JavaScript Anonymous Constructor Function: !function(){}(); - javascript

I've seen this syntax for creating an anonymous constructor function in JavaScript:
var Application = Application || {};
!function(window, Application) {
Application.property = {/*...*/}
Application.method = function(){/*...*/}
}(window, Application);
I want to understand what the following parts here:
What is the advantage of using first line (i.e. var o = o || {};) vs just stating var o = (function(){})();?
Why ! is used in front of function?
Why would I pass window or Application as parameters when they are global object?
Is this the most convenient way for anonymous constructor function and how is this better than:
4a)
var Application = {
property: {},
method: function(){}
}
or 4b)
var Application = (function() {
var method = function(){/*...*/}
return {method:method};
}());

The first line is to ensure that Application always exists, and is generally used in cases where it's expected that Application already should exist, and the function just augments the existing object. If it doesn't exist, this makes sure that we don't get an error for accessing properties of undefined. Your examples are only equivalent in the case where Application does not yet exist. In all other cases, your code will obliterate the existing Application, which is almost certainly not the intent.
The comment from Vatev explains what the ! does. It's another syntax for making the function in question become a self executing anonymous function. (Incidentally, it also takes the return value of the function - which is currently undefined, and flips its truthyness, so it evaluates as true. Since the result isn't stored in any variable, though, that's clearly not the purpose.)
Finally, why pass window and Application into the function and use it there? This is a safety feature, in case other code changes window or Application later on. It guarantees that within the anonymous function, window and Application are exactly what you expect it to be. In the shorthand example you gave, this may appear to not matter - after all, why protect these variables if you're using them immediately and not storing them? In many cases, you return something from this function, and then window and Application would be stored in the closure, so you'd retain the variables. It makes it safe from people who later on decide to say Application = {...}.

I don't know all of the answers but I'll try to answer what I can.
Using var Application = Application || {}; simply means that you are dealing with scope. If the "Application" variable has already be defined, it will just mean that it inherits and is now available in the current scope. If not, the "||" part (means OR) means that it will be created as an empty object. You are dealing with creating an object and then acting on it, not just having the result given back raw. That's why you shouldn't use "o = (function() {...});". "o" would then be the result of the function and not the object.
The use of "!function" causes it to be treated as an expression, but this can be tricky because you may have to think in opposites. E.g. !null means you are checking that it isn't null, not that you are checking for it to be null.
Passing in the window and Application objects deal with scoping, again. It is explicitly passing them into the function, then returning them at the end. Think of this as putting clothes in the washing machine. You put them in, stuff can happen, then you get them back out. It's a really crude idea and isn't the best example, but it's how I thought of it a while back. You put clothes in, call then rinse function, then soap function, then rinse again, then spin to drain water.
Hopefully someone else can answer that, I'm not sure what the differences are.

Since two answers so far neglected these two details: A pattern used by libraries like jQuery is using the following two parameters:
(function (window, undefined) {
window.myPlugin = ...;
})(window);
There are two things going on here:
undefined is specified as a parameter, but not passed in. This way, undefined is guaranteed to have th expected value within the inner scope. This is only necessary for older browsers which allowed overwriting undefined (though it has always been considered bad practice to do so – it's just what libraries like jQuery do to avoid other code interfering with their code).
Aliasing a global object like window within the scope allows the code to be minified more (also works for undefined). Obviously, the more references you have to the aliased object(s), the more you will save:
.
(function(w,u){w.myPlugin=...;w.somethingElse=...;if(whatever===u){return;}})(window);
compared to
(function(){window.myPlugin=...;window.somethingElse=...;if(whatever===undefined){return;}})();
You won't save much with window since typically you don't wanna clutter the global object up anyway. But aliasing undefined can save you quite some space.

