max integer value in JavaScript - javascript

I'm reading the second chapter of the book Eloquent JavaScript. The author states that:
Any whole number less than 2^52 (which is more than 10^15) will safely fit in a JavaScript number.
I grabbed the value of 2^52 from wikipedia.
4,503,599,627,370,496
The value has to be less than 2^52, so I've substracted 1 from the initial value;
var max = 4503599627370495;
After defining the max variable I'm checking what's the value (I'm using Chrome 32.0.1700.77).
console.log(max); // 4503599627370495
I'd like to see what happens when I go over this limit, so I'm adding one a couple of times.
Unexpectedly:
max += 1;
console.log(max); // 4503599627370496
max += 1;
console.log(max); // 4503599627370497
max += 1;
console.log(max); // 4503599627370498
I went over the limit and the calculations are still precise.
I tried the next power of two instead, 2^53, I didn't substract 1 this time:
9,007,199,254,740,992
var max = 9007199254740992;
This one seems to be a bigger limit, it seems that I can quite safely add and substract numbers:
max += 1;
console.log(max); // 9007199254740992
max += 1;
console.log(max); // 9007199254740992
max -= 1;
console.log(max); // 9007199254740991
max += 1;
console.log(max); // 9007199254740992
max -= 900;
console.log(max); // 9007199254740092
max += 900;
console.log(max); // 9007199254740992
I can assign even a bigger value to the max, however it loses precision and I can't safely add or substract numbers again.
Could you please explain precisely the mechanism that sits under the hood? An example of what happens with the bits after going above 2^52 would be really helpful.

This is not a strongly typed programming language. JS has an object Number. You can even get an infinite number: document.write(Math.exp(1000));.
document.write(Number.MIN_VALUE + "<br>");
document.write(Number.MAX_VALUE + "<br>");
document.write(Number.POSITIVE_INFINITY + "<br>");
document.write(Number.NEGATIVE_INFINITY + "<br>");
alert([
Number.MAX_VALUE/(1e293),
Number.MAX_VALUE/(1e292),
Number.MAX_VALUE/(1e291),
Number.MAX_VALUE/(1e290),
].join('\n'))
Hope it's a useful answer. Thanks!
UPDATE:
max int is - +/- 9007199254740992

You can find some information on JavaScript's Number type here: ECMA-262 5th Edition: The Number Type.
As it mentions, numbers are represented as a 64-bit floating-point number, with 53 bits of mantissa (significant digits) and 11 bits for the exponent (IEEE 754). The result is then obtained with: mantissa * 2^exponent.
This means that up to 2^53 values can be represented in the mantissa (of those a few numbers have special meanings, and the others are positive and negative integers).
The number 2^53 (9007199254740992) can't be represented in the mantissa, and you have to use an exponent. As an example, you can represent 2^53 as (9007199254740992 / 2) * 2^1, ie. mantissa = 9007199254740992 / 2 = 4503599627370496 and exponent = 1.
Let's check what happens with 2^53+1 (9007199254740993). Here we have to do the same, mantissa = 9007199254740993 / 2 = 4503599627370496. Oops, isn't this the same mantissa we had for 2^53? Looks like there's been some rounding error! :)
(Note: the above examples are not actually how it really works: the mantissa is always interpreted as having a dot after the first digit, which means that eg. the number 3 is actually stored as 1.5*2. I omitted this in the above explanation to make it easier to follow.)
You can find some more information on floating-point numbers (in general) here: What Every Computer Scientist Should Know About Floating-Point Arithmetic.

You can think of 52 bits integer in JS, but remember that bitwise logical operators & | >> etc.. will only deal with 32 less significant bits discarding the rest.

Related

Firefox/Chrome JSON parsing numeric value in JSON as numeric value -1 for 1 specific value [duplicate]

