The problem is currently solved. In case some one wants to see the colored fractal, the code is here.
Here is the previous problem:
Nonetheless the algorithm is straight forward, I seems to have a small error (some fractals are drawing correctly and some are not). You can quickly check it in jsFiddle that c = -1, 1/4 the fractal is drawing correctly but if I will take c = i; the image is totally wrong.
Here is implementation.
HTML
<canvas id="a" width="400" height="400"></canvas>
JS
function point(pos, canvas){
canvas.fillRect(pos[0], pos[1], 1, 1); // there is no drawpoint in JS, so I simulate it
}
function conversion(x, y, width, R){ // transformation from canvas coordinates to XY plane
var m = R / width;
var x1 = m * (2 * x - width);
var y2 = m * (width - 2 * y);
return [x1, y2];
}
function f(z, c){ // calculate the value of the function with complex arguments.
return [z[0]*z[0] - z[1] * z[1] + c[0], 2 * z[0] * z[1] + c[1]];
}
function abs(z){ // absolute value of a complex number
return Math.sqrt(z[0]*z[0] + z[1]*z[1]);
}
function init(){
var length = 400,
width = 400,
c = [-1, 0], // all complex number are in the form of [x, y] which means x + i*y
maxIterate = 100,
R = (1 + Math.sqrt(1+4*abs(c))) / 2,
z;
var canvas = document.getElementById('a').getContext("2d");
var flag;
for (var x = 0; x < width; x++){
for (var y = 0; y < length; y++){ // for every point in the canvas plane
flag = true;
z = conversion(x, y, width, R); // convert it to XY plane
for (var i = 0; i < maxIterate; i++){ // I know I can change it to while and remove this flag.
z = f(z, c);
if (abs(z) > R){ // if during every one of the iterations we have value bigger then R, do not draw this point.
flag = false;
break;
}
}
// if the
if (flag) point([x, y], canvas);
}
}
}
Also it took me few minutes to write it, I spent much more time trying to find why does not it work for all the cases. Any idea where I screwed up?
Good news! (or bad news)
You're implementation is completely. correct. Unfortunately, with c = [0, 1], the Julia set has very few points. I believe it is measure zero (unlike say, the Mandelbrot set). So the probability of a random point being in that Julia set is 0.
If you reduce your iterations to 15 (JSFiddle), you can see the fractal. One hundred iterations is more "accurate", but as the number of iterations increase, the chance that a point on your 400 x 400 grid will be included in your fractal approximation decreases to zero.
Often, you will see the Julia fractal will multiple colors, where the color indicates how quickly it diverges (or does not diverge at all), like in this Flash demonstration. This allows the Julia fractal to be somewhat visible even in cases like c = i.
Your choices are
(1) Reduce your # of iterations, possibly depending on c.
(2) Increase the size of your sampling (and your canvas), possibly depending on c.
(3) Color the points of your canvas according to the iteration # at which R was exceeded.
The last option will give you the most robust result.
Related
I have a polar graph (see image) with 120 different points. I want to make it so if the user clicks or hovers on one of the points, the coordinate of that point is displayed. I have an array called pointCoordinates that stores each canvas coordinate of each points like this:
[[x1, y1], [x2, y2] ... [x120, y120]]
This is how I am capturing mouse coordinates (which I might later change to click):
document.onmousemove = function(e) {
var x = e.clientX;
var y = e.clientY;
}
I was originally planning to use a formula to check if the mouse is in a certain region (using the distance formula) or simplifying it all into a circle. Either way, this will require me to have 120 different if statements to check for this. I feel like this is inefficient and probably slow. Are there other methods for doing this?
Edit:
To provide more information, these points will NOT be draggable. I am planning to display something like a tooltip near the point that was clicked where the polar coordinates of the point will be shown.
Edit 2:
After using the code posted below and drawing a rectangle in the "clickable" spot on the map, I get this image. I do not want the click detection to be perfect, but this is pretty far off after pi/3. Any ideas how to fix this? I used this code to generate the black spots:
for(var x = 0; x < WIDTH*2/3; x++){
for(var y = 0; y < HEIGHT; y++){
var mp = realToPolar(x, y);//converts canvas x and y into polar
if(checkRadialDistance(mp[0], mp[1])){ //returns true if in bounds
ctx.fillRect(x, y, 1, 1);
}
}
}
Playing around with the constants still generates the same pattern, just of different thicknesses. checkRadialDistance is just the renamed checkr function that inside calls checkrt.
