http://jsfiddle.net/totszwai/WvbPn/2/
function DialogBox() {
this.__DEBUGGING__ = false;
DialogBox.debug = function (b) {
this.__DEBUGGING__ = b;
};
DialogBox.test = function (b) {
alert("hello worodl");
};
};
$(document).ready(function () {
dialogbox = new DialogBox();
dialogbox.test();
});
I can't figure out what I did wrong in there. I tried it with
DialogBox.prototype.test
DialogBox.test
test
I am trying to make it so that when calling its own function internally, I don't need to put this all the time... example: this.test()
UPDATE:
Also is there a way to not type "this" everywhere when calling private function? Normally I just write simple global function that is for one time use, but now I'm trying to write something different, and that I will be calling these private function all over the place within my class. So I am trying to just avoid using "this" everywhere... not to mention it makes the code readability pretty bad.
Like for example in Java (not JS), you don't need to type "this" everywhere.
For a quick fix:
Inside the DialogBox definition, use this. to define its methods:
http://jsfiddle.net/AaronBlenkush/WvbPn/4/
function DialogBox() {
this.__DEBUGGING__ = false;
this.debug = function (b) {
this.__DEBUGGING__ = b;
};
this.test = function (b) {
alert("hello worodl");
};
};
$(document).ready(function () {
dialogbox = new DialogBox();
dialogbox.test();
});
For a comprehensive answer:
There's just too much to fit into a StackOverflow answer.
For a good read on this subject, see Addy Osmani's book Learning JavaScript Design Patterns, especially the part about the Constructor pattern, and surrounding sections.
Related
I've got a browser addon I've been maintaining for 5 years, and I'd like to share some common code between the Firefox and Chrome versions.
I decided to go with the Javascript Module Pattern, and I'm running into a problem with, for example, loading browser-specific preferences, saving data, and other browser-dependent stuff.
What I'd like to do is have the shared code reference virtual, overrideable methods that could be implemented in the derived, browser-specific submodules.
Here's a quick example of what I've got so far, that I've tried in the Firebug console, using the Tight Augmentation method from the article I referenced:
var core = (function(core)
{
// PRIVATE METHODS
var over = function(){ return "core"; };
var foo = function() {
console.log(over());
};
// PUBLIC METHODS
core.over = over;
core.foo = foo;
return core;
}(core = core || {}));
var ff_specific = (function(base)
{
var old_over = base.over;
base.over = function() { return "ff_specific"; };
return base;
}(core));
core.foo();
ff_specific.foo();
Unfortunately, both calls to foo() seem to print "core", so I think I've got a fundamental misunderstanding of something.
Essentially, I'm wanting to be able to call:
get_preference(key)
set_preference(key, value)
load_data(key)
save_data(key, value)
and have each browser do their own thing. Is this possible? Is there a better way to do it?
In javascript functions have "lexical scope". This means that functions create their environment - scope when they are defined, not when they are executed. That's why you can't substitute "over" function later:
var over = function(){ return "core"; };
var foo = function() {
console.log(over());
};
//this closure over "over" function cannot be changed later
Furthermore you are "saying" that "over" should be private method of "core" and "ff_specific" should somehow extend "core" and change it (in this case the private method which is not intended to be overridden by design)
you never override your call to foo in the ff_specific code, and it refers directly to the private function over() (which never gets overridden), not to the function core.over() (which does).
The way to solve it based on your use case is to change the call to over() to be a call to core.over().
That said, you're really confusing yourself by reusing the names of things so much, imo. Maybe that's just for the example code. I'm also not convinced that you need to pass in core to the base function (just to the children).
Thanks for your help. I'd forgotten I couldn't reassign closures after they were defined. I did figure out a solution.
Part of the problem was just blindly following the example code from the article, which meant that the anonymous function to build the module was being called immediately (the reusing of names Paul mentioned). Not being able to reassign closures, even ones that I specifically made public, meant I couldn't even later pass it an object that would have its own methods, then check for them.
