What is the difference in the following JS syntax? - javascript

Following are two ways to define BW.Timer. Can someone tell me what the difference is? I am not certain the first is even valid, but if it is valid, what is different about using the myfunc=(function(){}()) syntax?
BW.Timer = (function () {
return {
Add: function (o) {
alert(o);
},
Remove: function (o) {
alert(o);
}
};
} ());
And...
BW.Timer = function () {
return {
Add: function (o) {
alert(o);
},
Remove: function (o) {
alert(o);
}
};
};

The first is the return-value of the immediately-invoked function. The second is a function. It essentially comes down to what the difference is between these:
var f = (function() { return 0; })();
var f = function() { return 0; };
Since the first function is called immediately, the value of 0 is given to the variable f. The first f is not a function. However, the second f we must call in order to get the value:
f(); // 0
It follows that in your example, the first BW.Timer is the object literal itself and the second is a function returning an object literal. You must call the function in order to get to the object:
BW.Timer().Add(x);
Why use the first then?
You might ask yourself why one would use a syntax like a = (function() { return {}; })() instead of a = {}, but there's a good reason. An IIFE (Immeditately-Invoked Function Expression), unlike a regular function allows the emulation of static variables (variables that maintain their value through a single instance). For example:
var module = (function() {
var x = 0;
return { get: function() { return x },
set: function(n) { x = n }
};
})();
The above a text-book example of the Module Pattern. Since the function is called right away, the variable x is instantiated and the return value (the object) is given to module. There's no way we can get to x other than by using the get and set methods provided for us. Therefore, x is static, meaning its variable won't be overridden each time you use module.
module.set(5);
module.get(); // 5
On the other hand, let's see an example where module is declared as a function instead:
// assume module was made as a function
module().set(5);
module().get(); // 0
When we call module() the x variable is overridden each time. So we're effectively using different instances of module and x each time we call module.

The difference is rather large.
In the first case, BW.Timer is executed when it is first encountered, and that is the static version assigned to BW.Timer. In that instance, BW.Timer.Add(1) may be used. Each call to BW.Timer will be the same object.
In the second case, BW.Timer is not executed when first encountered, and instead is a function referece which must be invoked BW.Timer(). For Add to be used, this must be the case BW.Timer().Add(1). Also, you can issue var timer = new BM.Timer();. Each instance of BW.Timer() will be unique here.

In the first example BW.Timer references an object that the self-executing function returns, while in the second example it references a function object, in other words it's a function that can be executed BW.Timer().

Related

Determine function has defined as a expression or declaried as function

I want to know how the function has been initialized, with the expression or declaried as fuction. _ Amazon interview question
expression : var a = function (){ }
declaration: function a (){ }
You could just do a.toString() and parse out the name. Or do the same with regular expressions
a.toString().test(/^\s*function\s*\(/);
function a(){ }; // gives false
var a = function (){ }; // gives true
Of course as Grundy pointed out this fails with named functions. Something like
var a = function b() {};
or
function b() {};
var a = b;
And ES6 has .name (see the Browser table at the bottom for the current state of affairs) - https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Function/name
I don't think it's possible to do so. The only difference between:
var func = function(){ };
and:
function func() { };
Is that the first one gets assigned on runtime. The way I see it, is that both function statements return a reference to their respective function objects. In that sense they are both the same. The only thing you could argue is that one is not named and the other one is, but you could have assigned a named function to a variable too.
However, there seems to be a difference on how they get assigned. The second one seems to get assigned to a variable that its named after, right at the start of the execution context. The first one has to wait for the explicit assignment within the execution context.
So you'd be testing for when they get assigned. You might think that's is possible to do so within the global object like:
//some protected vars that can't work without same-origin
var protected = ['caches', 'localStorage', 'sessionStorage', 'frameElement'];
var definedAtInit = [];
for(prop in window){
if(!isSandboxed(prop) && typeof window[prop] === 'function'){
definedAtInit.push(prop);
}
};
function isSandboxed(prop){
return protected.indexOf(prop) !== -1;
}
function isItDefinedAtInit(funcName){
return definedAtInit.indexOf(funcName) !== -1;
}
var func = function() {
console.log('test');
}
var results = { isItDefinedAtInit : isItDefinedAtInit('isItDefinedAtInit'),
func : isItDefinedAtInit('func')
};
document.getElementById('results').innerHTML = JSON.stringify(results, '/t');
<pre id="results"></pre>
However, you could still do something like:
var isItDefinedAtInit = function() { };
//After this, isItDefinedAtInit('isItDefinedAtInit') would be wrong.
And you still have the problems with other execution contexts, I don't think functions declared within a function execution context get attached to any object.
I think these kind of checks are a bad idea to be honest.
There is only way, we can determine function has defined with function declarations not as expression.
as Grundy mentioned name property of the respective function gives require information, if it has been defined with expression name property holds undefined value, else it holds function name.
Here is the code :
var isDefinedAsFunction = function(fn){
return fn.name !== undefined
}

Is it possible to change scope of function after new Function()?