JSBIN Keep in mind, width of screen has to be greater than height for this to work properly.
The image generated by mt-rt. I later made a minor edit, so that whole circle is covered when theta = 0.
EDIT: My (accepted) answer was bad. This corrects it:
This assumes r to be 1 to 5. Convert mouse cartesian mx,my to polar mr,mt. First check if mr is close to 1 of the 5 radii. Function checkr does that. If it is close, then check if mt is close to 1 of the 24 thetas. Function checkt does that. A complication is that the atan2 function is not continuous at pi radians which is where points are at, so make the discontinuity at -pi/24 radians where there are no points.
A "close" value is pi/24 since the arc distance between two adjacent points at r=1 will be pi/12.
var del = 1*Math.PI/24*.7; // for example
function xy2rt(xy) { // to polar cordinates
var rt = [];
rt.push(Math.sqrt(xy[0]*xy[0]+xy[1]*xy[1])); // r
var zatan = Math.atan2(xy[1], xy[0]);
// make the discontinuity at -pi/24
if (zatan < -Math.PI/24) zatan += 2*Math.PI;
rt.push(zatan); // theta
return rt;
}
function checkr() { // check radial distance
for (var pr=1; pr<=5; pr+=1) { // 5 radii
if (Math.abs(mr-pr) < del) { checkt(pr); break; }
}
}
function checkt(pr) { // check theta
var pt;
for (var ipt=0; ipt<24; ipt+=1) { // 24 thetas
pt = ipt / 24 * 2 * Math.PI;
if (Math.abs(mt-pt) < del/pr) {
// is close -- do whatever
break;
}
}
}
My problem was when checking the arc distance, I was using mr and pr whereas only pr should be used. The OP found my error by processing every pixel on the canvas and found there was a problem. I also processed every pixel and this image shows the routines to be correct now. The black is where the routines determine that the pixel is close to one of the 120 points.
EDIT: Faster processing
There are a lot of Math.* functions being executed. Although I haven't timed anything, I think this has to be much faster.
1) The x,y coordintates of the 120 points are stored in arrays.
2) Instead of getting polar mr, mt, pr, and pt, use vector processing.
Here is the derivation of arcd, the arc distance using vectors.
sint = sin(theta) = (M cross P)/mr/pr (cross product Mouse X Point)
cost = cos(theta) = (M dot P)/mr/pr (dot product Mouse . Point)
sint will be used to get arc distance, but sint goes to zero at theta=+-pi as well as theta=0, so:
mdotp will be used to determine if theta is near zero and not +-pi
arcd = pr*theta
arcd = pr*sin(theta) (good approximation for small theta)
arcd = pr*abs(M cross P)/mr/mp (from above)
if ardd < del, check if mdotp > 0.
Here are the load-xy-arrays and the new checkr and checkt routines.
apx=[], apy=[]; // the saved x,y of the 120 points
function loadapxapy() { // load arrays of px, py
var itheta, theta
for (var pr=1; pr<=5; pr+=1) { // 2-dimension arrays
apx[pr] = []; apy[pr] = []; // 5 arrays, 1 for each pr
for (itheta=0; itheta<24; itheta+=1) { // 24 x's and y's
theta = Math.PI*itheta/12;
apx[pr][itheta] = pr*Math.cos(theta);
apy[pr][itheta] = pr*Math.sin(theta);
}
}
}
function checkr() { // check radial distance
var mr = Math.sqrt(mx*mx+my*my); // mouse r
for (var pr=1; pr<=5; pr+=1) { // check 1 to 5
if (Math.abs(mr-pr) < del) { // mouser - pointr
checkt(mr, pr); // if close, check thetas
}
}
}
function checkt(mr, pr) { // check thetas
var px, py, sint, mdotp, arcd;
for (var itheta=0; itheta<24; itheta+=1) { // check 24
px = apx[pr][itheta]; // get saved x
py = apy[pr][itheta]; // and y
// This arcd is derived from vector processing
// At least this doesn't use the accursed "atan"!
sint = Math.abs(mx*py-my*px)/mr/pr; // sine
arcd = pr*sint; // arc distance
if (arcd<del) { // arc distance check
mdotp = (mx*px+my*py); // final check
if (mdotp > 0) { // to see if theta is near zero and not +-pi
setpixelxy([mx, my]); // or whatever..