Here's what I wound up doing, and appears to work very well:
var ff_prefs = (function(ff_prefs)
{
ff_prefs.foo = function() { return "ff_prefs browser specific"; };
return ff_prefs;
}({}));
var chrome_prefs = (function(chrome_prefs)
{
chrome_prefs.foo = function() { return "chrome_prefs browser specific"; };
return chrome_prefs;
}({}));
var test_module = function(extern)
{
var test_module = {};
var talk = function() {
if(extern.foo)
{
console.log(extern.foo());
}
else
{
console.log("No external function!");
}
};
test_module.talk = talk;
return test_module;
};
var test_module_ff = new test_module(ff_prefs);
var test_module_chrome = new test_module(chrome_prefs);
var test_module_none = new test_module({});
test_module_ff.talk();
test_module_chrome.talk();
test_module_none.talk();
Before, it was running itself, then when the extension started, it would call an init() function, which it can still do. It's just no longer an anonymous function.
I want to use an initialization function that will be called after a user visits a part of the application, but after that first visit I don't want to initialize anymore. A simple way to do this is using a flag and an if-statement, but there is a nicer solution to this problem:
in other languages I changed the body of the init function so that after the call of this method.
Can this be done in Javascript too? I wrote something like this, but eclipse says that it is an illegal assignment:
function initEdit(){
...
this = function() {};
}
Yes, you can, but this doesn't refer to the function, so you have to specify it by name:
function initEdit(){
...
initEdit = function() {};
}
Another alternative, that might be easier to follow, is to just use a variable:
var initialised = false;
function initEdit(){
if (!initialised) {
initialised = true;
...
}
}
In Ruby I think you can call a method that hasn't been defined and yet capture the name of the method called and do processing of this method at runtime.
Can Javascript do the same kind of thing ?
method_missing does not fit well with JavaScript for the same reason it does not exist in Python: in both languages, methods are just attributes that happen to be functions; and objects often have public attributes that are not callable. Contrast with Ruby, where the public interface of an object is 100% methods.
What is needed in JavaScript is a hook to catch access to missing attributes, whether they are methods or not. Python has it: see the __getattr__ special method.
The __noSuchMethod__ proposal by Mozilla introduced yet another inconsistency in a language riddled with them.
The way forward for JavaScript is the Proxy mechanism (also in ECMAscript Harmony), which is closer to the Python protocol for customizing attribute access than to Ruby's method_missing.
The ruby feature that you are explaining is called "method_missing" http://rubylearning.com/satishtalim/ruby_method_missing.htm.
It's a brand new feature that is present only in some browsers like Firefox (in the spider monkey Javascript engine). In SpiderMonkey it's called "__noSuchMethod__" https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/NoSuchMethod
Please read this article from Yehuda Katz http://yehudakatz.com/2008/08/18/method_missing-in-javascript/ for more details about the upcoming implementation.
Not at the moment, no. There is a proposal for ECMAScript Harmony, called proxies, which implements a similar (actually, much more powerful) feature, but ECMAScript Harmony isn't out yet and probably won't be for a couple of years.
You can use the Proxy class.
var myObj = {
someAttr: 'foo'
};
var p = new Proxy(myObj, {
get: function (target, methodOrAttributeName) {
// target is the first argument passed into new Proxy, aka. target is myObj
// First give the target a chance to handle it
if (Object.keys(target).indexOf(methodOrAttributeName) !== -1) {
return target[methodOrAttributeName];
}
// If the target did not have the method/attribute return whatever we want
// Explicitly handle certain cases
if (methodOrAttributeName === 'specialPants') {
return 'trousers';
}
// return our generic method_missing function
return function () {
// Use the special "arguments" object to access a variable number arguments
return 'For show, myObj.someAttr="' + target.someAttr + '" and "'
+ methodOrAttributeName + '" called with: ['
+ Array.prototype.slice.call(arguments).join(',') + ']';
}
}
});
console.log(p.specialPants);
// outputs: trousers
console.log(p.unknownMethod('hi', 'bye', 'ok'));
// outputs:
// For show, myObj.someAttr="foo" and "unknownMethod" called with: [hi,bye,ok]
About
You would use p in place of myObj.