So I have this code:
function fn(a){
var f=(new Function("return a"));
return f();
}
fn(7)//ReferenceError: a is not defined
Same problems with local variables:
function fn(){
var a=7;
var f=new Function("return a");
return f();
}
fn(7)//ReferenceError: a is not defined
I want it to return a but the new function cant see a,
it can only see global a
var a=1;
function fn(a){
var f=(new Function("return a"));
return f();
}
fn(7)//1
With the normal initialization the function can see the argument.
function fn(a){
var f=function(){return a};
return f();
}
fn(7)//7
I need to call the basic constructor in my project and can't use global variables.
I know that i could solve this by giving arguments to the newly created function and call it with that like this:
function fn(a){
var f=(new Function('a',"return a"));
return f(a);
}
fn(7)//7
And also could use some parsing function and some stupidly long method to make incoming arguments reachable like this:
function parsargs(funct){
//some parsing methodes giving back argument name list from funct.toString()
return "['a','b']";//like this
}
function fn(a,b){
var arrgstr,retfunc;
arrgstr="";
for(var i in arguments)
{
if(i<arguments.length-1)
arrgstr+=arguments[i]+",";
else
arrgstr+=arguments[i];
}
//return arrgstr;
retfunc="var f=new Function("+parsargs()+",'return b*a');return f("+arrgstr+")";
return (new Function(retfunc))();
}
fn(7,4)//28
But there must be an easier way which reaches local variables and functions as well...
Any suggestions?
PS:
i am trying to replace eval() in the project
Here is a simplified version of my original problem:
fiddle
The answer is NO...
Your exact question isn't clear but, supposing you can use arguments.callee (i.e. non strict mode) and that you want to be able to have any arguments name in fn, you "may" do this:
function fn(a,b){
var strargs = arguments.callee.toString().match(/\(([^\)]*)\)/)[1];
return (new Function(strargs.split(","),"return a+b")).apply(null,arguments);
}
console.log(fn(7, 3)) // 10
But I have a strong feeling this is a XY question and that we could have given a more useful answer knowing the real original problem to solve.
You could call your new Function with a context that references the local variables that you need:
function f(a) {
var b = 30;
return new Function("return this.a + this.b").call({ a: a, b: b })
}
f(10) // 40
The reason why this isn't working as easy as you would like is that JavaScript doesn't blindly put variables in a scope. Instead, it parses the function body (as good as it can) and determines which variables the code will need. It will then look up the variables in the outer scopes, create references for them and attach those references to the new function. That's what keeps variables from the outer scope accessible inside of the function when it eventually will be executed.
You want to build a function from a string body. JavaScript can't tell which variables the body will use and hence, it won't make those variables available.
To make it work for function arguments, use apply()::
function fn(a){
var argref = arguments; // create reference to the arguments of fn() and hence to a or any other arguments
var func = new Function("return arguments[0]");
var wrapper = function() {
return func.apply(null, argref);
};
return wrapper;
}
Note that you still can't reference arguments by name since the code never specifies what the names of the arguments of func are - JavaScript can't magically read you mind and do what you want. If you want to access the arguments by name, you need to tell the interpreter the names.
This question has some code how to determine the names from a function reference: How to get function parameter names/values dynamically from javascript
I don't see a way to make local variables available without passing them to fn() as arguments. Even if you used them inside of fn(), they would be out of scope when func() is eventually executed.
A simple solution would be to pass an object to fn():
function fn(conf) {
var func = new Function('conf', "return conf.a");
var wrapper = function(conf) {
return func.apply(null, conf);
};
return wrapper;
}
fn({a:7});
new Function doesn't create a closure context, but eval does.
Here's a low-tech way to build a function with an arbitrary evaluated body and access to the calling scope:
function f(a) {
return eval("(function() { return a })")()
}
f(10) // 10

