How does defining and immediately calling an anonymous function solve namespace problems? - javascript

I'm reading this page where it says:
myNameSpace = function(){
var current = null;
function init(){...}
function change(){...}
function verify(){...}
return{
init:init,
change:change
}
}();
Instead of returning the properties and methods I just return pointers
to them. This makes it easy to call functions and access variables
from other places without having to go through the myNameSpace name.
But I don't see how that's true. You still have to do myNameSpace.init() to call init. init() alone doesn't work.
Edit: it occurred to me later that maybe the author meant they were able to call init() without qualification inside the anonymous function. But what stumped me is that the author's previous examples were already able to do that. Specifically, in the immediately foregoing example:
myNameSpace = function(){
var current = null;
function verify(){...}
return{
init:function(){...}
change:function(){...}
}
}();
s/he defined init as s/he was returning it, instead of the example above where s/he defined init first then returned a pointer to it. But in that earlier example, within the anonymous function, if you wanted to call init() without having to do myNameSpace.init(), you already can. So how is the quoted example better?.
Can someone explain? Thanks.

The idea of using a function to clean up scope is, let's say you have a program that looks like this:
var number = 10;
var multiplier = 2;
var endingText = " days left!";
var string = (10 * 2) + endingText;
// string is "20 days left!"
This is an extremely contrived example, but hopefully it's obvious enough that this will declare four variables in the global scope, which is horrible. Let's say what you really want is string, but you still want to keep the other three variables around for whatever reason. You can put them inside an anonymous function, like so:
var string;
(function(){
var number = 10;
var multiplier = 2;
var endingText = " days left!";
string = (10 * 2) + endingText;
})();
// string is still "20 days left!"
Because variables are function scoped, number, multiplier and endingText are NOT declared in the global scope. However, you are still able to use them to get the result that you wanted in the first place.
By the way, you need to wrap parens around a function if you want to immediately invoke it. Also, you should not confuse this with namespacing. Namespacing in JavaScript is the idea of assigning meaningful values to the properties of objects.
var foo = {
hello: "goodbye",
frank: "bob"
};
hello and frank are declared in the foo namespace. That's all there is to it. The example that you posted uses both the namespacing concept and immediately invoking function concept to clean up variables.

The wording is a bit confusing. He meant to say:
Functions and variables can now be easily accessed without a namespace from inside the module
- in contrast to the object literal pattern or the previous example where he put the public methods directly on the exported object. Of course, from outside you always will need to access them as properties of the namespace object - that's the whole point of making it a namespace :-)
For an example, let's fill the functions with a some minimal code:
myNameSpace = function(){
var current = null;
function verify(…){…}
return {
init:function(el){
el.addEventListener("input", myNameSpace.change, false);
// ^^^^^^^^^^^^^^^^^^
},
change:function(){
if (!verify(this.value)) alert("wrong");
}
}
}();
myNameSpace.init(document.getElementById("testInput"));
vs
myNameSpace = function(){
var current = null;
function verify(…){…}
function change(){
if (!verify(this.value)) alert("wrong");
}
function init(el){
el.addEventListener("input", change, false);
// ^^^^^^
}
return {
init:init,
change:change
}
}();
myNameSpace.init(document.getElementById("testInput")); // no difference here
The differences may be minimal in this example, but when you have lots of functions mutually referencing each other it can matter. Also, you would know that all local, namespace-less functions belong to the current module, which massively increases maintainability when dealing with many different namespaces.

Related

Function behaviour in javascript [duplicate]

