As part of a word cloud rendering algorithm (inspired by this question), I created a Javascript / Processing.js function that moves a rectangle of a word along an ever increasing spiral, until there is no collision anymore with previously placed words. It works, yet I'm uncomfortable with the code quality.
So my question is: How can I restructure this code to be:
readable + understandable
fast (not doing useless calculations)
elegant (using few lines of code)
I would also appreciate any hints to best practices for programming with a lot of calculations.
Rectangle moveWordRect(wordRect){
// Perform a spiral movement from center
// using the archimedean spiral and polar coordinates
// equation: r = a + b * phi
// Calculate mid of rect
var midX = wordRect.x1 + (wordRect.x2 - wordRect.x1)/2.0;
var midY = wordRect.y1 + (wordRect.y2 - wordRect.y1)/2.0;
// Calculate radius from center
var r = sqrt(sq(midX - width/2.0) + sq(midY - height/2.0));
// Set a fixed spiral width: Distance between successive turns
var b = 15;
// Determine current angle on spiral
var phi = r / b * 2.0 * PI;
// Increase that angle and calculate new radius
phi += 0.2;
r = (b * phi) / (2.0 * PI);
// Convert back to cartesian coordinates
var newMidX = r * cos(phi);
var newMidY = r * sin(phi);
// Shift back respective to mid
newMidX += width/2;
newMidY += height/2;
// Calculate movement
var moveX = newMidX - midX;
var moveY = newMidY - midY;
// Apply movement
wordRect.x1 += moveX;
wordRect.x2 += moveX;
wordRect.y1 += moveY;
wordRect.y2 += moveY;
return wordRect;
}
The quality of the underlying geometric algorithm is outside my area of expertise. However, on the quality of the code, I would say you could extract a lot of functions from it. Many of the lines that you have commented could be turned into separate functions, for example:
Calculate Midpoint of Rectangle
Calculate Radius
Determine Current Angle
Convert Polar to Cartesian Coodinates
You could consider using more descriptive variable names too. 'b' and 'r' require looking back up the code to see what they are for, but 'spiralWidth' and 'radius' do not.
In addition to Stephen's answer,
simplify these two lines:
var midX = wordRect.x1 + (wordRect.x2 - wordRect.x1)/2.0;
var midY = wordRect.y1 + (wordRect.y2 - wordRect.y1)/2.0;
The better statements:
var midX = (wordRect.x1 + wordRect.x2)/2.0;
var midY = (wordRect.y1 + wordRect.y2)/2.0;
Related
I'm trying to draw a noisy line (using perlin noise) between two specific points.
for example A(100, 200) and B(400,600).
The line could be a points series.
Drawing random noisy line is so clear but I dont know how can I calculate distance specific points.
working of P5.js.
I don't have any code written yet to upload.
Please can anyone help me?
I tried to add sufficient comments that you would be able to learn how such a thing is done. There are a number of things that you should make yourself aware of if you aren't already, and it's hard to say which if these you're missing:
for loops
drawing lines using beginShape()/vertex()/endShape()
Trigonometry (in this case sin/cos/atan2) which make it possible to find angles and determine 2d offsets in X and Y components at a given angle
p5.Vector() and its dist() function.
// The level of detail in the line in number of pixels between each point.
const pixelsPerSegment = 10;
const noiseScale = 120;
const noiseFrequency = 0.01;
const noiseSpeed = 0.1;
let start;
let end;
function setup() {
createCanvas(400, 400);
noFill();
start = createVector(10, 10);
end = createVector(380, 380);
}
function draw() {
background(255);
let lineLength = start.dist(end);
// Determine the number of segments, and make sure there is at least one.
let segments = max(1, round(lineLength / pixelsPerSegment));
// Determine the number of points, which is the number of segments + 1
let points = 1 + segments;
// We need to know the angle of the line so that we can determine the x
// and y position for each point along the line, and when we offset based
// on noise we do so perpendicular to the line.
let angle = atan2(end.y - start.y, end.x - start.x);
let xInterval = pixelsPerSegment * cos(angle);
let yInterval = pixelsPerSegment * sin(angle);
beginShape();
// Always start with the start point
vertex(start.x, start.y);
// for each point that is neither the start nor end point
for (let i = 1; i < points - 1; i++) {
// determine the x and y positions along the straight line
let x = start.x + xInterval * i;
let y = start.y + yInterval * i;
// calculate the offset distance using noice
let offset =
// The bigger this number is the greater the range of offsets will be
noiseScale *
(noise(
// The bigger the value of noiseFrequency, the more erretically
// the offset will change from point to point.
i * pixelsPerSegment * noiseFrequency,
// The bigger the value of noiseSpeed, the more quickly the curve
// fluxuations will change over time.