Related

What is the purpose for passing "window" and "undefined" to a function? [duplicate]

Have you ever taken a look under the hood at the jQuery 1.4 source code and noticed how it's encapsulated in the following way:
(function( window, undefined ) {
//All the JQuery code here
...
})(window);
I've read an article on JavaScript Namespacing and another one called "An Important Pair of Parens," so I know some about what's going on here.
But I've never seen this particular syntax before. What is that undefined doing there? And why does window need to be passed and then appear at the end again?
The undefined is a normal variable and can be changed simply with undefined = "new value";. So jQuery creates a local "undefined" variable that is REALLY undefined.
The window variable is made local for performance reasons. Because when JavaScript looks up a variable, it first goes through the local variables until it finds the variable name. When it's not found, JavaScript goes through the next scope etc. until it filters through the global variables. So if the window variable is made local, JavaScript can look it up quicker.
Further information: Speed Up Your JavaScript - Nicholas C. Zakas
Undefined
By declaring undefined as an argument but never passing a value to it ensures that it is always undefined, as it is simply a variable in the global scope that can be overwritten. This makes a === undefined a safe alternative to typeof a == 'undefined', which saves a few characters. It also makes the code more minifier-friendly, as undefined can be shortened to u for example, saving a few more characters.
Window
Passing window as an argument keeps a copy in the local scope, which affects performance: http://jsperf.com/short-scope. All accesses to window will now have to travel one level less up the scope chain. As with undefined, a local copy again allows for more aggressive minification.
Sidenote:
Though this may not have been the intention of the jQuery developers, passing in window allows the library to be more easily integrated in server-side Javascript environments, for example node.js - where there is no global window object. In such a situation, only one line needs to be changed to replace the window object with another one. In the case of jQuery, a mock window object can be created and passed in for the purpose of HTML scraping (a library such as jsdom can do this).
Others have explained undefined. undefined is like a global variable that can be redefined to any value. This technique is to prevent all undefined checks from breaking if someone wrote say, undefined = 10 somewhere. An argument that is never passed is guaranteed to be real undefined irrespective of the value of the variable undefined.
The reason to pass window can be illustrated with the following example.
(function() {
console.log(window);
...
...
...
var window = 10;
})();
What does the console log? The value of window object right? Wrong! 10? Wrong! It logs undefined. Javascript interpreter (or JIT compiler) rewrites it this way -
(function() {
var window; //and every other var in this function
console.log(window);
...
...
...
window = 10;
})();
However, if you get the window variable as an argument, there is no var and hence no surprises.
I don't know if jQuery is doing it, but if you are redefining window local variable anywhere in your function for whatever reason, it is a good idea to borrow it from global scope.
window is passed in like that just in case someone decides to redefine the window object in IE, I assume the same for undefined, in case it's re-assigned in some way later.
The top window in that script is just naming the argument "window", an argument that's more local that the global window reference and it what the code inside this closure will use. The window at the end is actually specifying what to pass for the first argument, in this case the current meaning of window...the hope is you haven't screwed up window before that happens.
This may be easier to think of by showing the most typical case used in jQuery, plugin .noConflict() handling, so for the majority of code you can still use $, even if it means something other than jQuery outside this scope:
(function($) {
//inside here, $ == jQuery, it was passed as the first argument
})(jQuery);
Tested with 1000000 iterations. This kind of localization had no effect in performance. Not even a single millisecond in 1000000 iterations. This is simply useless.

jQuery function syntax: passing 'undefined' and expression in brackets [duplicate]