In javascript, when would you want to use this:
(function(){
//Bunch of code...
})();
over this:
//Bunch of code...
It's all about variable scoping. Variables declared in the self executing function are, by default, only available to code within the self executing function. This allows code to be written without concern of how variables are named in other blocks of JavaScript code.
For example, as mentioned in a comment by Alexander:
(function() {
var foo = 3;
console.log(foo);
})();
console.log(foo);
This will first log 3 and then throw an error on the next console.log because foo is not defined.
Simplistic. So very normal looking, its almost comforting:
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
However, what if I include a really handy javascript library to my page that translates advanced characters into their base level representations?
Wait... what?
I mean, if someone types in a character with some kind of accent on it, but I only want 'English' characters A-Z in my program? Well... the Spanish 'ñ' and French 'é' characters can be translated into base characters of 'n' and 'e'.
So someone nice person has written a comprehensive character converter out there that I can include in my site... I include it.
One problem: it has a function in it called 'name' same as my function.
This is what's called a collision. We've got two functions declared in the same scope with the same name. We want to avoid this.
So we need to scope our code somehow.
The only way to scope code in javascript is to wrap it in a function:
function main() {
// We are now in our own sound-proofed room and the
// character-converter library's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
That might solve our problem. Everything is now enclosed and can only be accessed from within our opening and closing braces.
We have a function in a function... which is weird to look at, but totally legal.
Only one problem. Our code doesn't work.
Our userName variable is never echoed into the console!
We can solve this issue by adding a call to our function after our existing code block...
function main() {
// We are now in our own sound-proofed room and the
// character-converter libarary's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
main();
Or before!
main();
function main() {
// We are now in our own sound-proofed room and the
// character-converter libarary's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
A secondary concern: What are the chances that the name 'main' hasn't been used yet? ...so very, very slim.
We need MORE scoping. And some way to automatically execute our main() function.
Now we come to auto-execution functions (or self-executing, self-running, whatever).
((){})();
The syntax is awkward as sin. However, it works.
When you wrap a function definition in parentheses, and include a parameter list (another set or parentheses!) it acts as a function call.
So lets look at our code again, with some self-executing syntax:
(function main() {
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
)();
So, in most tutorials you read, you will now be bombarded with the term 'anonymous self-executing' or something similar.
After many years of professional development, I strongly urge you to name every function you write for debugging purposes.
When something goes wrong (and it will), you will be checking the backtrace in your browser. It is always easier to narrow your code issues when the entries in the stack trace have names!
Self-invocation (also known as
auto-invocation) is when a function
executes immediately upon its
definition. This is a core pattern and
serves as the foundation for many
other patterns of JavaScript
development.
I am a great fan :) of it because:
It keeps code to a minimum
It enforces separation of behavior from presentation
It provides a closure which prevents naming conflicts
Enormously – (Why you should say its good?)
It’s about defining and executing a function all at once.
You could have that self-executing function return a value and pass the function as a param to another function.
It’s good for encapsulation.
It’s also good for block scoping.
Yeah, you can enclose all your .js files in a self-executing function and can prevent global namespace pollution. ;)
More here.
Namespacing. JavaScript's scopes are function-level.
I can't believe none of the answers mention implied globals.
The (function(){})() construct does not protect against implied globals, which to me is the bigger concern, see http://yuiblog.com/blog/2006/06/01/global-domination/
Basically the function block makes sure all the dependent "global vars" you defined are confined to your program, it does not protect you against defining implicit globals. JSHint or the like can provide recommendations on how to defend against this behavior.
The more concise var App = {} syntax provides a similar level of protection, and may be wrapped in the function block when on 'public' pages. (see Ember.js or SproutCore for real world examples of libraries that use this construct)
As far as private properties go, they are kind of overrated unless you are creating a public framework or library, but if you need to implement them, Douglas Crockford has some good ideas.
I've read all answers, something very important is missing here, I'll KISS. There are 2 main reasons, why I need Self-Executing Anonymous Functions, or better said "Immediately-Invoked Function Expression (IIFE)":
Better namespace management (Avoiding Namespace Pollution -> JS Module)
Closures (Simulating Private Class Members, as known from OOP)
The first one has been explained very well. For the second one, please study following example:
var MyClosureObject = (function (){
var MyName = 'Michael Jackson RIP';
return {
getMyName: function () { return MyName;},
setMyName: function (name) { MyName = name}
}
}());
Attention 1: We are not assigning a function to MyClosureObject, further more the result of invoking that function. Be aware of () in the last line.
Attention 2: What do you additionally have to know about functions in Javascript is that the inner functions get access to the parameters and variables of the functions, they are defined within.
Let us try some experiments:
I can get MyName using getMyName and it works:
console.log(MyClosureObject.getMyName());
// Michael Jackson RIP
The following ingenuous approach would not work:
console.log(MyClosureObject.MyName);
// undefined
But I can set an another name and get the expected result:
MyClosureObject.setMyName('George Michael RIP');
console.log(MyClosureObject.getMyName());
// George Michael RIP
Edit: In the example above MyClosureObject is designed to be used without the newprefix, therefore by convention it should not be capitalized.
Scope isolation, maybe. So that the variables inside the function declaration don't pollute the outer namespace.
Of course, on half the JS implementations out there, they will anyway.
Is there a parameter and the "Bunch of code" returns a function?
var a = function(x) { return function() { document.write(x); } }(something);
Closure. The value of something gets used by the function assigned to a. something could have some varying value (for loop) and every time a has a new function.
Here's a solid example of how a self invoking anonymous function could be useful.
for( var i = 0; i < 10; i++ ) {
setTimeout(function(){
console.log(i)
})
}
Output: 10, 10, 10, 10, 10...
for( var i = 0; i < 10; i++ ) {
(function(num){
setTimeout(function(){
console.log(num)
})
})(i)
}
Output: 0, 1, 2, 3, 4...
Short answer is : to prevent pollution of the Global (or higher) scope.
IIFE (Immediately Invoked Function Expressions) is the best practice for writing scripts as plug-ins, add-ons, user scripts or whatever scripts are expected to work with other people's scripts. This ensures that any variable you define does not give undesired effects on other scripts.
This is the other way to write IIFE expression. I personally prefer this following method:
void function() {
console.log('boo!');
// expected output: "boo!"
}();
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/void
From the example above it is very clear that IIFE can also affect efficiency and performance, because the function that is expected to be run only once will be executed once and then dumped into the void for good. This means that function or method declaration does not remain in memory.
One difference is that the variables that you declare in the function are local, so they go away when you exit the function and they don't conflict with other variables in other or same code.
First you must visit MDN IIFE , Now some points about this
this is Immediately Invoked Function Expression. So when your javascript file invoked from HTML this function called immediately.
This prevents accessing variables within the IIFE idiom as well as polluting the global scope.
Self executing function are used to manage the scope of a Variable.
The scope of a variable is the region of your program in which it is defined.
A global variable has global scope; it is defined everywhere in your JavaScript code and can be accessed from anywhere within the script, even in your functions. On the other hand, variables declared within a function are defined only within the body of the function.
They are local variables, have local scope and can only be accessed within that function. Function parameters also count as local variables and are defined only within the body of the function.
As shown below, you can access the global variables variable inside your function and also note that within the body of a function, a local variable takes precedence over a global variable with the same name.
var globalvar = "globalvar"; // this var can be accessed anywhere within the script
function scope() {
alert(globalvar);
var localvar = "localvar"; //can only be accessed within the function scope
}
scope();
So basically a self executing function allows code to be written without concern of how variables are named in other blocks of javascript code.
Since functions in Javascript are first-class object, by defining it that way, it effectively defines a "class" much like C++ or C#.
That function can define local variables, and have functions within it. The internal functions (effectively instance methods) will have access to the local variables (effectively instance variables), but they will be isolated from the rest of the script.
Self invoked function in javascript:
A self-invoking expression is invoked (started) automatically, without being called. A self-invoking expression is invoked right after its created. This is basically used for avoiding naming conflict as well as for achieving encapsulation. The variables or declared objects are not accessible outside this function. For avoiding the problems of minimization(filename.min) always use self executed function.
(function(){
var foo = {
name: 'bob'
};
console.log(foo.name); // bob
})();
console.log(foo.name); // Reference error
Actually, the above function will be treated as function expression without a name.
The main purpose of wrapping a function with close and open parenthesis is to avoid polluting the global space.
The variables and functions inside the function expression became private (i.e) they will not be available outside of the function.
Given your simple question: "In javascript, when would you want to use this:..."
I like #ken_browning and #sean_holding's answers, but here's another use-case that I don't see mentioned:
let red_tree = new Node(10);
(async function () {
for (let i = 0; i < 1000; i++) {
await red_tree.insert(i);
}
})();
console.log('----->red_tree.printInOrder():', red_tree.printInOrder());
where Node.insert is some asynchronous action.
I can't just call await without the async keyword at the declaration of my function, and i don't need a named function for later use, but need to await that insert call or i need some other richer features (who knows?).
It looks like this question has been answered all ready, but I'll post my input anyway.
I know when I like to use self-executing functions.
var myObject = {
childObject: new function(){
// bunch of code
},
objVar1: <value>,
objVar2: <value>
}
The function allows me to use some extra code to define the childObjects attributes and properties for cleaner code, such as setting commonly used variables or executing mathematic equations; Oh! or error checking. as opposed to being limited to nested object instantiation syntax of...
object: {
childObject: {
childObject: {<value>, <value>, <value>}
},
objVar1: <value>,
objVar2: <value>
}
Coding in general has a lot of obscure ways of doing a lot of the same things, making you wonder, "Why bother?" But new situations keep popping up where you can no longer rely on basic/core principals alone.
You can use this function to return values :
var Test = (function (){
const alternative = function(){ return 'Error Get Function '},
methods = {
GetName: alternative,
GetAge:alternative
}
// If the condition is not met, the default text will be returned
// replace to 55 < 44
if( 55 > 44){
// Function one
methods.GetName = function (name) {
return name;
};
// Function Two
methods.GetAge = function (age) {
return age;
};
}
return methods;
}());
// Call
console.log( Test.GetName("Yehia") );
console.log( Test.GetAge(66) );
Use of this methodology is for closures. Read this link for more about closures.
IIRC it allows you to create private properties and methods.