Consider this code (node v5.0.0)
const a = Math.pow(2, 53)
const b = Math.pow(2, 53) + 1
const c = Math.pow(2, 53) + 2
console.log(a === b) // true
console.log(a === c) // false
Why a === b is true?
What is the maximum integer value javascript can handle?
I'm implementing random integer generator up to 2^64. Is there any pitfall I should be aware of?
How javascript treat large integers?
JS does not have integers. JS numbers are 64 bit floats. They are stored as a mantissa and an exponent.
The precision is given by the mantissa, the magnitude by the exponent.
If your number needs more precision than what can be stored in the mantissa, the least significant bits will be truncated.
9007199254740992; // 9007199254740992
(9007199254740992).toString(2);
// "100000000000000000000000000000000000000000000000000000"
// \ \ ... /\
// 1 10 53 54
// The 54-th is not stored, but is not a problem because it's 0
9007199254740993; // 9007199254740992
(9007199254740993).toString(2);
// "100000000000000000000000000000000000000000000000000000"
// \ \ ... /\
// 1 10 53 54
// The 54-th bit should be 1, but the mantissa only has 53 bits!
9007199254740994; // 9007199254740994
(9007199254740994).toString(2);
// "100000000000000000000000000000000000000000000000000010"
// \ \ ... /\
// 1 10 53 54
// The 54-th is not stored, but is not a problem because it's 0
Then, you can store all these integers:
-9007199254740992, -9007199254740991, ..., 9007199254740991, 9007199254740992
The second one is called the minimum safe integer:
The value of Number.MIN_SAFE_INTEGER is the smallest integer n such
that n and n − 1 are both exactly representable as a Number value.
The value of Number.MIN_SAFE_INTEGER is −9007199254740991
(−(253−1)).
The second last one is called the maximum safe integer:
The value of Number.MAX_SAFE_INTEGER is the largest integer n such
that n and n + 1 are both exactly representable as a Number value.
The value of Number.MAX_SAFE_INTEGER is 9007199254740991
(253−1).
Answering your second question, here is your maximum safe integer in JavaScript:
console.log( Number.MAX_SAFE_INTEGER );
All the rest is written in MDN:
The MAX_SAFE_INTEGER constant has a value of 9007199254740991. The
reasoning behind that number is that JavaScript uses double-precision
floating-point format numbers as specified in IEEE 754 and can only
safely represent numbers between -(2 ** 53 - 1) and 2 ** 53 - 1.
Safe in this context refers to the ability to represent integers
exactly and to correctly compare them. For example,
Number.MAX_SAFE_INTEGER + 1 === Number.MAX_SAFE_INTEGER + 2 will
evaluate to true, which is mathematically incorrect. See
Number.isSafeInteger() for more information.
.:: JavaScript only supports 53 bit integers ::.
All numbers in JavaScript are floating point which means that integers are always represented as
sign × mantissa × 2exponent
The mantissa has 53 bits. You can use the exponent to get higher integers, but then they won’t be contiguous, any more. For example, you generally need to multiply the mantissa by two (exponent 1) in order to reach the 54th bit.
However, if you multiply by two, you will only be able to represent every second integer:
Math.pow(2, 53) // 54 bits 9007199254740992
Math.pow(2, 53) + 1 // 9007199254740992
Math.pow(2, 53) + 2 //9007199254740994
Math.pow(2, 53) + 3 //9007199254740996
Math.pow(2, 53) + 4 //9007199254740996
Rounding effects during the addition make things unpredictable for odd increments (+1 versus +3). The actual representation is a bit more complicated but this explanation should help you understand the basic problem.
You can safely use strint library to encode large integers in strings and perform arithmetic operations on them too.
Here is the full article.
Number.MAX_VALUE will tell you the largest floating-point value representable in your JS implementation. The answer will likely be: 1.7976931348623157e+308. But that doesn't mean that every integer up to 10^308 can be represented exactly. As your example code shows, beyond 2^53 only even numbers can be represented, and as you go farther out on the number line the gaps get much wider.
If you need exact integers larger than 2^53, you probably want to work with a bignum package, which allows for arbitrarily large integers (within the bounds of available memory). Two packages that I happen to know are:
BigInt by Leemon
and
Crunch
To supplement to other answers here, it's worth mentioning that BigInt exists. This allows JavaScript to handle arbitrarily large integers.
Use the n suffix on your numbers and use regular operators like 2n ** 53n + 2n. Important to point out that a BigInt is not a Number, but you can do range-limited interoperation with Number via explicit conversions.
Some examples at the Node.js REPL:
> 999999999999999999999999999999n + 1n
1000000000000000000000000000000n
> 2n ** 53n
9007199254740992n
> 2n ** 53n + 1n
9007199254740993n
> 2n ** 53n == 2n ** 53n + 1n
false
> typeof 1n
'bigint'
> 3 * 4n
TypeError: Cannot mix BigInt and other types, use explicit conversions
> BigInt(3) * 4n
12n
> 3 * Number(4n)
12
> Number(2n ** 53n) == Number(2n ** 53n + 1n)
true

JavaScript number automatically "rounded" [duplicate]