Have you ever taken a look under the hood at the jQuery 1.4 source code and noticed how it's encapsulated in the following way:
(function( window, undefined ) {
//All the JQuery code here
...
})(window);
I've read an article on JavaScript Namespacing and another one called "An Important Pair of Parens," so I know some about what's going on here.
But I've never seen this particular syntax before. What is that undefined doing there? And why does window need to be passed and then appear at the end again?
The undefined is a normal variable and can be changed simply with undefined = "new value";. So jQuery creates a local "undefined" variable that is REALLY undefined.
The window variable is made local for performance reasons. Because when JavaScript looks up a variable, it first goes through the local variables until it finds the variable name. When it's not found, JavaScript goes through the next scope etc. until it filters through the global variables. So if the window variable is made local, JavaScript can look it up quicker.
Further information: Speed Up Your JavaScript - Nicholas C. Zakas
Undefined
By declaring undefined as an argument but never passing a value to it ensures that it is always undefined, as it is simply a variable in the global scope that can be overwritten. This makes a === undefined a safe alternative to typeof a == 'undefined', which saves a few characters. It also makes the code more minifier-friendly, as undefined can be shortened to u for example, saving a few more characters.
Window
Passing window as an argument keeps a copy in the local scope, which affects performance: http://jsperf.com/short-scope. All accesses to window will now have to travel one level less up the scope chain. As with undefined, a local copy again allows for more aggressive minification.
Sidenote:
Though this may not have been the intention of the jQuery developers, passing in window allows the library to be more easily integrated in server-side Javascript environments, for example node.js - where there is no global window object. In such a situation, only one line needs to be changed to replace the window object with another one. In the case of jQuery, a mock window object can be created and passed in for the purpose of HTML scraping (a library such as jsdom can do this).
Others have explained undefined. undefined is like a global variable that can be redefined to any value. This technique is to prevent all undefined checks from breaking if someone wrote say, undefined = 10 somewhere. An argument that is never passed is guaranteed to be real undefined irrespective of the value of the variable undefined.
The reason to pass window can be illustrated with the following example.
(function() {
console.log(window);
...
...
...
var window = 10;
})();
What does the console log? The value of window object right? Wrong! 10? Wrong! It logs undefined. Javascript interpreter (or JIT compiler) rewrites it this way -
(function() {
var window; //and every other var in this function
console.log(window);
...
...
...
window = 10;
})();
However, if you get the window variable as an argument, there is no var and hence no surprises.
I don't know if jQuery is doing it, but if you are redefining window local variable anywhere in your function for whatever reason, it is a good idea to borrow it from global scope.
window is passed in like that just in case someone decides to redefine the window object in IE, I assume the same for undefined, in case it's re-assigned in some way later.
The top window in that script is just naming the argument "window", an argument that's more local that the global window reference and it what the code inside this closure will use. The window at the end is actually specifying what to pass for the first argument, in this case the current meaning of window...the hope is you haven't screwed up window before that happens.
This may be easier to think of by showing the most typical case used in jQuery, plugin .noConflict() handling, so for the majority of code you can still use $, even if it means something other than jQuery outside this scope:
(function($) {
//inside here, $ == jQuery, it was passed as the first argument
})(jQuery);
Tested with 1000000 iterations. This kind of localization had no effect in performance. Not even a single millisecond in 1000000 iterations. This is simply useless.

alternate defining method in javascript [duplicate]

This question already has answers here:
What does "options = options || {}" mean in Javascript? [duplicate]
(5 answers)
Closed 8 years ago.
When should I use such syntax to define a function in JavaScript
myfunc = myfunc ||
function(n){
return this.length;
};
instead of
myfunc =
function(n){
return this.length;
};
In above case this is being checked if myfunc is not defined, then define that as a function.
So when you are not sure that the myfunc is already defined you will check if it's undefined define a function.
Basically, when you don't want to override the previous declaration of the function.
For instance, imagine that you have a function A(), which performs a set of actions and it's declared in another library. Maybe you need to use only a small part of it, so you can use the previous syntax to redeclare the function.
It's not a consistent way to program, and it will make the code hard to debug, but it's doable.
As other posters have pointed out, you can use the first expression when you want to define a function which may or may not have been previously defined. It's not a good way to do it though, because the construct does not tell you whether the tested object is a function, and if it is, whether it is the one you're expecting (it could be the result of collapsing libraries).
More generally, the whole redefinition approach should be limited to framework authors, and even with that I'd be quite suspicious of any redefinition, because that would indicate that someone, somewhere, has allowed for either namespace pollution or sloppy dependency management.
I have myself redefined existing functions in some of my past scripts, but these occurrences were all about optimization in a controlled environment, when the initial function determines an execution branch for the current user agent, and redefines itself so that further calls avoid any redundant initialization code.