Expression contains parentheses only. Function argument after } [duplicate]

This question already has answers here:
What is the (function() { } )() construct in JavaScript?
(28 answers)
Closed 9 years ago.
I got so confused here. Can someone help me peel the layers off the function definition here? What are the out-most parentheses for? Why argument (p) can be after }, and which function is it for? Where is q required at all? Why can p directly call publish() later?
var p = {};
(function(q) {
q.publish = function(topic, data){
...
};
}(p));
...
p.publish("inbox", "hello");
It simply creates the function and executes it immediately.
For example:
var foo = function() {
return 5;
}();
console.log(foo);
will print 5.
If you want to learn more about it, please read this excellent article http://benalman.com/news/2010/11/immediately-invoked-function-expression/
I would like to quote module pattern example from the link I shared.
var counter = (function(){
var i = 0;
return {
get: function(){
return i;
},
set: function( val ){
i = val;
},
increment: function() {
return ++i;
}
};
}());
console.log(counter.get());
counter.set(3);
console.log(counter.increment());
console.log(counter.i);
Output
0
4
undefined
Here we are dynamically creating an Object at the same time we are making i private. This is called closure property.
Putting the function in parentheses means the JS interpreter takes it as a function expression, so it can be anonymous (i.e., not have a declared name). Adding () at the end means the function is called immediately. So, e.g.:
(function() {
alert('Hi');
}());
...declares a really simple function with no arguments, and calls it immediately. A slightly more complicated one with an argument might look like this:
(function(someArgument) {
alert(someArgument);
}('Hi'));
That would alert 'Hi', because the string 'Hi' is passed to the anonymous function when it is called.
So with that as background, here's what your code is doing line by line:
var p = {}; // declare variable p, referencing an empty object
(function(q) { // make an anonymous function expression that takes one argument, q
q.publish = function(topic, data){ // add a property 'publish' to whatever q is,
... // where 'publish' is a function that takes
}; // two arguments
}(p)); // call the anonymous function, passing p in
...
p.publish("inbox", "hello"); // call the method 'publish' that was added to p
The q argument that you asked about takes the value from p, so it refers to the same empty object, but then it adds the .publish() method to that object.
This general concept is called an "Immediated invoked function expression", or IIFE.
Usually if an IIFE is just sitting there by itself like that (i.e., another variable is not assigned equal to it) it is done so that working variables/functions can be created temporarily without adding them to the global scope, because in JavaScript the scope options are basically global or function. The code you show doesn't do that, but here's a simple example:
(function() {
var x = 0;
for (var i = 0; i < 100; i++)
x += i;
alert (x);
}());
// here x and i are not accessible because they're local to the function above.
It's a self executing function. Using q is useless here since q === p.
var p = 'hello';
function f(q){ return q; }; f(p); // "hello"
(function(q){ return q; }(p)); // "hello"
(function(){ return p; }()); // "hello"
/*(*/function(){ return p; }()/*)*/; // SyntaxError: Unexpected token (
This pattern is usually used to create a private context for variables. Here is a well known example :
var counter = function(){
var i = 0;
return function(){
return ++i;
};
}();
counter(); // 1
counter(); // 2
i; // undefined
Have a look at this great article : http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html.

Javascript - using arguments for closure, bad or good?

Let's consider simple singleton implementation:
var singleton = function (Constructor) {
var singleton;
return function () {
if (!singleton) {
singleton = new Constructor();
}
return singleton;
};
};
We could move declaration of singleton variable to arguments:
var singleton = function (Constructor, singleton) {
return function () {
if (!singleton) {
singleton = new Constructor();
}
return singleton;
};
};
So I simply curious about side effects.
One more example:
var counter = (function (i) {
return function () {
i = (i || 0) + 1;
return i;
};
}());
We could move declaration of singleton variable to arguments
First, let's make it possible to talk about this without tying outselves up in knots by using the same symbol (singleton) for two completely different things within the same few lines of code.
Here's your seecond example renamed:
var singleton = function (Constructor, instance) {
return function () {
if (!instance) {
instance = new Constructor();
}
return instance;
};
};
If you did that, then calling the singleton function with two arguments would specify instance, making passing Constructor in pointless — Constructor would never be called by singleton (again, if you passed in two args [and the second arg was truthy]). So it would be a bit odd to do that.
But you asked about side-effects. There are no external effects involved if you assign to a formal argument within the function. It doesn't, for instance, have any effect outside the function:
function foo(arg) {
arg = 67;
}
var a = 42;
foo(a);
console.log(a); // Still 42
However, assigning to an argument rather than to a local variable does, in non-strict mode, have a small cost, because there's overhead involved: It relates to the magic arguments pseudo-array. In non-strict mode, there's a link between the formal arguments of a function and the arguments pseudo-array:
function foo(a, b) {
console.log(a);
console.log(b);
b = 42;
console.log(arguments[1]);
}
If we call that like this:
foo(1, 2);
we see
1
2
42
Note the magic: Assigning to the formal argument b updated the pseudo-array arguments. (It works the other way, too.) That link has a small but real runtime cost.
(In strict mode, there is no link, for this very reason.)
As far as closure goes, there is no difference in the two implementations. However, in first example, singleton is not settable by the caller.
I will choose between the two implementation, just based on whether singleton could have been created outside these example functions or not. If it can be, use model 2 otherwise use model 1