}
}
}
}
If I had an array of numbers such as [3, 5, 0, 8, 4, 2, 6], is there a way to “smooth out” the values so they’re closer to each other and display less variance?
I’ve looked into windowing the data using something called the Gaussian function for a 1-dimensional case, which is my array, but am having trouble implementing it. This thread seems to solve exactly what I need but I don’t understand how user naschilling (second post) came up with the Gaussian matrix values.
Context: I’m working on a music waveform generator (borrowing from SoundCloud’s design) that maps the amplitude of the song at time t to a corresponding bar height. Unfortunately there’s a lot of noise, and it looks particularly ugly when the program maps a tiny amplitude which results in a sudden decrease in height. I basically want to smooth out the bar heights so they aren’t so varied.
The language I'm using is Javascript.
EDIT: Sorry, let me be more specific about "smoothing out" the values. According to the thread linked above, a user took an array
[10.00, 13.00, 7.00, 11.00, 12.00, 9.00, 6.00, 5.00]
and used a Gaussian function to map it to
[ 8.35, 9.35, 8.59, 8.98, 9.63, 7.94, 5.78, 7.32]
Notice how the numbers are much closer to each other.
EDIT 2: It worked! Thanks to user Awal Garg's algorithm, here are the results:
No smoothing
Some smoothing
Maximum smoothing
EDIT 3: Here's my final code in JS. I tweaked it so that the first and last elements of the array were able to find its neighbors by wrapping around the array, rather than calling itself.
var array = [10, 13, 7, 11, 12, 9, 6, 5];
function smooth(values, alpha) {
var weighted = average(values) * alpha;
var smoothed = [];
for (var i in values) {
var curr = values[i];
var prev = smoothed[i - 1] || values[values.length - 1];
var next = curr || values[0];
var improved = Number(this.average([weighted, prev, curr, next]).toFixed(2));
smoothed.push(improved);
}
return smoothed;
}
function average(data) {
var sum = data.reduce(function(sum, value) {
return sum + value;
}, 0);
var avg = sum / data.length;
return avg;
}
smooth(array, 0.85);
Interesting question!
The algorithm to smooth out the values obviously could vary a lot, but here is my take:
"use strict";
var array = [10, 13, 7, 11, 12, 9, 6, 5];
function avg (v) {
return v.reduce((a,b) => a+b, 0)/v.length;
}
function smoothOut (vector, variance) {
var t_avg = avg(vector)*variance;
var ret = Array(vector.length);
for (var i = 0; i < vector.length; i++) {
(function () {
var prev = i>0 ? ret[i-1] : vector[i];
var next = i<vector.length ? vector[i] : vector[i-1];
ret[i] = avg([t_avg, avg([prev, vector[i], next])]);
})();
}
return ret;
}
function display (x, y) {
console.clear();
console.assert(x.length === y.length);
x.forEach((el, i) => console.log(`${el}\t\t${y[i]}`));
}
display(array, smoothOut(array, 0.85));
NOTE: It uses some ES6 features like fat-arrow functions and template strings. Firefox 35+ and Chrome 45+ should work fine. Please use the babel repl otherwise.
My method basically computes the average of all the elements in the array in advance, and uses that as a major factor to compute the new value along with the current element value, the one prior to it, and the one after it. I am also using the prior value as the one newly computed and not the one from the original array. Feel free to experiment and modify according to your needs. You can also pass in a "variance" parameter to control the difference between the elements. Lowering it will bring the elements much closer to each other since it decreases the value of the average.
A slight variation to loosen out the smoothing would be this:
"use strict";
var array = [10, 13, 7, 11, 12, 9, 6, 5];
function avg (v) {
return v.reduce((a,b) => a+b, 0)/v.length;
}
function smoothOut (vector, variance) {
var t_avg = avg(vector)*variance;
var ret = Array(vector.length);
for (var i = 0; i < vector.length; i++) {
(function () {
var prev = i>0 ? ret[i-1] : vector[i];
var next = i<vector.length ? vector[i] : vector[i-1];
ret[i] = avg([t_avg, prev, vector[i], next]);
})();
}
return ret;
}
function display (x, y) {
console.clear();
console.assert(x.length === y.length);
x.forEach((el, i) => console.log(`${el}\t\t${y[i]}`));
}
display(array, smoothOut(array, 0.85));
which doesn't take the averaged value as a major factor.
Feel free to experiment, hope that helps!