See this code:
var jsonString = '{"id":714341252076979033,"type":"FUZZY"}';
var jsonParsed = JSON.parse(jsonString);
console.log(jsonString, jsonParsed);
When I see my console in Firefox 3.5, the value of jsonParsed is the number rounded:
Object id=714341252076979100 type=FUZZY
Tried different values, the same outcome (number rounded).
I also don't get its rounding rules. 714341252076979136 is rounded to 714341252076979200, whereas 714341252076979135 is rounded to 714341252076979100.
Why is this happening?
You're overflowing the capacity of JavaScript's number type, see §8.5 of the spec for details. Those IDs will need to be strings.
IEEE-754 double-precision floating point (the kind of number JavaScript uses) can't precisely represent all numbers (of course). Famously, 0.1 + 0.2 == 0.3 is false. That can affect whole numbers just like it affects fractional numbers; it starts once you get above 9,007,199,254,740,991 (Number.MAX_SAFE_INTEGER).
Beyond Number.MAX_SAFE_INTEGER + 1 (9007199254740992), the IEEE-754 floating-point format can no longer represent every consecutive integer. 9007199254740991 + 1 is 9007199254740992, but 9007199254740992 + 1 is also 9007199254740992 because 9007199254740993 cannot be represented in the format. The next that can be is 9007199254740994. Then 9007199254740995 can't be, but 9007199254740996 can.
The reason is we've run out of bits, so we no longer have a 1s bit; the lowest-order bit now represents multiples of 2. Eventually, if we keep going, we lose that bit and only work in multiples of 4. And so on.
Your values are well above that threshold, and so they get rounded to the nearest representable value.
As of ES2020, you can use BigInt for integers that are arbitrarily large, but there is no JSON representation for them. You could use strings and a reviver function:
const jsonString = '{"id":"714341252076979033","type":"FUZZY"}';
// Note it's a string −−−−^−−−−−−−−−−−−−−−−−−^
const obj = JSON.parse(jsonString, (key, value) => {
if (key === "id" && typeof value === "string" && value.match(/^\d+$/)) {
return BigInt(value);
}
return value;
});
console.log(obj);
(Look in the real console, the snippets console doesn't understand BigInt.)
If you're curious about the bits, here's what happens: An IEEE-754 binary double-precision floating-point number has a sign bit, 11 bits of exponent (which defines the overall scale of the number, as a power of 2 [because this is a binary format]), and 52 bits of significand (but the format is so clever it gets 53 bits of precision out of those 52 bits). How the exponent is used is complicated (described here), but in very vague terms, if we add one to the exponent, the value of the significand is doubled, since the exponent is used for powers of 2 (again, caveat there, it's not direct, there's cleverness in there).
So let's look at the value 9007199254740991 (aka, Number.MAX_SAFE_INTEGER):
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110011 1111111111111111111111111111111111111111111111111111
= 9007199254740991 (Number.MAX_SAFE_INTEGER)
That exponent value, 10000110011, means that every time we add one to the significand, the number represented goes up by 1 (the whole number 1, we lost the ability to represent fractional numbers much earlier).
But now that significand is full. To go past that number, we have to increase the exponent, which means that if we add one to the significand, the value of the number represented goes up by 2, not 1 (because the exponent is applied to 2, the base of this binary floating point number):
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110100 0000000000000000000000000000000000000000000000000000
= 9007199254740992 (Number.MAX_SAFE_INTEGER + 1)
Well, that's okay, because 9007199254740991 + 1 is 9007199254740992 anyway. But! We can't represent 9007199254740993. We've run out of bits. If we add just 1 to the significand, it adds 2 to the value:
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110100 0000000000000000000000000000000000000000000000000001
= 9007199254740994 (Number.MAX_SAFE_INTEGER + 3)
The format just cannot represent odd numbers anymore as we increase the value, the exponent is too big.
Eventually, we run out of significand bits again and have to increase the exponent, so we end up only being able to represent multiples of 4. Then multiples of 8. Then multiples of 16. And so on.
What you're seeing here is actually the effect of two roundings. Numbers in ECMAScript are internally represented double-precision floating-point. When id is set to 714341252076979033 (0x9e9d9958274c359 in hex), it actually is assigned the nearest representable double-precision value, which is 714341252076979072 (0x9e9d9958274c380). When you print out the value, it is being rounded to 15 significant decimal digits, which gives 14341252076979100.
It is not caused by this json parser. Just try to enter 714341252076979033 to fbug's console. You'll see the same 714341252076979100.
See this blog post for details:
http://www.exploringbinary.com/print-precision-of-floating-point-integers-varies-too
JavaScript uses double precision floating point values, ie a total precision of 53 bits, but you need
ceil(lb 714341252076979033) = 60
bits to exactly represent the value.
The nearest exactly representable number is 714341252076979072 (write the original number in binary, replace the last 7 digits with 0 and round up because the highest replaced digit was 1).
You'll get 714341252076979100 instead of this number because ToString() as described by ECMA-262, §9.8.1 works with powers of ten and in 53 bit precision all these numbers are equal.
The problem is that your number requires a greater precision than JavaScript has.
Can you send the number as a string? Separated in two parts?
JavaScript can only handle exact whole numbers up to about 9000 million million (that's 9 with 15 zeros). Higher than that and you get garbage. Work around this by using strings to hold the numbers. If you need to do math with these numbers, write your own functions or see if you can find a library for them: I suggest the former as I don't like the libraries I've seen. To get you started, see two of my functions at another answer.

