If I have a javascript object, I would normally interact with the object and its methods like this:
var obj = someObject.getInstance();
var result = obj.someMethod();
where someMethod is defined like this:
someObject.prototype.someOtherMethod = function() { //do stuff };
someObject.prototype.someMethod = function(foo) { this.someOtherMethod(); };
However, I am getting an error when I want to call someMethod in Ruby via ExecJS:
context = ExecJS.compile(# the javascript file)
context.call('someObject.getInstance().someMethod')
# Gives a TypeError where Object has no method 'someOtherMethod'
On the other hand, functions that are defined in the javascript module are working fine:
someFunction = function() { // do stuff };
# in Ruby
context.call('someFunction') # does stuff
Can ExecJS handle Javascript objects and their methods, or am I only able to call functions with it?
With regards to the specific application, I am looking into https://github.com/joenoon/libphonenumber-execjs, but the parse function in Libphonenumber does not work for the above reason.
Discovered the answer through some experimentation. I managed to get the desired functionality by using context.exec() instead of call.
js = <<JS
var jsObj = someObject.getInstance();
var res = jsObj.someMethod();
return res;
JS
context.exec(js);
However, if your method returns a Javascript object, you have to serialize it first or otherwise parse the results so that it can be returned by ExecJS into a suitable Ruby object.
Related
I'm trying to clean my code a bit, so I create some small objects or libraries (call it how you want) like:
function myLib() {
this.get = function() { ... };
...
};
Problem is when I try to call it like myLib.get(). It throws the following error:
Uncaught TypeError: myLib.get is not a function
I've tried to encapsulate the call into $(document).ready(), but it did not help.
Can you help me, please?
Thanks!
myLib is used for "libary", and you want to call this "get" method of libary.
Static instance is better in your case.
const myLib = {
get:function(){},
get2:function(){}
...
};
myLib.get();
myLib.get2();
so I create some small objects or libraries (call it how you want)
In your case you are creating a constructor, myLib is a constructor and not just a function, and you can't access a function's properties and methods directly that's why you got the Exception.
So you need to get an instance of myLib in order to call the get method or to access any of its members(methods).
function myLib() {
this.get = function() { console.log("get called!!"); };
};
let lib = new myLib();
lib.get();
Note:
And from the MDN Reference for Functions you can see that:
The this keyword does not refer to the currently executing function, so you must refer to Function objects by name, even within the function body.
You should use myLib as a constructor ie:
var lib = new myLib();
lib.get();
I want to parse an object into client-side javascript through Jade. Normally this would work:
script var object = JSON.parse(#{JSON.stringify(object)});
but my object is circular and I need to do this
script var object = CircularJSON.parse(#{CircularJSON.stringify(object)});
but it throws the error
Cannot call method 'stringify' of undefined
which I guess is because Jade doesn't recognise my CircularJSON method.
Any way to make it?
It could be required and passed in the locals
response.render("index.jade", {CircularJSON : require('circular-json')});
Or it could be defined as a function in the scope of jade
- var CircularJSON = function(e,t){function l(e,t,o){var u=[],...//whole function
script var player = CircularJSON.parse('!{CircularJSON.stringify(player)}');
As an siginificantly simplified scenario, say I have 2 Javascript objects defined as below:
var ClassA = Class.extend({
'say': function(message) {
console.log(message);
}
... // some more methods ...
});
var ClassB = Class.extend({
init: function(obj) {
this._target = obj;
}
});
I'd suppose that in Javascript there is some kind of mechanism could enable us to do the following trick:
var b = new ClassB( new ClassA() );
b.say("hello");
I'd like to find a way to detect if there is a method called upon ClassB, and the method is not defined in ClassB, then I can automatically forward the method call to be upon ClassA, which is a member variable in ClassB.
In a realworld scenario, ClassA is an object implemented as brwoser plugin and inserted into the webpage using <object> tag. It's method is implemented in C++ code so there is no way I can tell its methods from its prototype and insert it to ClassB's prototype beforehand.