The technique you describe sounds like a 1D version of a Gaussian blur. Multiply the values of the 1D Gaussian array times the given window within the array and sum the result. For example
Assuming a Gaussian array {.242, .399, .242}
To calculate the new value at position n of the input array - multiply the values at n-1, n, and n+1 of the input array by those in (1) and sum the result. eg for [3, 5, 0, 8, 4, 2, 6], n = 1:
n1 = 0.242 * 3 + 0.399 * 5 + 0.242 * 0 = 2.721
You can alter the variance of the Gaussian to increase or reduce the affect of the blur.
i stumbled upon this post having the same problem with trying to achieve smooth circular waves from fft averages.
i've tried normalizing, smoothing and wildest math to spread the dynamic of an array of averages between 0 and 1. it is of course possible but the sharp increases in averaged values remain a bother that basically makes these values unfeasable for direct display.
instead i use the fft average to increase amplitude, frequency and wavelength of a separately structured clean sine.
imagine a sine curve across the screen that moves right to left at a given speed(frequency) times the current average and has an amplitude of current average times whatever will then be mapped to 0,1 in order to eventually determine 'the wave's' z.
the function for calculating size, color, shift of elements or whatever visualizes 'the wave' will have to be based on distance from center and some array that holds values for each distance, e.g. a certain number of average values.
that very same array can instead be fed with values from a sine - that is influenced by the fft averages - which themselves thus need no smoothing and can remain unaltered.
the effect is pleasingly clean sine waves appearing to be driven by the 'energy' of the sound.
like this - where 'rings' is an array that a distance function uses to read 'z' values of 'the wave's x,y positions.
const wave = {
y: height / 2,
length: 0.02,
amplitude: 30,
frequency: 0.5
}
//var increment = wave.frequency;
var increment = 0;
function sinewave(length,amplitude,frequency) {
ctx.strokeStyle = 'red';
ctx.beginPath();
ctx.moveTo(0, height / 2);
for (let i = 0; i < width; i+=cellSize) {
//ctx.lineTo(i, wave.y + Math.sin(i * wave.length + increment) * wave.amplitude)
ctx.lineTo(i, wave.y + Math.sin(i * length + increment) * amplitude);
rings.push( map( Math.sin(i * length + increment) * amplitude,0,20,0.1,1) );
rings.shift();
}
ctx.stroke();
increment += frequency;
}
the function is called each frame (from draw) with the current average fft value driving the sine function like this - assuming that value is mapped to 0,1:
sinewave(0.006,averg*20,averg*0.3)
allowing fluctuating values to determine wavelength or frequency can have some visually appealing effect. however, the movement of 'the wave' will never seem natural.
i've accomplished a near enough result in my case.
for making the sine appear to be driven by each 'beat' you'd need beat detection to determine the exact tempo of 'the sound' that 'the wave' is supposed to visualize.
continuous averaging of distance between larger peaks in the lower range of fft spectrum might work there with setting a semi fixed frequency - with edm...
i know, the question was about smoothing array values.
forgive me for changing the subject. i just thought that the objective 'sound wave' is an interesting one that could be achieved differently.
and just so this is complete here's a bit that simply draws circles for each fft and assign colour according to volume.
with linewidths relative to total radius and sum of volumes this is quite nice:
//col generator
function getCol(n,m,f){
var a = (PIx5*n)/(3*m) + PIdiv2;
var r = map(sin(a),-1,1,0,255);
var g = map(sin(a - PIx2/3),-1,1,0,255);
var b = map(sin(a - PIx4/3),-1,1,0,255);
return ("rgba(" + r + "," + g + "," + b + "," + f + ")");
}
//draw circles for each fft with linewidth and colour relative to value
function drawCircles(arr){
var nC = 20; //number of elem from array we want to use
var cAv = 0;
var cAvsum = 0;
//get the sum of all values so we can map a single value with regard to this
for(var i = 0; i< nC; i++){
cAvsum += arr[i];
}
cAv = cAvsum/nC;
var lastwidth = 0;
//draw a circle for each elem from array
//compute linewith a fraction of width relative to value of elem vs. sum of elems
for(var i = 0; i< nC; i++){
ctx.beginPath();
var radius = lastwidth;//map(arr[i]*2,0,255,0,i*300);
//use a small col generator to assign col - map value to spectrum
ctx.strokeStyle = getCol(map(arr[i],0,255,0,1280),1280,0.05);
//map elem value as fraction of elem sum to linewidth/total width of outer circle
ctx.lineWidth = map(arr[i],0,cAvsum,0,width);
//draw
ctx.arc(centerX, centerY, radius, 0, Math.PI*2, false);
ctx.stroke();
//add current radius and linewidth to lastwidth
var lastwidth = radius + ctx.lineWidth/2;
}
}
codepen here: https://codepen.io/sumoclub/full/QWBwzaZ
always happy about suggestions.