Maximum integer in Javascript

I was following the article here on max integer value in JS.
http://blog.vjeux.com/2010/javascript/javascript-max_int-number-limits.html
It states that the bits available to significand is 52.
How then does it say that the max number is 2e53 -1 .
How can we even write 2e53 when that bit is not available ?
I don't quiet get it
Not sure which article you read specifically, but hopefully this will help
Math.pow(2,53) - 1
// 9007199254740991
// ^
Math.pow(2,53)
// 9007199254740992
// ^
Math.pow(2,53) + 1
// 9007199254740992
// ^
Binary floating-point numbers in the IEEE spec look like
s ✕ 1.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn ✕ 2^exp
The s bit is the sign bit; exp is the binary exponent. The mantissa bits, n, are implicitly the binary fraction of a number that starts with 1. That 1 is implicit, and does not have to be stored explicitly. That means that there are 52 explicit bits and 1 implicit bits, for a total of 53. The sign bit is separate. Thus, 2^53-1 covers all positive 53-bit values that can be represented exactly.
It can be usefull library
Big Integer

Javascript number conversion [duplicate]

See this code:
var jsonString = '{"id":714341252076979033,"type":"FUZZY"}';
var jsonParsed = JSON.parse(jsonString);
console.log(jsonString, jsonParsed);
When I see my console in Firefox 3.5, the value of jsonParsed is the number rounded:
Object id=714341252076979100 type=FUZZY
Tried different values, the same outcome (number rounded).
I also don't get its rounding rules. 714341252076979136 is rounded to 714341252076979200, whereas 714341252076979135 is rounded to 714341252076979100.
Why is this happening?
You're overflowing the capacity of JavaScript's number type, see §8.5 of the spec for details. Those IDs will need to be strings.
IEEE-754 double-precision floating point (the kind of number JavaScript uses) can't precisely represent all numbers (of course). Famously, 0.1 + 0.2 == 0.3 is false. That can affect whole numbers just like it affects fractional numbers; it starts once you get above 9,007,199,254,740,991 (Number.MAX_SAFE_INTEGER).
Beyond Number.MAX_SAFE_INTEGER + 1 (9007199254740992), the IEEE-754 floating-point format can no longer represent every consecutive integer. 9007199254740991 + 1 is 9007199254740992, but 9007199254740992 + 1 is also 9007199254740992 because 9007199254740993 cannot be represented in the format. The next that can be is 9007199254740994. Then 9007199254740995 can't be, but 9007199254740996 can.
The reason is we've run out of bits, so we no longer have a 1s bit; the lowest-order bit now represents multiples of 2. Eventually, if we keep going, we lose that bit and only work in multiples of 4. And so on.
Your values are well above that threshold, and so they get rounded to the nearest representable value.
As of ES2020, you can use BigInt for integers that are arbitrarily large, but there is no JSON representation for them. You could use strings and a reviver function:
const jsonString = '{"id":"714341252076979033","type":"FUZZY"}';
// Note it's a string −−−−^−−−−−−−−−−−−−−−−−−^
const obj = JSON.parse(jsonString, (key, value) => {
if (key === "id" && typeof value === "string" && value.match(/^\d+$/)) {
return BigInt(value);
}
return value;
});
console.log(obj);
(Look in the real console, the snippets console doesn't understand BigInt.)
If you're curious about the bits, here's what happens: An IEEE-754 binary double-precision floating-point number has a sign bit, 11 bits of exponent (which defines the overall scale of the number, as a power of 2 [because this is a binary format]), and 52 bits of significand (but the format is so clever it gets 53 bits of precision out of those 52 bits). How the exponent is used is complicated (described here), but in very vague terms, if we add one to the exponent, the value of the significand is doubled, since the exponent is used for powers of 2 (again, caveat there, it's not direct, there's cleverness in there).