(millis() / 1000) * noiseSpeed
) - 0.5);
// Translate offset into x and y components based on angle - 90°
// (or in this case, PI / 2 radians, which is equivalent)
let xOffset = offset * cos(angle - PI / 2);
let yOffset = offset * sin(angle - PI / 2);
vertex(x + xOffset, y + yOffset);
}
vertex(end.x, end.y);
endShape();
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js"></script>
This code makes jaggy lines, but they could be smoothed using curveVertex(). Also, making the line pass through the start and end points exactly is a little tricky because the very next point may be offset by a large amount. You could fix this by making noiseScale very depending on how far from an endpoint the current point is. This could be done by multiplying noiseScale by sin(i / points.length * PI) for example.
I'm trying to make some simple pool game in java script. I have made it but I do not love way of checking if two balls will collide in next frame. I would like to have more easier way to calculate coordinates of balls when collision occurs. I found lot of answers base on collision kinematics, how to handle velocities and directions after collision, but no calculating a position when collision occurs.
As you can see in sample diagram, gold ball is moving slower than a blue ball, and with distance that each ball will have to move on next frame will not be considered as collision. But, as you can see, they should collide (dashed lines).
In that cause I have divided each movement into sectors and calculating if distance between the points is equal or smaller than ball diameter, which is slowing down process when many balls (like in snooker) have to be calculated in each frame, plus that way is not always 100% accurate and balls can go in inaccurate angles after hit (not a big difference, but important in snooker).
Is there any easier way to calculate those (XAC,YAC) and (XBC,YBC) values with knowing start positions and velocities of each ball without dividing ball paths into sectors and calculating many times to find a proper distance?
It is worth to precalculate collision event only once (this approach works well with reliable number of balls, because we have to treat all ~n^2 pairs of balls).
The first ball position is A0, velocity vector is VA.
The second ball position is B0, velocity vector is VB.
To simplify calculations, we can use Halileo principle - use moving coordinate system connected with the first ball. In that system position and velocity of the first ball are always zero. The second ball position against time is :
B'(t) = (B0 - A0) + (VB - VA) * t = B0' + V'*t
and we just need to find solution of quadratic equation for collision distance=2R:
(B0'.X + V'.X*t)^2 + (B0'.X + V'.Y*t)^2 = 4*R^2
Solving this equation for unknown time t, we might get cases: no solutions (no collision), single solution (only touch event), two solutions - in this case smaller t value corresponds to the physical moment of collision.