I'd like to use the technical to create a native Javascript object, with a narraw-ed version of ClassA's interface. Is there a way I can do this?
I don't think there is a quick cross-browser solution to this.
If you only need Firefox, then use __noSuchMethod__
See here: is-there-such-a-thing-as-a-catch-all-key-for-a-javascript-object
and here: javascript-getter-for-all-properties
Otherwise, I would try something like this:
var b = new ClassB( new ClassA() );
// functionToCall is a string containing the function name
function callOnB(functionToCall) {
if(typeof b[functionToCall] === function) {
b[functionToCall]();
} else {
b._target[functionToCall](); // otherwise, try calling on A
}
}
This is using the Square Bracket Notation where
b.say('hello')
is the same as
b['say']('hello')
Of course, you should probably expand this to take arguments in:
function callOnB(functionToCall, listOfArguments) {...}
Thanks to jfrej's hint on noSunchMethod, I did some more research on it and it turns out what I need is quit fit with Harmony Proxies(here and here). And an example can be found at http://jsbin.com/ucupe4/edit#source
Another related post: http://dailyjs.com/2010/03/12/nosuchmethod/
In Ruby I think you can call a method that hasn't been defined and yet capture the name of the method called and do processing of this method at runtime.
Can Javascript do the same kind of thing ?
method_missing does not fit well with JavaScript for the same reason it does not exist in Python: in both languages, methods are just attributes that happen to be functions; and objects often have public attributes that are not callable. Contrast with Ruby, where the public interface of an object is 100% methods.
What is needed in JavaScript is a hook to catch access to missing attributes, whether they are methods or not. Python has it: see the __getattr__ special method.
The __noSuchMethod__ proposal by Mozilla introduced yet another inconsistency in a language riddled with them.
The way forward for JavaScript is the Proxy mechanism (also in ECMAscript Harmony), which is closer to the Python protocol for customizing attribute access than to Ruby's method_missing.
The ruby feature that you are explaining is called "method_missing" http://rubylearning.com/satishtalim/ruby_method_missing.htm.
It's a brand new feature that is present only in some browsers like Firefox (in the spider monkey Javascript engine). In SpiderMonkey it's called "__noSuchMethod__" https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/NoSuchMethod
Please read this article from Yehuda Katz http://yehudakatz.com/2008/08/18/method_missing-in-javascript/ for more details about the upcoming implementation.
Not at the moment, no. There is a proposal for ECMAScript Harmony, called proxies, which implements a similar (actually, much more powerful) feature, but ECMAScript Harmony isn't out yet and probably won't be for a couple of years.
You can use the Proxy class.
var myObj = {
someAttr: 'foo'
};
var p = new Proxy(myObj, {
get: function (target, methodOrAttributeName) {
// target is the first argument passed into new Proxy, aka. target is myObj
// First give the target a chance to handle it
if (Object.keys(target).indexOf(methodOrAttributeName) !== -1) {
return target[methodOrAttributeName];
}
// If the target did not have the method/attribute return whatever we want
// Explicitly handle certain cases
if (methodOrAttributeName === 'specialPants') {
return 'trousers';
}
// return our generic method_missing function
return function () {
// Use the special "arguments" object to access a variable number arguments
return 'For show, myObj.someAttr="' + target.someAttr + '" and "'
+ methodOrAttributeName + '" called with: ['
+ Array.prototype.slice.call(arguments).join(',') + ']';
}
}
});
console.log(p.specialPants);
// outputs: trousers
console.log(p.unknownMethod('hi', 'bye', 'ok'));
// outputs:
// For show, myObj.someAttr="foo" and "unknownMethod" called with: [hi,bye,ok]
About
You would use p in place of myObj.
You should be careful with get because it intercepts all attribute requests of p. So, p.specialPants() would result in an error because specialPants returns a string and not a function.