So let's look at the value 9007199254740991 (aka, Number.MAX_SAFE_INTEGER):
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110011 1111111111111111111111111111111111111111111111111111
= 9007199254740991 (Number.MAX_SAFE_INTEGER)
That exponent value, 10000110011, means that every time we add one to the significand, the number represented goes up by 1 (the whole number 1, we lost the ability to represent fractional numbers much earlier).
But now that significand is full. To go past that number, we have to increase the exponent, which means that if we add one to the significand, the value of the number represented goes up by 2, not 1 (because the exponent is applied to 2, the base of this binary floating point number):
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110100 0000000000000000000000000000000000000000000000000000
= 9007199254740992 (Number.MAX_SAFE_INTEGER + 1)
Well, that's okay, because 9007199254740991 + 1 is 9007199254740992 anyway. But! We can't represent 9007199254740993. We've run out of bits. If we add just 1 to the significand, it adds 2 to the value:
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110100 0000000000000000000000000000000000000000000000000001
= 9007199254740994 (Number.MAX_SAFE_INTEGER + 3)
The format just cannot represent odd numbers anymore as we increase the value, the exponent is too big.
Eventually, we run out of significand bits again and have to increase the exponent, so we end up only being able to represent multiples of 4. Then multiples of 8. Then multiples of 16. And so on.
What you're seeing here is actually the effect of two roundings. Numbers in ECMAScript are internally represented double-precision floating-point. When id is set to 714341252076979033 (0x9e9d9958274c359 in hex), it actually is assigned the nearest representable double-precision value, which is 714341252076979072 (0x9e9d9958274c380). When you print out the value, it is being rounded to 15 significant decimal digits, which gives 14341252076979100.
It is not caused by this json parser. Just try to enter 714341252076979033 to fbug's console. You'll see the same 714341252076979100.
See this blog post for details:
http://www.exploringbinary.com/print-precision-of-floating-point-integers-varies-too
JavaScript uses double precision floating point values, ie a total precision of 53 bits, but you need
ceil(lb 714341252076979033) = 60
bits to exactly represent the value.
The nearest exactly representable number is 714341252076979072 (write the original number in binary, replace the last 7 digits with 0 and round up because the highest replaced digit was 1).
You'll get 714341252076979100 instead of this number because ToString() as described by ECMA-262, §9.8.1 works with powers of ten and in 53 bit precision all these numbers are equal.
The problem is that your number requires a greater precision than JavaScript has.
Can you send the number as a string? Separated in two parts?
JavaScript can only handle exact whole numbers up to about 9000 million million (that's 9 with 15 zeros). Higher than that and you get garbage. Work around this by using strings to hold the numbers. If you need to do math with these numbers, write your own functions or see if you can find a library for them: I suggest the former as I don't like the libraries I've seen. To get you started, see two of my functions at another answer.