Local Variables and GC

I'm trying to wrap my head around private variables in Javascript, temporary variables, and the GC. However, I can't quite figure out what would happen in the following situation:
MyClass = function() {
this.myProp = new createjs.Shape();
var tempVar = this.myProp.graphics;
tempVar.rect(0, 0, 10, 100);
tempVar = null;
var isDisposed = false;
this.dispose = function() {
if (isDisposed) return;
isDisposed = true;
}
}
var anInstance = new myClass();
My intention was to have isDisposed represent a private status variable, and tempVar be a use-and-throw variable.
Would tempVar get marked for GC? Would isDisposed be marked for GC too? How is the GC to know when I'm trying to declare a temporary variable meant for disposal, and when I'm trying to have a private variable within the object?
I tried to test the following in Chrome, and it seems as if tempVar never gets GC-ed as long as an instance of myClass exists. So I'm not sure what to believe now. I am incredulous that every single local variable that I create for temporary usage will exist in scope for the lifetime of the object.
Javascript does not have strongly typed objects. By setting tempVar to null, you're not declaring that you don't want to use it any more or marking it for collection as in Java or C#, you're merely assigning it a (perfectly valid) value. It's a trap to begin thinking that just because you made tempVar an "instance" of an object, that the variable is in fact an object and can be treated as such for its whole lifetime.
Basically, variables are just variables in Javascript. They can contain anything. It's like VB or VBScript in that regard. Scalars do undergo boxing in many cases (as in 'a|c'.split('|') making the string into a String) but for the most part, forget that. Functions are first-class objects meaning you can assign them to variables, return them from functions, pass them as parameters, and so on.
Now, to actually destroy something in Javascript, you either remove all references to it (as in the case of an object) or, in the case of an object's properties, you can remove them like this:
delete obj.propertyname;
// or //
delete obj[varContainingPropertyName];
To expand on that point, the following two code snippets achieve identical results:
function abc() {window.alert('blah');}
var abc = function() {window.alert('blah');}
Both create a local variable called abc that happens to be a function. The first one can be thought of as a shortcut for the second one.
However, according to this excellent article on deleting that you brought to my attention, you cannot delete local variables (including functions, which are really also local variables). There are exceptions (if the variable was created using eval, or it is in Global scope and you're not using IE <= 8, or you ARE using IE <= 8 and the variable was created in Global scope implicitly as in x = 1 which is technically a huge bug), so read the article for full details on delete, please.
Another key thing that may be of use to you is to know that in Javascript only functions have scope (and the window in browser implementations or whatever the global scope is in other implementations). Non-function objects and code blocks enclosed in { } do not have scope (and I say it this way since the prototype of Function is Object, so functions are objects too, but special ones). This means that, for example, considering the following code:
function doSomething(x) {
if (x > 0) {
var y = 1;
}
return y;
}
This will return 1 when executed with x > 0 because the scope of variable y is the function, not the block. So in fact it's wrong and misleading to put the var declaration in the block since it is in effect (though perhaps not true practice) hoisted to the function scope.
You should read up on closures in javascript (I cannot vouch for the quality of that link). Doing so will probably help. Any time a variable's function scope is maintained anywhere, then all the function's private variables are also. The best you can do is set them to undefined (which is more "nothing" than "null" is in Javascript) which will release any object references they have, but will not truly deallocate the variable to make it available for GC.
As for general GCing gotchas, be aware that if a function has a closure over a DOM element, and a DOM element somewhere also references that function, neither will be GCed until the page is unloaded or you break the circular reference. In some--or all?--versions of IE, such a circular reference will cause a memory leak and it will never be GCed until the browser is closed.
To try to answer your questions more directly:
tempVar will not be marked for GC until the function it is part of has all references released, because it is a local variable, and local variables in Javascript cannot be deleted.
isDisposed has the same qualities as tempVar.
There is no distinction in Javascript for "temporary variables meant for disposal". In newer versions of ECMAScript, there are actual getters and setters available, to define public (or private?) properties of a function.
A browser's console may provide you with misleading results, as discussed in the article on deleting with Firefox.
It's true, as incredible as it may be, that in Javascript, so long as a variable exists within a closure, that variable remains instantiated. This is not normally a problem, and I have not experienced browsers truly running out of memory due to tiny variables lying around un-garbage-collected. Set a variable to undefined when done with it, and be at ease--I sincerely doubt you will ever experience a problem. If you are concerned, then declare a local object var tmpObj = {tempVar: 'something'}; and when done with it you can issue a delete tmpObj.tempVar;. But in my opinion this will needlessly clutter your code.
Basically, my suggestion is to understand that in coming from other programming languages, you have preconceived notions about how a programming language ought to work. Some of those notions may have validity in terms of the ideal programming language. However, it is probably best if you relinquish those notions and just embrace, at least for now, how Javascript actually works. Until you are truly experienced enough to confidently violate the advice of those who have gone before you (such as I) then you're at greater risk of introducing harmful anti-patterns into your Javascript code than you are likely to be correcting any serious deficit in the language. Not having to Dispose() stuff could be really good news--it's this nasty pervasive task that Javascript simply doesn't require from you, so you can spend more time writing functionality and less time managing the lifetime of variables. Win!
I hope you take my words as kindly as they are meant. I don't by any means consider myself a Javascript expert--just that I have some experience and a solid competence in understanding how to use it and what the pitfalls are.
Thanks for listening!