Given an array of circles (x,y,r values), I want to place a new point, such that it has a fixed/known Y-coordinate (shown as the horizontal line), and is as close as possible to the center BUT not within any of the existing circles. In the example images, the point in red would be the result.
Circles have a known radius and Y-axis attribute, so easy to calculate the points where they intersect the horizontal line at the known Y value. Efficiency is important, I don't want to have to try a bunch of X coords and test them all against each item in the circles array. Is there a way to work out this optimal X coordinate mathematically? Any help greatly appreciated. By the way, I'm writing it in javascript using the Raphael.js library (because its the only one that supports IE8) - but this is more of a logic problem so the language doesn't really matter.
I'd approach your problem as follows:
Initialize a set of intervals S, sorted by the X coordinate of the interval, to the empty set
For each circle c, calculate the interval of intersection Ic of c with with the X axis. If c does not intersect, go on to the next circle. Otherwise, test whether Ic overlaps with any interval(s) in S (this is quick because S is sorted); if so, remove all intersecting intervals from S, collapse Ic and all removed intervals into a new interval I'c and add I'c to S. If there are no intersections, add Ic to S.
Check whether any interval in S includes the center (again, fast because S is sorted). If so, select the interval endpoint closest to the center; if not, select the center as the closest point.
Basically the equation of a circle is (x - cx)2 + (y - cy)2 = r2. Therefore you can easily find the intersection points between the circle and X axis by substituting y with 0. After that you just have a simple quadratic equation to solve: x2 - 2cxx + cx2 + cy2 - r2 = 0 . For it you have 3 possible outcomes:
No intersection - the determinant will be irrational number (NaN in JavaScript), ignore this result;
One intersection - both solutions match, use [value, value];
Two intersections - both solutions are different, use [value1, value2].
Sort the newly calculated intersection intervals, than try merge them where it is possible. However take in mind that in every program language there approximation, therefore you need to define delta value for your dot approximation and take it into consideration when merging the intervals.
When the intervals are merged you can generate your x coordinates by subtracting/adding the same delta value to the beginning/end of every interval. And lastly from all points, the one closest to zero is your answer.
Here is an example with O(n log n) complexity that is oriented rather towards readability. I've used 1*10-10 for delta :
var circles = [
{x:0, y:0, r:1},
{x:2.5, y:0, r:1},
{x:-1, y:0.5, r:1},
{x:2, y:-0.5, r:1},
{x:-2, y:0, r:1},
{x:10, y:10, r:1}
];
console.log(getClosestPoint(circles, 1e-10));
function getClosestPoint(circles, delta)
{
var intervals = [],
len = circles.length,
i, result;
for (i = 0; i < len; i++)
{
result = getXIntersection(circles[i])
if (result)
{
intervals.push(result);
}
}
intervals = intervals.sort(function(a, b){
return a.from - b.from;
});
if (intervals.length <= 0) return 0;
intervals = mergeIntervals(intervals, delta);
var points = getClosestPoints(intervals, delta);
points = points.sort(function(a, b){
return Math.abs(a) - Math.abs(b);
});
return points[0];
}
function getXIntersection(circle)
{
var d = Math.sqrt(circle.r * circle.r - circle.y * circle.y);
return isNaN(d) ? null : {from: circle.x - d, to: circle.x + d};
}
function mergeIntervals(intervals, delta)
{
var curr = intervals[0],
result = [],
len = intervals.length, i;
for (i = 1 ; i < len ; i++)
{
if (intervals[i].from <= curr.to + delta)
{
curr.to = Math.max(curr.to, intervals[i].to);
} else {
result.push(curr);
curr = intervals[i];
}
}
result.push(curr);
return result;
}
function getClosestPoints(intervals, delta)
{
var result = [],
len = intervals.length, i;
for (i = 0 ; i < len ; i++)
{
result.push( intervals[i].from - delta );
result.push( intervals[i].to + delta );
}
return result;
}
create the intersect_segments array (normalizing at x=0 y=0)
sort intersectsegments by upperlimit and remove those with upperlimit<0
initialize point1 = 0 and segment = 0
loop while point1 is inside intersectsegment[segment]
4.1. increment point1 by uppper limit of intersectsegment[segment]
4.2. increment segment
sort intersectsegments by lowerlimit and remove those with loerlimit>0
initialize point2 = 0 and segment = 0
loop while point2 is inside intersectsegments[segment]
7.1. decrement point2 by lower limit of segment
7.2. decrement segment
the point is minimum absolute value of p1 and p2
It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 9 years ago.