Jquery: Explanation about this pattern [duplicate]

In javascript, when would you want to use this:
(function(){
//Bunch of code...
})();
over this:
//Bunch of code...
It's all about variable scoping. Variables declared in the self executing function are, by default, only available to code within the self executing function. This allows code to be written without concern of how variables are named in other blocks of JavaScript code.
For example, as mentioned in a comment by Alexander:
(function() {
var foo = 3;
console.log(foo);
})();
console.log(foo);
This will first log 3 and then throw an error on the next console.log because foo is not defined.
Simplistic. So very normal looking, its almost comforting:
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
However, what if I include a really handy javascript library to my page that translates advanced characters into their base level representations?
Wait... what?
I mean, if someone types in a character with some kind of accent on it, but I only want 'English' characters A-Z in my program? Well... the Spanish 'ñ' and French 'é' characters can be translated into base characters of 'n' and 'e'.
So someone nice person has written a comprehensive character converter out there that I can include in my site... I include it.
One problem: it has a function in it called 'name' same as my function.
This is what's called a collision. We've got two functions declared in the same scope with the same name. We want to avoid this.
So we need to scope our code somehow.
The only way to scope code in javascript is to wrap it in a function:
function main() {
// We are now in our own sound-proofed room and the
// character-converter library's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
That might solve our problem. Everything is now enclosed and can only be accessed from within our opening and closing braces.
We have a function in a function... which is weird to look at, but totally legal.
Only one problem. Our code doesn't work.
Our userName variable is never echoed into the console!
We can solve this issue by adding a call to our function after our existing code block...
function main() {
// We are now in our own sound-proofed room and the
// character-converter libarary's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
main();
Or before!
main();
function main() {
// We are now in our own sound-proofed room and the
// character-converter libarary's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
A secondary concern: What are the chances that the name 'main' hasn't been used yet? ...so very, very slim.
We need MORE scoping. And some way to automatically execute our main() function.
Now we come to auto-execution functions (or self-executing, self-running, whatever).
((){})();
The syntax is awkward as sin. However, it works.
When you wrap a function definition in parentheses, and include a parameter list (another set or parentheses!) it acts as a function call.
So lets look at our code again, with some self-executing syntax:
(function main() {
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
)();
So, in most tutorials you read, you will now be bombarded with the term 'anonymous self-executing' or something similar.
After many years of professional development, I strongly urge you to name every function you write for debugging purposes.
When something goes wrong (and it will), you will be checking the backtrace in your browser. It is always easier to narrow your code issues when the entries in the stack trace have names!
Self-invocation (also known as
auto-invocation) is when a function
executes immediately upon its
definition. This is a core pattern and
serves as the foundation for many
other patterns of JavaScript
development.
I am a great fan :) of it because:
It keeps code to a minimum
It enforces separation of behavior from presentation
It provides a closure which prevents naming conflicts
Enormously – (Why you should say its good?)
It’s about defining and executing a function all at once.
You could have that self-executing function return a value and pass the function as a param to another function.
It’s good for encapsulation.
It’s also good for block scoping.
Yeah, you can enclose all your .js files in a self-executing function and can prevent global namespace pollution. ;)
More here.
Namespacing. JavaScript's scopes are function-level.
I can't believe none of the answers mention implied globals.
The (function(){})() construct does not protect against implied globals, which to me is the bigger concern, see http://yuiblog.com/blog/2006/06/01/global-domination/
Basically the function block makes sure all the dependent "global vars" you defined are confined to your program, it does not protect you against defining implicit globals. JSHint or the like can provide recommendations on how to defend against this behavior.
The more concise var App = {} syntax provides a similar level of protection, and may be wrapped in the function block when on 'public' pages. (see Ember.js or SproutCore for real world examples of libraries that use this construct)
As far as private properties go, they are kind of overrated unless you are creating a public framework or library, but if you need to implement them, Douglas Crockford has some good ideas.
I've read all answers, something very important is missing here, I'll KISS. There are 2 main reasons, why I need Self-Executing Anonymous Functions, or better said "Immediately-Invoked Function Expression (IIFE)":
Better namespace management (Avoiding Namespace Pollution -> JS Module)
Closures (Simulating Private Class Members, as known from OOP)
The first one has been explained very well. For the second one, please study following example:
var MyClosureObject = (function (){
var MyName = 'Michael Jackson RIP';
return {
getMyName: function () { return MyName;},
setMyName: function (name) { MyName = name}
}
}());
Attention 1: We are not assigning a function to MyClosureObject, further more the result of invoking that function. Be aware of () in the last line.
Attention 2: What do you additionally have to know about functions in Javascript is that the inner functions get access to the parameters and variables of the functions, they are defined within.
Let us try some experiments:
I can get MyName using getMyName and it works:
console.log(MyClosureObject.getMyName());
// Michael Jackson RIP
The following ingenuous approach would not work:
console.log(MyClosureObject.MyName);
// undefined
But I can set an another name and get the expected result:
MyClosureObject.setMyName('George Michael RIP');
console.log(MyClosureObject.getMyName());
// George Michael RIP
Edit: In the example above MyClosureObject is designed to be used without the newprefix, therefore by convention it should not be capitalized.