Benefit of using 'window' prefix in javascript

Are there any benefits to using the 'window' prefix when calling javascript variables or methods in the window object? For example, would calling 'window.alert' have an advantage over simply calling 'alert'?
I can imagine using the prefix could give a small performance boost when the call is made from inside some function/object, however I rarely see this in people's code. Henceforth this question.
This is useful when attempting to test global object values. For example, if GlobalObject is not defined then this throws an error:
if(GlobalObject) { // <- error on this line if not defined
var obj = new GlobalObject();
}
but this does not throw an error:
if(window.GlobalObject) { // Yay! No error!
var obj = new GlobalObject();
}
Similarly with:
if(globalValue == 'something') // <- error on this line if not defined
if(window.globalValue == 'something') // Hurrah!
and:
if(globalObj instanceof SomeObject) // <- error on this line if not defined
if(window.globalObj instanceof SomeObject) // Yippee! window.prop FTW!
I would not expect to see a significant performance difference, and the only other reason you might do this is to ensure that you are actually getting a value from the global scope (in case the value has been redefined in the current scope).
I doubt there is any measurable performance benefit. After all the scope chain would be scanned for the identifier window first then the window object would be scanned for the desired item. Hence more likely it would be deterimental to performance.
Using window prefix is useful if you have another variable in scope that would hide the item you may want to retrieve from the window. The question is can you always know when this might be? The answer is no. So should you always prefix with window? What would you code look like if you did that. Ugly. Hence don't do it unless you know you need to.
Retrieved from Google (http://www.techotopia.com/index.php/JavaScript_Window_Object):
The window object is the top-level object of the object hierarchy. As such, whenever an object method or property is referenced in a script without the object name and dot prefix it is assumed by JavaScript to be a member of the window object. This means, for example, that when calling the window alert() method to display an alert dialog the window. prefix is not mandatory. Therefore the following method calls achieve the same thing:
window.alert()
alert()
However, I read but have not had time to test the following from:
(http://www.javascriptref.com/reference/object.cfm?key=20)
One place you'll need to be careful, though, is in event handlers. Because event handlers are bound to the Document, a Document property with the same name as a Window property (for example, open) will mask out the Window property. For this reason, you should always use the full "window." syntax when addressing Window properties in event handlers.
As far as performance, I think AnthonyWJones has it covered.
One use of the window prefix is to explicitly make something available outside the current scope. If you were writing code in a self-invoking function to avoid polluting the global scope, but there was something within that you did want to make globally available, you might do something like the following:
(function(){
function foo(){
//not globally available
}
function bar(){
//not globally available
}
window.baz = function(){
//is globally available
foo();
bar();
};
})();
I imagine that the performance benefit here is amazingly insignificant at best, if there is one at all.
It only matters if you're using frames and doing a bunch of javascript calls across frames, and even then only specific scenarios warrant the necessity of referencing window explicitly.
When you use the prefix, you're making it explicit you're using the "global" definition of the variable, not a local one. (I'm not sure whether / how you can inject variables into a scope in JS, except the weirdness with this and inline event handlers.) YMMV, you may either prefer the clarity, or find it to be just clutter.

Categories