Example (sorry, in Python, ** is power operator):
def collision(ax, ay, bx, by, vax, vay, vbx, vby, r):
dx = bx - ax
dy = by - ay
vx = vbx - vax
vy = vby - vay
#(dx + vx*t)**2 + (dy + vy*t)**2 == 4*r*r solve this equation
#coefficients
a = vx**2 + vy**2
b = 2*(vx*dx + vy*dy)
c = dx**2+dy**2 - 4*r**2
dis = b*b - 4*a*c
if dis<0:
return None
else:
t = 0.5*(-b - dis**0.5)/a ##includes case of touch when dis=0
return [(ax + t * vax, ay + t * vay), (bx + t * vbx, by + t * vby)]
print(collision(0,0,100,0,50,50,-50,50,10)) #collision
print(collision(0,0,100,0,50,50,-50,80,10)) #miss
print(collision(0,0,100,0,100,0,99,0,10)) #long lasting chase along OX axis
[(40.0, 40.0), (60.0, 40.0)]
None
[(8000.0, 0.0), (8020.0, 0.0)]
Regarding to MBo's solution, here is a function in java script that will calculate coordinates of balls on collision and time in which collision will happen:
calcCollisionBallCoordinates(ball1_x, ball1_y, ball2_x, ball2_y, ball1_vx, ball1_vy, ball2_vx, ball2_vy, r) {
let dx = ball2_x - ball1_x,
dy = ball2_y - ball1_y,
vx = ball2_vx - ball1_vx,
vy = ball2_vy - ball1_vy,
a = Math.pow(vx, 2) + Math.pow(vy, 2),
b = 2 * (vx * dx + vy * dy),
c = Math.pow(dx, 2) + Math.pow(dy, 2) - 4 * Math.pow(r, 2),
dis = Math.pow(b, 2) - 4 * a * c;
if (dis < 0) {
//no collision
return false;
} else {
let t1 = 0.5 * (-b - Math.sqrt(dis)) / a,
t2 = 0.5 * (-b + Math.sqrt(dis)) / a,
t = Math.min(t1, t2);
if (t < 0) {
//time cannot be smaller than zero
return false;
}
return {
ball1: {x: ball1_x + t * ball1_vx, y: ball1_y + t * ball1_vy},
ball2: {x: ball2_x + t * ball2_vx, y: ball2_y + t * ball2_vy},
time: t
};
}
}
I wish to create the compass / arrow exactly like the one we see in AroundMe Mobile App that point exactly to a pin to the map accordingly with my mobile position and update the arrow when I move the phone.
I'm getting crazy to understand exactly how to do that and I can not find any guide or tutorial that explain a bit it.
What I found online is a bearing function and I created a directive around it:
app.directive('arrow', function () {
function bearing(lat1, lng1, lat2, lng2) {
var dLon = (lng2 - lng1);
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1) * Math.sin(lat2) - Math.sin(lat1) * Math.cos(lat2) * Math.cos(dLon);
var rad = Math.atan2(y, x);
var brng = toDeg(rad);
return (brng + 360) % 360;
}
function toRad(deg) {
return deg * Math.PI / 180;
}
function toDeg(rad) {
return rad * 180 / Math.PI;
}
return {
restrict: 'E',
link: function (scope, element, attrs) {
var arrowAngle = bearing(scope.user.position.lat, scope.user.position.lng, attrs.lat, attrs.lng);
element.parent().css('transform', 'rotate(' + arrowAngle + 'deg)');
}
};
});
It seems to update the arrow in a direction but unfortunately it is not the right direction because it is not calculated using also the mobile magneticHeading position.
So I added the ngCordova plugin for Device Orientation to get the magneticHeading and now I don't know exactly how to use it and where in the bearing function.
$cordovaDeviceOrientation.getCurrentHeading().then(function(result) {
var magneticHeading = result.magneticHeading;
var arrowAngle = bearing(scope.user.position.lat, scope.user.position.lng, attrs.lat, attrs.lng, magneticHeading);
element.parent().css('transform', 'rotate(' + arrowAngle + 'deg)');
});
I tried to add it in the return statement:
return (brng - heading) % 360;
or:
return (heading - ((brng + 360) % 360));
Implementing this code with a watcher I see the arrow moving but not in the exact position... For example from my position and the pin the arrow should point to N and it is pointing to E.
Always looking online I can not find any tutorial / question to find the bearing between a lat/lng point and a magnetingHeading.
Maybe I'm close to the solution but I can not go ahead alone.
I also tried to search for a mathematical formulas but even there is a huge pain to understand and implement it.
I hope you can help.
It's hard to give a plain answer to this question because a lot depends on the actual graphical representation. For instance, in what direction do you point where rotate(0deg).