Did you ever played the "Tank wars" game?
I'm programming this game with JavaScript + Canvas (for a personal challenge), and what I need is an algorithm for generating that random green land every time I start the game, but I'm not too good at maths, so I can't do it myself.
I don't want someone to give me the code, I only want the idea for the algorithm.
Thanks!
(9 segments)
Fiddle demo
(7 segments)
The main generation function look like this:
var numOfSegments = 9; // split horizontal space
var segment = canvas.width / numOfSegments; // calc width of each segment
var points = [], calcedPoints;
var variations = 0.22; // adjust this: lower = less variations
var i;
//produce some random heights across the canvas
for(i=0; i < numOfSegments + 1; i++) {
points.push(segment * i);
points.push(canvas.height / 2.8 + canvas.height * variations * Math.random());
}
//render the landscape
ctx.beginPath();
ctx.moveTo(canvas.width, canvas.height);
ctx.lineTo(0, canvas.height);
calcedPoints = ctx.curve(points); // see below
ctx.closePath();
ctx.fillStyle = 'green';
ctx.fill();
The curve() function is a separate function which generate a cardinal spline. In here you can modify it to also store tension values to make more spikes. You can also used the generated points as a basis for where and at what angle the tanks will move at.
The function for cardinal spline:
CanvasRenderingContext2D.prototype.curve = function(pts, tension, numOfSegments) {
tension = (tension != 'undefined') ? tension : 0.5;
numOfSegments = numOfSegments ? numOfSegments : 16;
var _pts = [], res = [], t, i, l, r = 0,
x, y, t1x, t2x, t1y, t2y,
c1, c2, c3, c4, st, st2, st3, st23, st32;
_pts = pts.concat();
_pts.unshift(pts[1]);
_pts.unshift(pts[0]);
_pts.push(pts[pts.length - 2]);
_pts.push(pts[pts.length - 1]);
l = (_pts.length - 4);
for (i = 2; i < l; i+=2) {
//overrides and modifies tension for each segment.
tension = 1 * Math.random() - 0.3;
for (t = 0; t <= numOfSegments; t++) {
t1x = (_pts[i+2] - _pts[i-2]) * tension;
t2x = (_pts[i+4] - _pts[i]) * tension;
t1y = (_pts[i+3] - _pts[i-1]) * tension;
t2y = (_pts[i+5] - _pts[i+1]) * tension;
st = t / numOfSegments;
st2 = st * st;
st3 = st2 * st;
st23 = st3 * 2;
st32 = st2 * 3;
c1 = st23 - st32 + 1;
c2 = -(st23) + st32;
c3 = st3 - 2 * st2 + st;
c4 = st3 - st2;
x = c1 * _pts[i] + c2 * _pts[i+2] + c3 * t1x + c4 * t2x;
y = c1 * _pts[i+1] + c2 * _pts[i+3] + c3 * t1y + c4 * t2y;
res[r++] = x;
res[r++] = y;
} //for t
} //for i
l = res.length;
for(i=0;i<l;i+=2) this.lineTo(res[i], res[i+1]);
return res; //return calculated points
}
Look into perlin noise generation, this in combination with a good smoothing algorithm can produce some pretty good terrain, and is fairly quick. There is a reference version of the code kicking around the net somewhere, which should provide you with a fairly hefty headstart
First you need a point that is random y (between 55,65); got x=0
So this is the origin point for the green, lets keep it as x1,y1 (x1 always 0).
Then you need a random integer between 30 to 40. This is x2. And a random y which is in the range y1 + 8 to y1 + 20.
Then x3 and y3 on same principle (lets call it formula type 1)
Now you need to first get a random either -1 or 1, this will be directions of y4. So y4 can go higher than y3 or lower ... this will be formula type 2.
You need to keep a max and min y for a new y, if it crosses that then go the other way -> this will be a correction type formula 3.