Scope isolation, maybe. So that the variables inside the function declaration don't pollute the outer namespace.
Of course, on half the JS implementations out there, they will anyway.
Is there a parameter and the "Bunch of code" returns a function?
var a = function(x) { return function() { document.write(x); } }(something);
Closure. The value of something gets used by the function assigned to a. something could have some varying value (for loop) and every time a has a new function.
Here's a solid example of how a self invoking anonymous function could be useful.
for( var i = 0; i < 10; i++ ) {
setTimeout(function(){
console.log(i)
})
}
Output: 10, 10, 10, 10, 10...
for( var i = 0; i < 10; i++ ) {
(function(num){
setTimeout(function(){
console.log(num)
})
})(i)
}
Output: 0, 1, 2, 3, 4...
Short answer is : to prevent pollution of the Global (or higher) scope.
IIFE (Immediately Invoked Function Expressions) is the best practice for writing scripts as plug-ins, add-ons, user scripts or whatever scripts are expected to work with other people's scripts. This ensures that any variable you define does not give undesired effects on other scripts.
This is the other way to write IIFE expression. I personally prefer this following method:
void function() {
console.log('boo!');
// expected output: "boo!"
}();
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/void
From the example above it is very clear that IIFE can also affect efficiency and performance, because the function that is expected to be run only once will be executed once and then dumped into the void for good. This means that function or method declaration does not remain in memory.
One difference is that the variables that you declare in the function are local, so they go away when you exit the function and they don't conflict with other variables in other or same code.
First you must visit MDN IIFE , Now some points about this
this is Immediately Invoked Function Expression. So when your javascript file invoked from HTML this function called immediately.
This prevents accessing variables within the IIFE idiom as well as polluting the global scope.
Self executing function are used to manage the scope of a Variable.
The scope of a variable is the region of your program in which it is defined.
A global variable has global scope; it is defined everywhere in your JavaScript code and can be accessed from anywhere within the script, even in your functions. On the other hand, variables declared within a function are defined only within the body of the function.
They are local variables, have local scope and can only be accessed within that function. Function parameters also count as local variables and are defined only within the body of the function.
As shown below, you can access the global variables variable inside your function and also note that within the body of a function, a local variable takes precedence over a global variable with the same name.
var globalvar = "globalvar"; // this var can be accessed anywhere within the script
function scope() {
alert(globalvar);
var localvar = "localvar"; //can only be accessed within the function scope
}
scope();
So basically a self executing function allows code to be written without concern of how variables are named in other blocks of javascript code.
Since functions in Javascript are first-class object, by defining it that way, it effectively defines a "class" much like C++ or C#.
That function can define local variables, and have functions within it. The internal functions (effectively instance methods) will have access to the local variables (effectively instance variables), but they will be isolated from the rest of the script.
Self invoked function in javascript:
A self-invoking expression is invoked (started) automatically, without being called. A self-invoking expression is invoked right after its created. This is basically used for avoiding naming conflict as well as for achieving encapsulation. The variables or declared objects are not accessible outside this function. For avoiding the problems of minimization(filename.min) always use self executed function.
(function(){
var foo = {
name: 'bob'
};
console.log(foo.name); // bob
})();
console.log(foo.name); // Reference error
Actually, the above function will be treated as function expression without a name.
The main purpose of wrapping a function with close and open parenthesis is to avoid polluting the global space.
The variables and functions inside the function expression became private (i.e) they will not be available outside of the function.
Given your simple question: "In javascript, when would you want to use this:..."
I like #ken_browning and #sean_holding's answers, but here's another use-case that I don't see mentioned:
let red_tree = new Node(10);
(async function () {
for (let i = 0; i < 1000; i++) {
await red_tree.insert(i);
}
})();
console.log('----->red_tree.printInOrder():', red_tree.printInOrder());
where Node.insert is some asynchronous action.
I can't just call await without the async keyword at the declaration of my function, and i don't need a named function for later use, but need to await that insert call or i need some other richer features (who knows?).
It looks like this question has been answered all ready, but I'll post my input anyway.
I know when I like to use self-executing functions.
var myObject = {
childObject: new function(){
// bunch of code
},
objVar1: <value>,
objVar2: <value>
}
The function allows me to use some extra code to define the childObjects attributes and properties for cleaner code, such as setting commonly used variables or executing mathematic equations; Oh! or error checking. as opposed to being limited to nested object instantiation syntax of...
object: {
childObject: {
childObject: {<value>, <value>, <value>}
},
objVar1: <value>,
objVar2: <value>
}
Coding in general has a lot of obscure ways of doing a lot of the same things, making you wonder, "Why bother?" But new situations keep popping up where you can no longer rely on basic/core principals alone.
You can use this function to return values :
var Test = (function (){
const alternative = function(){ return 'Error Get Function '},
methods = {
GetName: alternative,
GetAge:alternative
}
// If the condition is not met, the default text will be returned
// replace to 55 < 44
if( 55 > 44){
// Function one
methods.GetName = function (name) {
return name;
};
// Function Two
methods.GetAge = function (age) {
return age;
};
}
return methods;
}());
// Call
console.log( Test.GetName("Yehia") );
console.log( Test.GetAge(66) );
Use of this methodology is for closures. Read this link for more about closures.
IIRC it allows you to create private properties and methods.