I can explain the formula you've found, which might help you to clear the issue yourself. The hard part is the following:
var dLon = (lng2 - lng1);
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1) * Math.sin(lat2) - Math.sin(lat1) * Math.cos(lat2) * Math.cos(dLon);
var rad = Math.atan2(y, x);
What you see here is Haversines formula (https://en.wikipedia.org/wiki/Haversine_formula). Normally one could suffice with two sets of coordinates and calculate the angle between them. When working with latitude and longitude this will not work because the earth is not a flat surface. The first three lines are Haversine and the result (x and y) are coordinates on the unit circle (https://en.wikipedia.org/wiki/Unit_circle)
The next step is to calculate the angle from the point on this unit circle to the center. We can use the arctangant for this. Javascript has a helper function atan2 which simplifies this process. The result is simple the angle of your point towards the center of the circle. In other words, your position towards your point of interest. The result is in radians and needs to be converted to degrees. (https://en.wikipedia.org/wiki/Atan2)
A simplified version with a flat coordinate system would look like this:
var deltaX = poi.x - you.x;
var deltaY = you.y - poi.y;
var rotation = toDeg(Math.atan2(deltaX, deltaY));
bearingElement.css('transform', 'rotate(' + rotation + 'deg)');
Where poi is the Point of Interest and you is your position.
To compensate for your own rotation, you need to substract your own rotation. In the above sample the result would become:
var deltaX = poi.x - you.x;
var deltaY = you.y - poi.y;
var rotation = toDeg(Math.atan2(deltaX, deltaY));
rotation -= you.rotation;
bearingElement.css('transform', 'rotate(' + rotation + 'deg)');
I've made a Plunckr in which you can see a simple flat coordinate system. You can move and rotate you and the point of interest. The arrow inside 'you' will always point towards the poi, even if you rotate 'you'. This is because we compensate for our own rotation.
https://plnkr.co/edit/OJBGWsdcWp3nAkPk4lpC?p=preview
Note in the Plunckr that the 'zero'-position is always to the north. Check your app to see your 'zero'-position. Adjust it accordingly and your script will work.
Hope this helps :-)
This is definitely pushing the limits for my trig knowledge.
Is there a formula for calculating an intersection point between a quadratic bezier curve and a line?
Example:
in the image below, I have P1, P2, C (which is the control point) and X1, X2 (which for my particular calculation is just a straight line on the X axis.)
What I would like to be able to know is the X,Y position of T as well as the angle of the tangent at T. at the intersection point between the red curve and the black line.
After doing a little research and finding this question, I know I can use:
t = 0.5; // given example value
x = (1 - t) * (1 - t) * p[0].x + 2 * (1 - t) * t * p[1].x + t * t * p[2].x;
y = (1 - t) * (1 - t) * p[0].y + 2 * (1 - t) * t * p[1].y + t * t * p[2].y;
to calculate my X,Y position at any given point along the curve. So using that I could just loop through a bunch of points along the curve, checking to see if any are on my intersecting X axis. And from there try to calculate my tangent angle. But that really doesn't seem like the best way to do it. Any math guru's out there know what the best way is?
I'm thinking that perhaps it's a bit more complicated than I want it to be.
If you only need an intersection with a straight line in the x-direction you already know the y-coordinate of the intersection. To get the x-coordinate do something like this:
The equation for your line is simply y = b
Setting it equal to your y-equation of the beziér function y(t) gets you:
b = (1 - t) * (1 - t) * p[0].y + 2 * (1 - t) * t * p[1].y + t * t * p[2].y
Solving* for t gets you:
t = (p[0].y - p[1].y - sqrt(b*a + p[1].y*p[1].y - p[0].y*p[2].y)) / a
with a = p[0].y - 2*p[1].y + p[2].y
Insert the resulting t into your x-equation of the beziér function x(t) to get the x-coordinate and you're done.
You may have to pay attention to some special cases, like when no solution exists, because the argument of the square root may then become negative or the denominator (a) might become zero, or something like that.
Leave a comment if you need more help or the intersection with arbitrary lines.
(*) I used wolfram alpha to solve the equation because I'm lazy: Wolfram alpha solution.
Quadratic curve formula:
y=ax^2+bx+c // where a,b,c are known
Line formula:
// note: this `B` is not the same as the `b` in the quadratic formula ;-)
y=m*x+B // where m,B are known.