What's really going on with unknownMethod is equivalent to the following:
var unk = p.unkownMethod;
unk('hi', 'bye', 'ok');
This works because functions are objects in javascript.
Bonus
If you know the number of arguments you expect, you can declare them as normal in the returned function.
eg:
...
get: function (target, name) {
return function(expectedArg1, expectedArg2) {
...
I've created a library for javascript that let you use method_missing in javascript: https://github.com/ramadis/unmiss
It uses ES6 Proxies to work. Here is an example using ES6 Class inheritance. However you can also use decorators to achieve the same results.
import { MethodMissingClass } from 'unmiss'
class Example extends MethodMissingClass {
methodMissing(name, ...args) {
console.log(`Method ${name} was called with arguments: ${args.join(' ')}`);
}
}
const instance = new Example;
instance.what('is', 'this');
> Method what was called with arguments: is this
No, there is no metaprogramming capability in javascript directly analogous to ruby's method_missing hook. The interpreter simply raises an Error which the calling code can catch but cannot be detected by the object being accessed. There are some answers here about defining functions at run time, but that's not the same thing. You can do lots of metaprogramming, changing specific instances of objects, defining functions, doing functional things like memoizing and decorators. But there's no dynamic metaprogramming of missing functions as there is in ruby or python.
I came to this question because I was looking for a way to fall through to another object if the method wasn't present on the first object. It's not quite as flexible as what your asking - for instance if a method is missing from both then it will fail.
I was thinking of doing this for a little library I've got that helps configure extjs objects in a way that also makes them more testable. I had seperate calls to actually get hold of the objects for interaction and thought this might be a nice way of sticking those calls together by effectively returning an augmented type
I can think of two ways of doing this:
Prototypes
You can do this using prototypes - as stuff falls through to the prototype if it isn't on the actual object. It seems like this wouldn't work if the set of functions you want drop through to use the this keyword - obviously your object wont know or care about stuff that the other one knows about.
If its all your own code and you aren't using this and constructors ... which is a good idea for lots of reasons then you can do it like this:
var makeHorse = function () {
var neigh = "neigh";
return {
doTheNoise: function () {
return neigh + " is all im saying"
},
setNeigh: function (newNoise) {
neigh = newNoise;
}
}
};
var createSomething = function (fallThrough) {
var constructor = function () {};
constructor.prototype = fallThrough;
var instance = new constructor();
instance.someMethod = function () {
console.log("aaaaa");
};
instance.callTheOther = function () {
var theNoise = instance.doTheNoise();
console.log(theNoise);
};
return instance;
};
var firstHorse = makeHorse();
var secondHorse = makeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
This doesn't work for my use case as the extjs guys have not only mistakenly used 'this' they've also built a whole crazy classical inheritance type system on the principal of using prototypes and 'this'.
This is actually the first time I've used prototypes/constructors and I was slightly baffled that you can't just set the prototype - you also have to use a constructor. There is a magic field in objects (at least in firefox) call __proto which is basically the real prototype. it seems the actual prototype field is only used at construction time... how confusing!
Copying methods
This method is probably more expensive but seems more elegant to me and will also work on code that is using this (eg so you can use it to wrap library objects). It will also work on stuff written using the functional/closure style aswell - I've just illustrated it with this/constructors to show it works with stuff like that.
Here's the mods:
//this is now a constructor
var MakeHorse = function () {
this.neigh = "neigh";
};
MakeHorse.prototype.doTheNoise = function () {
return this.neigh + " is all im saying"
};
MakeHorse.prototype.setNeigh = function (newNoise) {
this.neigh = newNoise;
};
var createSomething = function (fallThrough) {
var instance = {
someMethod : function () {
console.log("aaaaa");
},
callTheOther : function () {
//note this has had to change to directly call the fallThrough object
var theNoise = fallThrough.doTheNoise();
console.log(theNoise);
}
};
//copy stuff over but not if it already exists
for (var propertyName in fallThrough)
if (!instance.hasOwnProperty(propertyName))
instance[propertyName] = fallThrough[propertyName];
return instance;
};
var firstHorse = new MakeHorse();
var secondHorse = new MakeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
I was actually anticipating having to use bind in there somewhere but it appears not to be necessary.