Declare javascript function with extra properties in a single statement?

I know I can define properties on functions, which can then be accessed from within the function. Right now, the only syntax I can work out involves two statements. Is there a more concise way to express the following:
function myFunc() {
// do some work
}
myFunc.myProp = 0;
I'm not looking for a solution that is fewer characters -- this isn't code golf. I'm asking something more along the lines of "are there different patterns of function declaration that have this other desirable merit?" This is almost about ways to use closures (because I suspect the answer lies there).
Thanks!
Especially if you want to access properties of the function from inside the function itself, you're better off doing this:
var theFunction = function() {
function theRealFunction() {
// the code
if (theRealFunction.something == "not whatever")
// do something
// more code
}
theRealFunction.something = "whatever";
return theRealFunction;
}();
What that does is wrap your function declaration up in an anonymous function. The problem with accessing function properties via the function name is that it must do that by finding the function's name in the surrounding scope. That's kind-of icky, but at least this way it involves a scope that's essentially private. It'll work whether or not the resulting function (returned as the return value of the anonymous function) is assigned to a different variable, passed to a function as a handler function, etc.
This really, really all depends. If you're looking for private variables, then you can easily return a function from the function -- an inner-function will contain access to its parent's scope.
var outer_function = (function () {
var private_var = "secret",
public_var = "public",
inner_function = function () {
return private_var;
};
inner_function.public_var = public_var;
return inner_function;
}());
outer_function now equals inner_function, with the benefit of having access to the enclosed data. Any properties attached to the inner (in the way you did) will now be accessible as public properties of outer.
To this end, you can return, say, a constructor for a class, with public-static properties, with the enclosed vars acting as private-static properties, shared between every instance of the "class" you build.
Not exactly the answer to your question, but if you ever want to read up some different design patterns that can be used when defining a javascript function, this is one of the best articles I've ever read on the topic:
http://www.klauskomenda.com/code/javascript-programming-patterns/