The curve & line intersect where both equations are true for the same [x,y]:
Here's annotated code and a Demo:
// canvas vars
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;
// linear interpolation utility
var lerp=function(a,b,x){ return(a+x*(b-a)); };
// qCurve & line defs
var p1={x:125,y:200};
var p2={x:250,y:225};
var p3={x:275,y:100};
var a1={x:30,y:125};
var a2={x:300,y:175};
// calc the intersections
var points=calcQLintersects(p1,p2,p3,a1,a2);
// plot the curve, line & solution(s)
var textPoints='Intersections: ';
ctx.beginPath();
ctx.moveTo(p1.x,p1.y);
ctx.quadraticCurveTo(p2.x,p2.y,p3.x,p3.y);
ctx.moveTo(a1.x,a1.y);
ctx.lineTo(a2.x,a2.y);
ctx.stroke();
ctx.beginPath();
for(var i=0;i<points.length;i++){
var p=points[i];
ctx.moveTo(p.x,p.y);
ctx.arc(p.x,p.y,4,0,Math.PI*2);
ctx.closePath();
textPoints+=' ['+parseInt(p.x)+','+parseInt(p.y)+']';
}
ctx.font='14px verdana';
ctx.fillText(textPoints,10,20);
ctx.fillStyle='red';
ctx.fill();
///////////////////////////////////////////////////
function calcQLintersects(p1, p2, p3, a1, a2) {
var intersections=[];
// inverse line normal
var normal={
x: a1.y-a2.y,
y: a2.x-a1.x,
}
// Q-coefficients
var c2={
x: p1.x + p2.x*-2 + p3.x,
y: p1.y + p2.y*-2 + p3.y
}
var c1={
x: p1.x*-2 + p2.x*2,
y: p1.y*-2 + p2.y*2,
}
var c0={
x: p1.x,
y: p1.y
}
// Transform to line
var coefficient=a1.x*a2.y-a2.x*a1.y;
var a=normal.x*c2.x + normal.y*c2.y;
var b=(normal.x*c1.x + normal.y*c1.y)/a;
var c=(normal.x*c0.x + normal.y*c0.y + coefficient)/a;
// solve the roots
var roots=[];
d=b*b-4*c;
if(d>0){
var e=Math.sqrt(d);
roots.push((-b+Math.sqrt(d))/2);
roots.push((-b-Math.sqrt(d))/2);
}else if(d==0){
roots.push(-b/2);
}
// calc the solution points
for(var i=0;i<roots.length;i++){
var minX=Math.min(a1.x,a2.x);
var minY=Math.min(a1.y,a2.y);
var maxX=Math.max(a1.x,a2.x);
var maxY=Math.max(a1.y,a2.y);
var t = roots[i];
if (t>=0 && t<=1) {
// possible point -- pending bounds check
var point={
x:lerp(lerp(p1.x,p2.x,t),lerp(p2.x,p3.x,t),t),
y:lerp(lerp(p1.y,p2.y,t),lerp(p2.y,p3.y,t),t)
}
var x=point.x;
var y=point.y;
// bounds checks
if(a1.x==a2.x && y>=minY && y<=maxY){
// vertical line
intersections.push(point);
}else if(a1.y==a2.y && x>=minX && x<=maxX){
// horizontal line
intersections.push(point);
}else if(x>=minX && y>=minY && x<=maxX && y<=maxY){
// line passed bounds check
intersections.push(point);
}
}
}
return intersections;
}
body{ background-color: ivory; padding:10px; }
#canvas{border:1px solid red;}
<h4>Calculate intersections of QBez-Curve and Line</h4>
<canvas id="canvas" width=350 height=350></canvas>
calculate line's tangθ with x-coordinate
then intersection of the curve's (x, y) should be the same tangθ
so solution is
a = line's x distance from (line.x,0) to (0,0)
(curve.x + a) / curve.y = tangθ (θ can get from the line intersection with x-coordidate)
I'm trying to find the row, column in a 2d isometric grid of a screen space point (x, y)
Now I pretty much know what I need to do which is find the length of the vectors in red in the pictures above and then compare it to the length of the vector that represent the bounds of the grid (which is represented by the black vectors)
Now I asked for help over at mathematics stack exchange to get the equation for figuring out what the parallel vectors are of a point x,y compared to the black boundary vectors. Link here Length of Perpendicular/Parallel Vectors
but im having trouble converting this to a function
Ideally i need enough of a function to get the length of both red vectors from three sets of points, the x,y of the end of the 2 black vectors and the point at the end of the red vectors.