You should be careful with get because it intercepts all attribute requests of p. So, p.specialPants() would result in an error because specialPants returns a string and not a function.
What's really going on with unknownMethod is equivalent to the following:
var unk = p.unkownMethod;
unk('hi', 'bye', 'ok');
This works because functions are objects in javascript.
Bonus
If you know the number of arguments you expect, you can declare them as normal in the returned function.
eg:
...
get: function (target, name) {
return function(expectedArg1, expectedArg2) {
...
I've created a library for javascript that let you use method_missing in javascript: https://github.com/ramadis/unmiss
It uses ES6 Proxies to work. Here is an example using ES6 Class inheritance. However you can also use decorators to achieve the same results.
import { MethodMissingClass } from 'unmiss'
class Example extends MethodMissingClass {
methodMissing(name, ...args) {
console.log(`Method ${name} was called with arguments: ${args.join(' ')}`);
}
}
const instance = new Example;
instance.what('is', 'this');
> Method what was called with arguments: is this
No, there is no metaprogramming capability in javascript directly analogous to ruby's method_missing hook. The interpreter simply raises an Error which the calling code can catch but cannot be detected by the object being accessed. There are some answers here about defining functions at run time, but that's not the same thing. You can do lots of metaprogramming, changing specific instances of objects, defining functions, doing functional things like memoizing and decorators. But there's no dynamic metaprogramming of missing functions as there is in ruby or python.
I came to this question because I was looking for a way to fall through to another object if the method wasn't present on the first object. It's not quite as flexible as what your asking - for instance if a method is missing from both then it will fail.
I was thinking of doing this for a little library I've got that helps configure extjs objects in a way that also makes them more testable. I had seperate calls to actually get hold of the objects for interaction and thought this might be a nice way of sticking those calls together by effectively returning an augmented type
I can think of two ways of doing this:
Prototypes
You can do this using prototypes - as stuff falls through to the prototype if it isn't on the actual object. It seems like this wouldn't work if the set of functions you want drop through to use the this keyword - obviously your object wont know or care about stuff that the other one knows about.
If its all your own code and you aren't using this and constructors ... which is a good idea for lots of reasons then you can do it like this:
var makeHorse = function () {
var neigh = "neigh";
return {
doTheNoise: function () {
return neigh + " is all im saying"
},
setNeigh: function (newNoise) {
neigh = newNoise;
}
}
};
var createSomething = function (fallThrough) {
var constructor = function () {};
constructor.prototype = fallThrough;
var instance = new constructor();
instance.someMethod = function () {
console.log("aaaaa");
};
instance.callTheOther = function () {
var theNoise = instance.doTheNoise();
console.log(theNoise);
};
return instance;
};
var firstHorse = makeHorse();
var secondHorse = makeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
This doesn't work for my use case as the extjs guys have not only mistakenly used 'this' they've also built a whole crazy classical inheritance type system on the principal of using prototypes and 'this'.
This is actually the first time I've used prototypes/constructors and I was slightly baffled that you can't just set the prototype - you also have to use a constructor. There is a magic field in objects (at least in firefox) call __proto which is basically the real prototype. it seems the actual prototype field is only used at construction time... how confusing!
Copying methods
This method is probably more expensive but seems more elegant to me and will also work on code that is using this (eg so you can use it to wrap library objects). It will also work on stuff written using the functional/closure style aswell - I've just illustrated it with this/constructors to show it works with stuff like that.