Accessing variables from other functions without using global variables

I've heard from a variety of places that global variables are inherently nasty and evil, but when doing some non-object oriented Javascript, I can't see how to avoid them. Say I have a function which generates a number using a complex algorithm using random numbers and stuff, but I need to keep using that particular number in some other function which is a callback or something and so can't be part of the same function.
If the originally generated number is a local variable, it won't be accessible from, there. If the functions were object methods, I could make the number a property but they're not and it seems somewhat overcomplicated to change the whole program structure to do this. Is a global variable really so bad?
I think your best bet here may be to define a single global-scoped variable, and dumping your variables there:
var MyApp = {}; // Globally scoped object
function foo(){
MyApp.color = 'green';
}
function bar(){
alert(MyApp.color); // Alerts 'green'
}
No one should yell at you for doing something like the above.
To make a variable calculated in function A visible in function B, you have three choices:
make it a global,
make it an object property, or
pass it as a parameter when calling B from A.
If your program is fairly small then globals are not so bad. Otherwise I would consider using the third method:
function A()
{
var rand_num = calculate_random_number();
B(rand_num);
}
function B(r)
{
use_rand_num(r);
}
Consider using namespaces:
(function() {
var local_var = 'foo';
global_var = 'bar'; // this.global_var and window.global_var also work
function local_function() {}
global_function = function() {};
})();
Both local_function and global_function have access to all local and global variables.
Edit: Another common pattern:
var ns = (function() {
// local stuff
function foo() {}
function bar() {}
function baz() {} // this one stays invisible
// stuff visible in namespace object
return {
foo : foo,
bar : bar
};
})();
The returned properties can now be accessed via the namespace object, e.g. ns.foo, while still retaining access to local definitions.
What you're looking for is technically known as currying.
function getMyCallback(randomValue)
{
return function(otherParam)
{
return randomValue * otherParam //or whatever it is you are doing.
}
}
var myCallback = getMyCallBack(getRand())
alert(myCallBack(1));
alert(myCallBack(2));
The above isn't exactly a curried function but it achieves the result of maintaining an existing value without adding variables to the global namespace or requiring some other object repository for it.
I found this to be extremely helpful in relation to the original question:
Return the value you wish to use in functionOne, then call functionOne within functionTwo, then place the result into a fresh var and reference this new var within functionTwo. This should enable you to use the var declared in functionOne, within functionTwo.
function functionOne() {
var variableThree = 3;
return variableThree;
}
function functionTwo() {
var variableOne = 1;
var var3 = functionOne();
var result = var3 - variableOne;
console.log(variableOne);
console.log(var3);
console.log('functional result: ' + result);
}
functionTwo();
If another function needs to use a variable you pass it to the function as an argument.
Also global variables are not inherently nasty and evil. As long as they are used properly there is no problem with them.
If there's a chance that you will reuse this code, then I would probably make the effort to go with an object-oriented perspective. Using the global namespace can be dangerous -- you run the risk of hard to find bugs due to variable names that get reused. Typically I start by using an object-oriented approach for anything more than a simple callback so that I don't have to do the re-write thing. Any time that you have a group of related functions in javascript, I think, it's a candidate for an object-oriented approach.
Another approach is one that I picked up from a Douglas Crockford forum post(http://bytes.com/topic/javascript/answers/512361-array-objects). Here it is...
Douglas Crockford wrote:
Jul 15 '06
"If you want to retrieve objects by id, then you should use an object, not an
array. Since functions are also objects, you could store the members in the
function itself."
function objFacility(id, name, adr, city, state, zip) {
return objFacility[id] = {
id: id,
name: name,
adr: adr,
city: city,
state: state,
zip: zip
}
}
objFacility('wlevine', 'Levine', '23 Skid Row', 'Springfield', 'Il', 10010);
"The object can be obtained with"
objFacility.wlevine
The objects properties are now accessable from within any other function.
I don't know specifics of your issue, but if the function needs the value then it can be a parameter passed through the call.
Globals are considered bad because globals state and multiple modifiers can create hard to follow code and strange errors. To many actors fiddling with something can create chaos.
You can completely control the execution of javascript functions (and pass variables between them) using custom jQuery events....I was told that this wasn't possible all over these forums, but I got something working that does exactly that (even using an ajax call).
Here's the answer (IMPORTANT: it's not the checked answer but rather the answer by me "Emile"):
How to get a variable returned across multiple functions - Javascript/jQuery

What is the purpose of a self executing function in javascript?