Xn keeps increasing till its >= width of board.
Join the lines in a eclipses ... and looks like web searches is the way to go !
I am sure there are a lot of coded libraries that you could use to make this easy. But if you are trying to code this by yourself, here is my idea.
You need to define terrain from everything else. So every part of your environment is a cluster for example. You need to define how are separated these clusters, by nodes(points) for example.
You can create a polygon from a sequence of points, and this polygon can become whatever you want, in this case terrain.
See that on the image you passed, there are peaks, those are the nodes (points). Remember to define also nodes on the borders of your environment.
There are surely a novel, written algorithms, either fractal as #DesertIvy pointed out or others, maybe there are libraries as well, but if you want toi generate what is in the image, it can be pretty straightforward, since it is just (slightly curved) lines between points. If you do it in phases, not trying to be correct at once, it is easy:
Split x region of your game screen into sections (with some minimal and maximal width) using random (you may be slightly off in last section, but it does not matter as much, I think). Remember the x-es where sections meet (including the ones at game screen border)
Prepare some data structure to include y-s as well, on previously remembered x-s. Start with leftmost.y = 0, slope = Math.random()-0.5;.
Generate each next undefined y beginning with 1: right.y = left.y + slope * (right.x-left.x); as well as update slope after each y: slope += Math.random()-0.5;. Do not bother, for the moment, if it all fits into game screen.
If you want arcs, you can generate "curviness" parameter for each section randomly which represent how much the middle of the line is bumped compared to straight lines.
Fit the ys into the game screen: first find maximal and minimal generated y (mingeny, maxgeny) (you can track this while generating in point 4). Choose where the max and min y in game screen (minscry, maxscry) (say at the top fourth and at the bottom fourth). Then transform generated ys so that it spans between minscry and maxscry: for every point, do apoint.y = minscry + (maxscry-minscry)/(maxgeny-mingeny)*(apoint.y-mingeny).
Now use lines between [x,y] points as a terrain, if you want to use "curviness", than add curvemodifier to y for any particular x in a section between leftx and rightx. The arc need not to be a circle: I would suggest a parabola or cosine which are easy to produce: var middle = (left.x+right.x)/2; var excess = (x-left)/(middle-left); and then either var curvemodifier = curviness * (1-excess*excess); or var curvemodifier = curviness * Math.cos(Math.PI/2*excess).
Wow...At one point I was totally addicted to tank wars.
Since you are on a learning adventure...
You might also learn about the context.globalCompositeOperation.
This canvas operation will let you grab an image of actual grass and composite it into your game.
You can randomize the grass appearance by changing the x/y of your drawImage();
Yes, the actual grass would probably be too distracting to include in your finished game, but learning about compositing would be valuable knowledge to have.
...and +1 for the question: Good for you in challenging yourself !
I have a "bubble generator" that is mostly working, but is not properly clearing the bubbles and I can't figure out why. Been staring at this for a while now. Specifically, some of the bubbles are getting "cleared" as they float up, others aren't, and I can't see why. ARGH!
http://jsfiddle.net/Dud2q/7/ (slowed waaay down so that you can easily watch a single bubble)
Logic flow (this just describes the code in the fiddle):
Create an imageData array (long list of pixels)
imgData = ctx.getImageData(0, 0, w, h);
push new random bubbles onto the beginning of the "bubbles array" which draws bottom-up:
for(var i=0, l=generators.length; i<l; i++){
for(var j=0, m=0|Math.random()*6; j<m; j++){
newBubbles.push( 0|generators[i] + j );
}
generators[i] = Math.max(0, Math.min(w, generators[i] + Math.random()*10 - 5));
}
bubbles.unshift(newBubbles);
loop all bubbles to be drawn and:
clear the bubbles that were drawn in the last loop by setting alpha channel to 0 (transparent):
if(i<(l-1)){
x = 0|bubbles[i+1][j];
offset = y * w * 4 + x * 4;
pixels[offset+3] = 0;
}
draw new bubbles (offset+1 = g, offset+2 = b, offset+3 = alpha):
x = 0|(bubbles[i][j] += Math.random() * 6 - 3);
offset = y * w * 4 + x * 4;
pixels[offset+1] = 0x66;
pixels[offset+2] = 0x99;
pixels[offset+3] = 0xFF;
Increasing the number of generators to a higher number seems to make it work.
Eg. 50..times(createBubbleGenerator); almost works.
Cheers!!!