Here's the mods:
//this is now a constructor
var MakeHorse = function () {
this.neigh = "neigh";
};
MakeHorse.prototype.doTheNoise = function () {
return this.neigh + " is all im saying"
};
MakeHorse.prototype.setNeigh = function (newNoise) {
this.neigh = newNoise;
};
var createSomething = function (fallThrough) {
var instance = {
someMethod : function () {
console.log("aaaaa");
},
callTheOther : function () {
//note this has had to change to directly call the fallThrough object
var theNoise = fallThrough.doTheNoise();
console.log(theNoise);
}
};
//copy stuff over but not if it already exists
for (var propertyName in fallThrough)
if (!instance.hasOwnProperty(propertyName))
instance[propertyName] = fallThrough[propertyName];
return instance;
};
var firstHorse = new MakeHorse();
var secondHorse = new MakeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
I was actually anticipating having to use bind in there somewhere but it appears not to be necessary.
Not to my knowledge, but you can simulate it by initializing the function to null at first and then replacing the implementation later.
var foo = null;
var bar = function() { alert(foo()); } // Appear to use foo before definition
// ...
foo = function() { return "ABC"; } /* Define the function */
bar(); /* Alert box pops up with "ABC" */
This trick is similar to a C# trick for implementing recursive lambdas, as described here.
The only downside is that if you do use foo before it's defined, you'll get an error for trying to call null as though it were a function, rather than a more descriptive error message. But you would expect to get some error message for using a function before it's defined.
Prototypal object creation in JavaScript is claimed to be powerful (I hear it is efficient and if used correctly very expressive). But for some reason I find that it trips me up much more often than it helps me.
The main problem I have with patterns for object creation involving prototype is that there is no way to bypass the need for this. The main reason is that objects that are anything beyond very primitive, for example objects that populate themselves through asynchronous API calls, this breaks down due to change of scope.
So, I use prototypal object creation for objects that I know everything about from the beginning.
But for objects that need to do for example API calls to keep themselves up to date I completely skip prototype and use straight up object literals.
When I feel the need for extending one of these objects, I have used parasitic inheritence:
var ROOT = ROOT || {};
ROOT.Parent = function () {
var self = {
func1 : function () {
alert("func1")
};
}
return self;
};
ROOT.Child = function () {
var self = ROOT.Parent(); // This is the parasitizing
self.func2 = function () {
alert("func2")
};
return self;
};
var myChild = ROOT.Child();
myChild.func1(); // alerts "func1"
myChild.func2(); // alerts "func2"
Using this pattern, I can reuse the code for func1 in the ROOT.Child object. However if I want to extend the code in func1 I have a problem. I.e if I want to call the code in the parents func1 and also my own func1 this pattern presents a challenge. I cannot do this:
ROOT.Child = function () {
var self = ROOT.Parent();
self.func1 = function () {
alert("func2")
};
};
Since this will completely replace the function. To solve this I have come up with the following solution (which you can also check out here: http://jsfiddle.net/pellepim/mAGUg/9/).
var ROOT = {};
/**
* This is the base function for Parasitic Inheritence
*/
ROOT.Inheritable = function () {
var self = {
/**
* takes the name of a function that should exist on "self", and
* rewires it so that it executes both the original function, and the method
* supplied as second parameter.
*/
extend : function (functionName, func) {
if (self.hasOwnProperty(functionName)) {
var superFunction = self[functionName];
self[functionName] = function () {
superFunction();
func();
};
}
},
/**
* Takes the name of a function and reassigns it to the function supplied
* as second parameter.
*/
replace : function (methodName, func) {
self[methodName] = func;
}
};
return self;
};
/**
* "Inherits" from ROOT.Inheritable
*/
ROOT.Action = function () {
var self = ROOT.Inheritable();
/**
* I intend to extend this method in an inheriting object
*/
self.methodToExtend = function () {
alert("I should be seen first, since I get extended");
};
/**
* I intend to replace this method in an inheriting object
*/
self.methodToReplace = function () {
alert("I should never be seen, since I get replaced.");
};
return self;
};
/**
* "Inherits" from ROOT.Action.