In javascript, when would you want to use this:
(function(){
//Bunch of code...
})();
over this:
//Bunch of code...
It's all about variable scoping. Variables declared in the self executing function are, by default, only available to code within the self executing function. This allows code to be written without concern of how variables are named in other blocks of JavaScript code.
For example, as mentioned in a comment by Alexander:
(function() {
var foo = 3;
console.log(foo);
})();
console.log(foo);
This will first log 3 and then throw an error on the next console.log because foo is not defined.
Simplistic. So very normal looking, its almost comforting:
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
However, what if I include a really handy javascript library to my page that translates advanced characters into their base level representations?
Wait... what?
I mean, if someone types in a character with some kind of accent on it, but I only want 'English' characters A-Z in my program? Well... the Spanish 'ñ' and French 'é' characters can be translated into base characters of 'n' and 'e'.
So someone nice person has written a comprehensive character converter out there that I can include in my site... I include it.
One problem: it has a function in it called 'name' same as my function.
This is what's called a collision. We've got two functions declared in the same scope with the same name. We want to avoid this.
So we need to scope our code somehow.
The only way to scope code in javascript is to wrap it in a function:
function main() {
// We are now in our own sound-proofed room and the
// character-converter library's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
That might solve our problem. Everything is now enclosed and can only be accessed from within our opening and closing braces.
We have a function in a function... which is weird to look at, but totally legal.
Only one problem. Our code doesn't work.
Our userName variable is never echoed into the console!
We can solve this issue by adding a call to our function after our existing code block...
function main() {
// We are now in our own sound-proofed room and the
// character-converter libarary's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
main();
Or before!
main();
function main() {
// We are now in our own sound-proofed room and the
// character-converter libarary's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
A secondary concern: What are the chances that the name 'main' hasn't been used yet? ...so very, very slim.
We need MORE scoping. And some way to automatically execute our main() function.
Now we come to auto-execution functions (or self-executing, self-running, whatever).
((){})();
The syntax is awkward as sin. However, it works.
When you wrap a function definition in parentheses, and include a parameter list (another set or parentheses!) it acts as a function call.
So lets look at our code again, with some self-executing syntax:
(function main() {
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
)();
So, in most tutorials you read, you will now be bombarded with the term 'anonymous self-executing' or something similar.
After many years of professional development, I strongly urge you to name every function you write for debugging purposes.
When something goes wrong (and it will), you will be checking the backtrace in your browser. It is always easier to narrow your code issues when the entries in the stack trace have names!
Self-invocation (also known as
auto-invocation) is when a function
executes immediately upon its
definition. This is a core pattern and
serves as the foundation for many
other patterns of JavaScript
development.
I am a great fan :) of it because:
It keeps code to a minimum
It enforces separation of behavior from presentation
It provides a closure which prevents naming conflicts
Enormously – (Why you should say its good?)
It’s about defining and executing a function all at once.
You could have that self-executing function return a value and pass the function as a param to another function.
It’s good for encapsulation.
It’s also good for block scoping.
Yeah, you can enclose all your .js files in a self-executing function and can prevent global namespace pollution. ;)
More here.
Namespacing. JavaScript's scopes are function-level.
I can't believe none of the answers mention implied globals.
The (function(){})() construct does not protect against implied globals, which to me is the bigger concern, see http://yuiblog.com/blog/2006/06/01/global-domination/
Basically the function block makes sure all the dependent "global vars" you defined are confined to your program, it does not protect you against defining implicit globals. JSHint or the like can provide recommendations on how to defend against this behavior.
The more concise var App = {} syntax provides a similar level of protection, and may be wrapped in the function block when on 'public' pages. (see Ember.js or SproutCore for real world examples of libraries that use this construct)
As far as private properties go, they are kind of overrated unless you are creating a public framework or library, but if you need to implement them, Douglas Crockford has some good ideas.
I've read all answers, something very important is missing here, I'll KISS. There are 2 main reasons, why I need Self-Executing Anonymous Functions, or better said "Immediately-Invoked Function Expression (IIFE)":
Better namespace management (Avoiding Namespace Pollution -> JS Module)
Closures (Simulating Private Class Members, as known from OOP)
The first one has been explained very well. For the second one, please study following example:
var MyClosureObject = (function (){
var MyName = 'Michael Jackson RIP';
return {
getMyName: function () { return MyName;},
setMyName: function (name) { MyName = name}
}
}());
Attention 1: We are not assigning a function to MyClosureObject, further more the result of invoking that function. Be aware of () in the last line.
Attention 2: What do you additionally have to know about functions in Javascript is that the inner functions get access to the parameters and variables of the functions, they are defined within.
Let us try some experiments:
I can get MyName using getMyName and it works:
console.log(MyClosureObject.getMyName());
// Michael Jackson RIP
The following ingenuous approach would not work:
console.log(MyClosureObject.MyName);
// undefined
But I can set an another name and get the expected result:
MyClosureObject.setMyName('George Michael RIP');
console.log(MyClosureObject.getMyName());
// George Michael RIP
Edit: In the example above MyClosureObject is designed to be used without the newprefix, therefore by convention it should not be capitalized.
