 0) result += skip;
return result;
}
Take the distance between your new starting point and your initial value, and find out what the remainder would be if you marched towards that initial value (Modulus gives us that). Then you just need to find out if the closest spot is before or after the starting point (I did this be comparing the midpoint of the low and high values to the starting point).
Test:
newNum(1, 20, 7) = 6
newNum(-1, 20, 7) = 6
newNum(180, 10, 3) = 182
(Even though you stated in your comments that the range of the new starting point is within the array bounds, notice that it doesn't really matter).

Finding the nth item in a repeating list of fixed items

I have to determine the mathematical formula to calculate a particular repeating position in a series of numbers. The list of numbers repeats ad infinitum and I need to find the number every n numbers in this list. So I want to find the *n*th item in a list of repeating y numbers.
For example, if my list has 7 digits (y=7) and I need every 5th item (n=5), how do I find that item?
The list would be like this (which I've grouped in fives for ease of viewing):
12345 67123 45671 23456 71234 56712 34567
I need to find in the first grouping number 5, then in the second grouping number 3, then 1 from the third group, then 6, then 4, then 2, then 7.
This needs to work for any number for y and n. I usually use a modulus for finding *n*th items, but only when the list keeps increasing in number and not resetting.
I'm trying to do this in Javascript or JQuery as it's a browser based problem, but I'm not very mathematical so I'm struggling to solve it.
Thanks!
Edit: I'm looking for a mathematical solution to this ideally but I'll explain a little more about the problem, but it may just add confusion. I have a list of items in a carousel arrangement. In my example there are 7 unique items (it could be any number), but the list in real terms is actually five times that size (nothing to do with the groups of 5 above) with four sets of duplicates that I create.
To give the illusion of scrolling to infinity, the list position is reset on the 'last' page (there are two pages in this example as items 1-7 span across the 5 item wide viewport). Those groups above represent pages as there are 5 items per page in my example. The duplicates provide the padding necessary to fill in any blank spaces that may occur when moving to the next page of items (page 2 for instance starts with 6 and 7 but then would be empty if it weren't for the duplicated 1,2 and 3). When the page goes past the last page (so if we try to go to page 3) then I reposition them further back in the list to page one, but offset so it looks like they are still going forwards forever.
This is why I can't use an array index and why it would be useful to have a mathematical solution. I realise there are carousels out there that do similar tasks to what I'm trying to achieve, but I have to use the one I've got!
Just loop every 5 characters, like so:
var data = "12345671234567123456712345671234567";
var results = [];
for(var i = 4; i < data.length; i += 5){
results.push(data[i]);
}
//results = [5, 3, 1, 6, 4, 2, 7]
If you want to use a variable x = 5; then your for loop would look like this:
for(var i = x - 1; i < data.length; i += x){...
There is no need to know y
If your input sequence doesn't terminate, then outputting every nth item will eventually produce its own repeating sequence. The period (length) of this repetition will be the lowest common multiple of the period of the input sequence (y) and the step size used for outputting its items (x).
If you want to output only the first repetition, then something like this should do the trick (untested):
var sequence = "1234567";
var x = 5;
var y = sequence.length;
var count = lcm(x, y);
var offset = 4;
var output = [];
for (var i = 0; i < count; i += x)
{
j = (offset + i) % y;
output.push(sequence[j]);
}
You should be able to find an algorithm for computing the LCM of two integers fairly easily.
A purely mathematical definition? Err..
T(n) = T(n-1) + K For all n > 0.
T(1) = K // If user wants the first element in the series, you return the Kth element.
T(0) = 0 // If the user want's a non-existent element, they get 0.
Where K denotes the interval.
n denotes the desired term.
T() denotes the function that generates the list.
Lets assume we want every Kth element.
T(1) = T(0) + K = K
T(2) = T(1) + K = 2K
T(3) = T(2) + K = 3K
T(n) = nk. // This looks like a promising equation. Let's prove it:
So n is any n > 1. The next step in the equation is n+1, so we need to prove that
T(n + 1) = k(n + 1).
So let's have a go.
T(n+1) = T(N+1-1) + K.
T(n+1) = T(n) + K
Assume that T(n) = nk.
T(n+1) = nk + k
T(n+1) = k(n + 1).
And there is your proof, by induction, that T(n) = nk.
That is about as mathematical as you're gonna get on SO.
Nice simple recurrence relation that describes it quite well there.
After your edit I make another solution;)
var n = 5, y = 7;
for (var i = 1; i<=y; i++) {
var offset = ( i*y - (i-1)*n ) % y;
var result = 0;
if (offset === n) {
result = y;
} else {
result = (n - offset) > 0 ? n - offset : offset;
}
console.log(result);
}
[5, 3, 1, 6, 4, 2, 7] in output.
JSFIDDLE: http://jsfiddle.net/mcrLQ/4/
function get(x, A, B) {
var r = (x * A) % B;
return r ? r : B;
}
var A = 5;
var B = 7;
var C = [];
for (var x = 1; x <= B; ++x) {
C.push(get(x, A, B));
}
console.log(C);
Result: [5, 3, 1, 6, 4, 2, 7]
http://jsfiddle.net/xRFTD/
var data = "12345 67123 45671 23456 71234 56712 34567";
var x = 5;
var y = 7;
var results = [];
var i = x - 1; // enumeration in string starts from zero
while ( i <= data.length){
results.push(data[i]);
i = i + x + 1;// +1 for spaces ignoring
}

Categories