*/
ROOT.Task = function () {
var self = ROOT.Action();
self.extend('methodToExtend', function () {
alert("I successfully ran the extended code too.");
});
/**
* I know it is completely unecessary to have a replace method,
* I could just as easily just type self.methodToReplace = function () ...
* but I like that you see that you are actually replacing something.
*/
self.replace('methodToReplace', function () {
alert("I successfully replaced the \"super\" method.");
});
return self;
};
var task = ROOT.Task();
task.methodToExtend(); // I expect both the "base" and "child" method to run.
task.methodToReplace(); // I expect only the "child" method to run.
Ok, so I should ask a question. Am I completely off target here or am I on to something? What are the apparent drawbacks?
No, you're not off target. But you did not invent that wheel also. That type of ECMAscript inheritance became very famous with Doug Crockfords book Javascript: The good parts.
It is a nice pattern and uses closures nicely to keep things private and protected. However, it's still up to you which patterns you prefer (plain prototypal inheritance, pseudo-classical).
With ES5 and new possiblitys like Object.create() and Object.defineProperties(), Object.freeze() to name a few, we also have good ways to have protection and privacy with a more prototypal approach. Personally, I still prefer and like the pseudo classical way, using closures to do stuff.
The caveat still might be function-calls overhead which you generally can avoid using a plain prototypal inheritance. We need to make a whole lot more calls to get things properly done (if things grows). Still, closures are considered to be a little memory greedy and probably be a reason for leaks if we use them sloppy or forget to clean up references here and there. I don't have any reference for this now, but I strongly believe that the latest js engines are not much slower using closures like a lot.
Hi I don't know whether this is my mistake in understanding Javascript prototype object ..
Well to be clear I'm new to the Javascript singleton concept and lack clear cut knowledge in that but going through some referral sites I made a sample code for my system but it's giving out some errors which I couldn't find why so I'm asking for your help. My code is:
referrelSystem = function(){
//Some code here
}();
Prototype function:
referrelSystem.prototype.postToFb = function(){
//Some Code here
};
I get an error saying prototype is undefined!
Excuse me i thought of this right now
EDIT
I have used like this:
referrelSystem = function(){
return{
login:getSignedIn,
initTwitter:initTw
}
};
Is this causing an issue?
A typical way to define a JavaScript class with prototypes would be:
function ReferrelSystem() {
// this is your constructor
// use this.foo = bar to assign properties
}
ReferrelSystem.prototype.postToFb = function () {
// this is a class method
};
You might have been confused with the self-executing function syntax (closures). That is used when you would like to have "private" members in your class. Anything you declare in this closure will only be visible within the closure itself:
var ReferrelSystem = (function () {
function doSomething() {
// this is a "private" function
// make sure you call it with doSomething.call(this)
// to be able to access class members
}
var cnt; // this is a "private" property
function RS() {
// this is your constructor
}
RS.prototype.postToFb = function () {
// this is a class method
};
return RS;
})();
I would recommend that you study common module patterns if you're looking into creating a library.
Update: Seeing your updated code, the return from referrelSystem won't work as expected, since return values are discarded when calling new referrelSystem().
Rather than returning an object, set those properties to this (the instance of referrelSystem that gets constructed):
var referrelSystem = function () {
// I assume you have other code here
this.login = getSignedIn;
this.initTwitter = initTw;
};
I don't think you intend to immediately execute the functions, change them to this:
var referrelSystem = function(){
//Some code here
};
(+var, -())
Same with the prototype function:
referrelSystem.prototype.postToFb = function(){
//Some Code here
};
(Here you don't need the var, because you're assigning to something that already exists.)
A function should return to work as
prototype
property.
Take a look at this example here