JavaScript function declaration

Are the JavaScript code snippets given below some sort of function declaration? If not can someone please give an overview of what they are?
some_func = function(value) {
// some code here
}
and
show:function(value){
// some code here
}
There are six ways/contexts in which to create functions:
1) Standard declarative notation (most familiar to people with C background)
function foo() {}
All the rest are function expressions:
2) As a method of an object literal
var obj = {
foo: function() {}
};
3) As a method of an instantiated object (created each time new is exectued)
var Obj = function() {
this.foo = function() {};
};
4) As a method of a prototype (created only once, regardless of how many times new is executed)
var Obj = function() {};
Obj.prototype.foo = function() {};
5) As an anonymous function with a reference (same effect as #1) *
var foo = function() {};
6) As an immediately executed anonymous function (completely anonymous)
(function() {})();
* When I look at this statement, I consider the result. As such, I don't really consider these as anonymous, because a reference is immediately created to the function and is therefore no longer anonymous. But it's all the same to most people.
The first one is simply creating an anonymous function and assigning it to a variable some_func. So using some_func() will call the function.
The second one should be part of an object notation
var obj = {
show:function(value){
// some code here
}
};
So, obj.show() will call the function
In both cases, you are creating an anonymous function. But in the first case, you are simply assigning it to a variable. Whereas in the second case you are assigning it as a member of an object (possibly among many others).
First is local (or global) variable with assigned anonymous function.
var some_name = function(val) {};
some_name(42);
Second is property of some object (or function with label in front of it) with assigned anonymous function.
var obj = {
show: function(val) {},
// ...
};
obj.show(42);
Functions are first-class citizens in JavaScript, so you could assign them to variables and call those functions from variable.
You can even declare function with other name than variable which that function will be assigned to. It is handy when you want to define recursive methods, for example instead of this:
var obj = {
show: function(val) {
if (val > 0) { this.show(val-1); }
print(val);
}
};
you could write:
var obj = {
show: function f(val) {
if (val > 0) { f(val-1); }
print(val);
}
};
One way of doing it:
var some_func = function(value) {
// some code here
}
Another way:
function some_funct() {
}
Yet another way:
var some_object={};
some_object["some_func"] = function() {};
or:
var some_object={};
some_object.some_func = function() {};
In other words, they are many ways to declare a function in JS.
Your second example is not correct.
The first one is a function declaration assigned to a variable (at least it should be, despite the fact that it's missing the variable type declaration first), the second one is probably related to a object declaration.
They are called anonymous functions; you can read more about them here:
http://www.ejball.com/EdAtWork/2005/03/28/JavaScriptAnonymousFunctions.aspx
The first example creates a global variable (if a local variable of that name doesn't already exist) called some_func, and assigns a function to it, so that some_func() may be invoked.
The second example is a function declaration inside an object. it assigns a function as the value of the show property of an object:
var myObj = {
propString: "abc",
propFunction: function() { alert('test'); }
};
myObj.propFunction();
The first one...
some_func = function(value) {
// some code here
}
is declaring a variable and assigned an anonymous function to it, which is equivalent to...
function some_func (value) {
// some code here
}
The second one should look like this...
obj = {
show:function(value){
// some code here
}
}
// obj.show(value)
and equivalent to...
//pseudo code
class MyClass {
function show (value) {
// some code here
}
}
obj = new MyClass(); // obj.show(value)
Cheers

Categories