Large numbers erroneously rounded in JavaScript

See this code:
var jsonString = '{"id":714341252076979033,"type":"FUZZY"}';
var jsonParsed = JSON.parse(jsonString);
console.log(jsonString, jsonParsed);
When I see my console in Firefox 3.5, the value of jsonParsed is the number rounded:
Object id=714341252076979100 type=FUZZY
Tried different values, the same outcome (number rounded).
I also don't get its rounding rules. 714341252076979136 is rounded to 714341252076979200, whereas 714341252076979135 is rounded to 714341252076979100.
Why is this happening?
You're overflowing the capacity of JavaScript's number type, see §8.5 of the spec for details. Those IDs will need to be strings.
IEEE-754 double-precision floating point (the kind of number JavaScript uses) can't precisely represent all numbers (of course). Famously, 0.1 + 0.2 == 0.3 is false. That can affect whole numbers just like it affects fractional numbers; it starts once you get above 9,007,199,254,740,991 (Number.MAX_SAFE_INTEGER).
Beyond Number.MAX_SAFE_INTEGER + 1 (9007199254740992), the IEEE-754 floating-point format can no longer represent every consecutive integer. 9007199254740991 + 1 is 9007199254740992, but 9007199254740992 + 1 is also 9007199254740992 because 9007199254740993 cannot be represented in the format. The next that can be is 9007199254740994. Then 9007199254740995 can't be, but 9007199254740996 can.
The reason is we've run out of bits, so we no longer have a 1s bit; the lowest-order bit now represents multiples of 2. Eventually, if we keep going, we lose that bit and only work in multiples of 4. And so on.
Your values are well above that threshold, and so they get rounded to the nearest representable value.
As of ES2020, you can use BigInt for integers that are arbitrarily large, but there is no JSON representation for them. You could use strings and a reviver function:
const jsonString = '{"id":"714341252076979033","type":"FUZZY"}';
// Note it's a string −−−−^−−−−−−−−−−−−−−−−−−^
const obj = JSON.parse(jsonString, (key, value) => {
if (key === "id" && typeof value === "string" && value.match(/^\d+$/)) {
return BigInt(value);
}
return value;
});
console.log(obj);
(Look in the real console, the snippets console doesn't understand BigInt.)
If you're curious about the bits, here's what happens: An IEEE-754 binary double-precision floating-point number has a sign bit, 11 bits of exponent (which defines the overall scale of the number, as a power of 2 [because this is a binary format]), and 52 bits of significand (but the format is so clever it gets 53 bits of precision out of those 52 bits). How the exponent is used is complicated (described here), but in very vague terms, if we add one to the exponent, the value of the significand is doubled, since the exponent is used for powers of 2 (again, caveat there, it's not direct, there's cleverness in there).
So let's look at the value 9007199254740991 (aka, Number.MAX_SAFE_INTEGER):
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110011 1111111111111111111111111111111111111111111111111111
= 9007199254740991 (Number.MAX_SAFE_INTEGER)
That exponent value, 10000110011, means that every time we add one to the significand, the number represented goes up by 1 (the whole number 1, we lost the ability to represent fractional numbers much earlier).
But now that significand is full. To go past that number, we have to increase the exponent, which means that if we add one to the significand, the value of the number represented goes up by 2, not 1 (because the exponent is applied to 2, the base of this binary floating point number):
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110100 0000000000000000000000000000000000000000000000000000
= 9007199254740992 (Number.MAX_SAFE_INTEGER + 1)
Well, that's okay, because 9007199254740991 + 1 is 9007199254740992 anyway. But! We can't represent 9007199254740993. We've run out of bits. If we add just 1 to the significand, it adds 2 to the value:
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− sign bit
/ +−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− exponent
/ / | +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+− significand
/ / | / |
0 10000110100 0000000000000000000000000000000000000000000000000001
= 9007199254740994 (Number.MAX_SAFE_INTEGER + 3)
The format just cannot represent odd numbers anymore as we increase the value, the exponent is too big.
Eventually, we run out of significand bits again and have to increase the exponent, so we end up only being able to represent multiples of 4. Then multiples of 8. Then multiples of 16. And so on.
What you're seeing here is actually the effect of two roundings. Numbers in ECMAScript are internally represented double-precision floating-point. When id is set to 714341252076979033 (0x9e9d9958274c359 in hex), it actually is assigned the nearest representable double-precision value, which is 714341252076979072 (0x9e9d9958274c380). When you print out the value, it is being rounded to 15 significant decimal digits, which gives 14341252076979100.
It is not caused by this json parser. Just try to enter 714341252076979033 to fbug's console. You'll see the same 714341252076979100.
See this blog post for details:
http://www.exploringbinary.com/print-precision-of-floating-point-integers-varies-too
JavaScript uses double precision floating point values, ie a total precision of 53 bits, but you need
ceil(lb 714341252076979033) = 60
bits to exactly represent the value.
The nearest exactly representable number is 714341252076979072 (write the original number in binary, replace the last 7 digits with 0 and round up because the highest replaced digit was 1).
You'll get 714341252076979100 instead of this number because ToString() as described by ECMA-262, §9.8.1 works with powers of ten and in 53 bit precision all these numbers are equal.
The problem is that your number requires a greater precision than JavaScript has.
Can you send the number as a string? Separated in two parts?
JavaScript can only handle exact whole numbers up to about 9000 million million (that's 9 with 15 zeros). Higher than that and you get garbage. Work around this by using strings to hold the numbers. If you need to do math with these numbers, write your own functions or see if you can find a library for them: I suggest the former as I don't like the libraries I've seen. To get you started, see two of my functions at another answer.

Categories