Any language is fine but ideally javascript
What you need is a base transformation:
Suppose the coordinates of the first black vector are (x1, x2) and the coordinates of the second vector are (y1, y2).
Therefore, finding the red vectors that get at a point (z1, z2) is equivalent to solving the following linear system:
x1*r1 + y1*r2 = z1
x2*r1 + y2*r2 = z2
or in matrix form:
A x = b
/x1 y1\ |r1| = |z1|
\x2 y2/ |r2| |z2|
x = inverse(A)*b
For example, lets have the black vector be (2, 1) and (2, -1). The corresponding matrix A will be
2 2
1 -1
and its inverse will be
1/4 1/2
1/4 -1/2
So a point (x, y) in the original coordinates will be able to be represened in the alternate base, bia the following formula:
(x, y) = (1/4 * x + 1/2 * y)*(2,1) + (1/4 * x -1/2 * y)*(2, -1)
What exactly is the point of doing it like this? Any isometric grid you display usually contains cells of equal size, so you can skip all the vector math and simply do something like:
var xStep = 50,
yStep = 30, // roughly matches your image
pointX = 2*xStep,
pointY = 0;
Basically the points on any isometric grid fall onto the intersections of a non-isometric grid. Isometric grid controller:
screenPositionToIsoXY : function(o, w, h){
var sX = ((((o.x - this.canvas.xPosition) - this.screenOffsetX) / this.unitWidth ) * 2) >> 0,
sY = ((((o.y - this.canvas.yPosition) - this.screenOffsetY) / this.unitHeight) * 2) >> 0,
isoX = ((sX + sY - this.cols) / 2) >> 0,
isoY = (((-1 + this.cols) - (sX - sY)) / 2) >> 0;
// isoX = ((sX + sY) / isoGrid.width) - 1
// isoY = ((-2 + isoGrid.width) - sX - sY) / 2
return $.extend(o, {
isoX : Math.constrain(isoX, 0, this.cols - (w||0)),
isoY : Math.constrain(isoY, 0, this.rows - (h||0))
});
},
// ...
isoToUnitGrid : function(isoX, isoY){
var offset = this.grid.offset(),
isoX = $.uD(isoX) ? this.isoX : isoX,
isoY = $.uD(isoY) ? this.isoY : isoY;
return {
x : (offset.x + (this.grid.unitWidth / 2) * (this.grid.rows - this.isoWidth + isoX - isoY)) >> 0,
y : (offset.y + (this.grid.unitHeight / 2) * (isoX + isoY)) >> 0
};
},
Okay so with the help of other answers (sorry guys neither quite provided the answer i was after)
I present my function for finding the grid position on an iso 2d grid using a world x,y coordinate where the world x,y is an offset screen space coord.
WorldPosToGridPos: function(iPosX, iPosY){
var d = (this.mcBoundaryVectors.upper.x * this.mcBoundaryVectors.lower.y) - (this.mcBoundaryVectors.upper.y * this.mcBoundaryVectors.lower.x);
var a = ((iPosX * this.mcBoundaryVectors.lower.y) - (this.mcBoundaryVectors.lower.x * iPosY)) / d;
var b = ((this.mcBoundaryVectors.upper.x * iPosY) - (iPosX * this.mcBoundaryVectors.upper.y)) / d;
var cParaUpperVec = new Vector2(a * this.mcBoundaryVectors.upper.x, a * this.mcBoundaryVectors.upper.y);
var cParaLowerVec = new Vector2(b * this.mcBoundaryVectors.lower.x, b * this.mcBoundaryVectors.lower.y);
var iGridWidth = 40;
var iGridHeight = 40;
var iGridX = Math.floor((cParaLowerVec.length() / this.mcBoundaryVectors.lower.length()) * iGridWidth);
var iGridY = Math.floor((cParaUpperVec.length() / this.mcBoundaryVectors.upper.length()) * iGridHeight);
return {gridX: iGridX, gridY: iGridY};
},
The first line is best done once in an init function or similar to save doing the same calculation over and over, I just included it for completeness.
The mcBoundaryVectors are two vectors defining the outer limits of the x and y axis of the isometric grid (The black vectors shown in the picture above).
Hope this helps anyone else in the future