Not to my knowledge, but you can simulate it by initializing the function to null at first and then replacing the implementation later.
var foo = null;
var bar = function() { alert(foo()); } // Appear to use foo before definition
// ...
foo = function() { return "ABC"; } /* Define the function */
bar(); /* Alert box pops up with "ABC" */
This trick is similar to a C# trick for implementing recursive lambdas, as described here.
The only downside is that if you do use foo before it's defined, you'll get an error for trying to call null as though it were a function, rather than a more descriptive error message. But you would expect to get some error message for using a function before it's defined.
There are some third party Javascript libraries that have some functionality I would like to use in a Node.js server. (Specifically I want to use a QuadTree javascript library that I found.) But these libraries are just straightforward .js files and not "Node.js libraries".
As such, these libraries don't follow the exports.var_name syntax that Node.js expects for its modules. As far as I understand that means when you do module = require('module_name'); or module = require('./path/to/file.js'); you'll end up with a module with no publicly accessible functions, etc.
My question then is "How do I load an arbitrary javascript file into Node.js such that I can utilize its functionality without having to rewrite it so that it does do exports?"
I'm very new to Node.js so please let me know if there is some glaring hole in my understanding of how it works.
EDIT: Researching into things more and I now see that the module loading pattern that Node.js uses is actually part of a recently developed standard for loading Javascript libraries called CommonJS. It says this right on the module doc page for Node.js, but I missed that until now.
It may end up being that the answer to my question is "wait until your library's authors get around to writing a CommonJS interface or do it your damn self."
Here's what I think is the 'rightest' answer for this situation.
Say you have a script file called quadtree.js.
You should build a custom node_module that has this sort of directory structure...
./node_modules/quadtree/quadtree-lib/
./node_modules/quadtree/quadtree-lib/quadtree.js
./node_modules/quadtree/quadtree-lib/README
./node_modules/quadtree/quadtree-lib/some-other-crap.js
./node_modules/quadtree/index.js
Everything in your ./node_modules/quadtree/quadtree-lib/ directory are files from your 3rd party library.
Then your ./node_modules/quadtree/index.js file will just load that library from the filesystem and do the work of exporting things properly.
var fs = require('fs');
// Read and eval library
filedata = fs.readFileSync('./node_modules/quadtree/quadtree-lib/quadtree.js','utf8');
eval(filedata);
/* The quadtree.js file defines a class 'QuadTree' which is all we want to export */
exports.QuadTree = QuadTree
Now you can use your quadtree module like any other node module...
var qt = require('quadtree');
qt.QuadTree();
I like this method because there's no need to go changing any of the source code of your 3rd party library--so it's easier to maintain. All you need to do on upgrade is look at their source code and ensure that you are still exporting the proper objects.
There is a much better method than using eval: the vm module.
For example, here is my execfile module, which evaluates the script at path in either context or the global context:
var vm = require("vm");
var fs = require("fs");
module.exports = function(path, context) {
context = context || {};
var data = fs.readFileSync(path);
vm.runInNewContext(data, context, path);
return context;
}
And it can be used like this:
> var execfile = require("execfile");
> // `someGlobal` will be a global variable while the script runs
> var context = execfile("example.js", { someGlobal: 42 });
> // And `getSomeGlobal` defined in the script is available on `context`:
> context.getSomeGlobal()
42
> context.someGlobal = 16
> context.getSomeGlobal()
16
Where example.js contains:
function getSomeGlobal() {
return someGlobal;
}
The big advantage of this method is that you've got complete control over the global variables in the executed script: you can pass in custom globals (via context), and all the globals created by the script will be added to context. Debugging is also easier because syntax errors and the like will be reported with the correct file name.