Scope isolation, maybe. So that the variables inside the function declaration don't pollute the outer namespace.
Of course, on half the JS implementations out there, they will anyway.
Is there a parameter and the "Bunch of code" returns a function?
var a = function(x) { return function() { document.write(x); } }(something);
Closure. The value of something gets used by the function assigned to a. something could have some varying value (for loop) and every time a has a new function.
Here's a solid example of how a self invoking anonymous function could be useful.
for( var i = 0; i < 10; i++ ) {
setTimeout(function(){
console.log(i)
})
}
Output: 10, 10, 10, 10, 10...
for( var i = 0; i < 10; i++ ) {
(function(num){
setTimeout(function(){
console.log(num)
})
})(i)
}
Output: 0, 1, 2, 3, 4...
Short answer is : to prevent pollution of the Global (or higher) scope.
IIFE (Immediately Invoked Function Expressions) is the best practice for writing scripts as plug-ins, add-ons, user scripts or whatever scripts are expected to work with other people's scripts. This ensures that any variable you define does not give undesired effects on other scripts.
This is the other way to write IIFE expression. I personally prefer this following method:
void function() {
console.log('boo!');
// expected output: "boo!"
}();
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/void
From the example above it is very clear that IIFE can also affect efficiency and performance, because the function that is expected to be run only once will be executed once and then dumped into the void for good. This means that function or method declaration does not remain in memory.
One difference is that the variables that you declare in the function are local, so they go away when you exit the function and they don't conflict with other variables in other or same code.
First you must visit MDN IIFE , Now some points about this
this is Immediately Invoked Function Expression. So when your javascript file invoked from HTML this function called immediately.
This prevents accessing variables within the IIFE idiom as well as polluting the global scope.
Self executing function are used to manage the scope of a Variable.
The scope of a variable is the region of your program in which it is defined.
A global variable has global scope; it is defined everywhere in your JavaScript code and can be accessed from anywhere within the script, even in your functions. On the other hand, variables declared within a function are defined only within the body of the function.
They are local variables, have local scope and can only be accessed within that function. Function parameters also count as local variables and are defined only within the body of the function.
As shown below, you can access the global variables variable inside your function and also note that within the body of a function, a local variable takes precedence over a global variable with the same name.
var globalvar = "globalvar"; // this var can be accessed anywhere within the script
function scope() {
alert(globalvar);
var localvar = "localvar"; //can only be accessed within the function scope
}
scope();
So basically a self executing function allows code to be written without concern of how variables are named in other blocks of javascript code.
Since functions in Javascript are first-class object, by defining it that way, it effectively defines a "class" much like C++ or C#.
That function can define local variables, and have functions within it. The internal functions (effectively instance methods) will have access to the local variables (effectively instance variables), but they will be isolated from the rest of the script.
Self invoked function in javascript:
A self-invoking expression is invoked (started) automatically, without being called. A self-invoking expression is invoked right after its created. This is basically used for avoiding naming conflict as well as for achieving encapsulation. The variables or declared objects are not accessible outside this function. For avoiding the problems of minimization(filename.min) always use self executed function.
(function(){
var foo = {
name: 'bob'
};
console.log(foo.name); // bob
})();
console.log(foo.name); // Reference error
Actually, the above function will be treated as function expression without a name.
The main purpose of wrapping a function with close and open parenthesis is to avoid polluting the global space.
The variables and functions inside the function expression became private (i.e) they will not be available outside of the function.
Given your simple question: "In javascript, when would you want to use this:..."
I like #ken_browning and #sean_holding's answers, but here's another use-case that I don't see mentioned:
let red_tree = new Node(10);
(async function () {
for (let i = 0; i < 1000; i++) {
await red_tree.insert(i);
}
})();
console.log('----->red_tree.printInOrder():', red_tree.printInOrder());
where Node.insert is some asynchronous action.
I can't just call await without the async keyword at the declaration of my function, and i don't need a named function for later use, but need to await that insert call or i need some other richer features (who knows?).
It looks like this question has been answered all ready, but I'll post my input anyway.
I know when I like to use self-executing functions.
var myObject = {
childObject: new function(){
// bunch of code
},
objVar1: <value>,
objVar2: <value>
}
The function allows me to use some extra code to define the childObjects attributes and properties for cleaner code, such as setting commonly used variables or executing mathematic equations; Oh! or error checking. as opposed to being limited to nested object instantiation syntax of...
object: {
childObject: {
childObject: {<value>, <value>, <value>}
},
objVar1: <value>,
objVar2: <value>
}
Coding in general has a lot of obscure ways of doing a lot of the same things, making you wonder, "Why bother?" But new situations keep popping up where you can no longer rely on basic/core principals alone.
You can use this function to return values :
var Test = (function (){
const alternative = function(){ return 'Error Get Function '},
methods = {
GetName: alternative,
GetAge:alternative
}
// If the condition is not met, the default text will be returned
// replace to 55 < 44
if( 55 > 44){
// Function one
methods.GetName = function (name) {
return name;
};
// Function Two
methods.GetAge = function (age) {
return age;
};
}
return methods;
}());
// Call
console.log( Test.GetName("Yehia") );
console.log( Test.GetAge(66) );
Use of this methodology is for closures. Read this link for more about closures.
IIRC it allows you to create private properties and methods.

Categories