The simplest way is: eval(require('fs').readFileSync('./path/to/file.js', 'utf8'));
This works great for testing in the interactive shell.
AFAIK, that is indeed how modules must be loaded.
However, instead of tacking all exported functions onto the exports object, you can also tack them onto this (what would otherwise be the global object).
So, if you want to keep the other libraries compatible, you can do this:
this.quadTree = function () {
// the function's code
};
or, when the external library already has its own namespace, e.g. jQuery (not that you can use that in a server-side environment):
this.jQuery = jQuery;
In a non-Node environment, this would resolve to the global object, thus making it a global variable... which it already was. So it shouldn't break anything.
Edit:
James Herdman has a nice writeup about node.js for beginners, which also mentions this.
I'm not sure if I'll actually end up using this because it's a rather hacky solution, but one way around this is to build a little mini-module importer like this...
In the file ./node_modules/vanilla.js:
var fs = require('fs');
exports.require = function(path,names_to_export) {
filedata = fs.readFileSync(path,'utf8');
eval(filedata);
exported_obj = {};
for (i in names_to_export) {
to_eval = 'exported_obj[names_to_export[i]] = '
+ names_to_export[i] + ';'
eval(to_eval);
}
return exported_obj;
}
Then when you want to use your library's functionality you'll need to manually choose which names to export.
So for a library like the file ./lib/mylibrary.js...
function Foo() { //Do something... }
biz = "Blah blah";
var bar = {'baz':'filler'};
When you want to use its functionality in your Node.js code...
var vanilla = require('vanilla');
var mylibrary = vanilla.require('./lib/mylibrary.js',['biz','Foo'])
mylibrary.Foo // <-- this is Foo()
mylibrary.biz // <-- this is "Blah blah"
mylibrary.bar // <-- this is undefined (because we didn't export it)
Don't know how well this would all work in practice though.
I was able to make it work by updating their script, very easily, simply adding module.exports = where appropriate...
For example, I took their file and I copied to './libs/apprise.js'. Then where it starts with
function apprise(string, args, callback){
I assigned the function to module.exports = thus:
module.exports = function(string, args, callback){
Thus I'm able to import the library into my code like this:
window.apprise = require('./libs/apprise.js');
And I was good to go. YMMV, this was with webpack.
A simple include(filename) function with better error messaging (stack, filename etc.) for eval, in case of errors:
var fs = require('fs');
// circumvent nodejs/v8 "bug":
// https://github.com/PythonJS/PythonJS/issues/111
// http://perfectionkills.com/global-eval-what-are-the-options/
// e.g. a "function test() {}" will be undefined, but "test = function() {}" will exist
var globalEval = (function() {
var isIndirectEvalGlobal = (function(original, Object) {
try {
// Does `Object` resolve to a local variable, or to a global, built-in `Object`,
// reference to which we passed as a first argument?
return (1, eval)('Object') === original;
} catch (err) {
// if indirect eval errors out (as allowed per ES3), then just bail out with `false`
return false;
}
})(Object, 123);
if (isIndirectEvalGlobal) {
// if indirect eval executes code globally, use it
return function(expression) {
return (1, eval)(expression);
};
} else if (typeof window.execScript !== 'undefined') {
// if `window.execScript exists`, use it
return function(expression) {
return window.execScript(expression);
};
}
// otherwise, globalEval is `undefined` since nothing is returned
})();
function include(filename) {
file_contents = fs.readFileSync(filename, "utf8");
try {
//console.log(file_contents);
globalEval(file_contents);
} catch (e) {
e.fileName = filename;
keys = ["columnNumber", "fileName", "lineNumber", "message", "name", "stack"]
for (key in keys) {
k = keys[key];
console.log(k, " = ", e[k])
}
fo = e;
//throw new Error("include failed");
}
}
But it even gets dirtier with nodejs: you need to specify this:
export NODE_MODULE_CONTEXTS=1
nodejs tmp.js
Otherwise you cannot use global variables in files included with include(...).