Can someone explain how would this look in TypeScript. Can it be done via imports?
JS:
var casper = require('casper').create({})
CoffeeScript:
casper = require("casper").create()
Visual Studio error: Error 1 The name ''casper'' does not exist in the current scope
import something = module('something');
var somevar = something.create({});
The point to note here I think is that TS today doesn't allow dotting off of module('something') so you have to break your statement into two.
I've put together a blog on using require.js with Typescript.
http://blorkfish.wordpress.com/2012/10/23/typescript-organizing-your-code-with-amd-modules-and-require-js/
You will be able to write code like this:
require["casper", (casper) => {
var item = casper.create();
};
If you use a module flag when you compile your TypeScript:
--module commonjs
Or
--module amd
It will convert imports into the appropriate module loading statement:
import something = module('something');
var somevar = something.create();
If that casper thing is something written in JavaScript, you need to declare a module for it too (or else it won't compile).
By convention, you put such declaration in a separate file named casper.d.ts:
declare module casper {
export class SomeClassInCasper {
}
export function someFunctionInCasper();
}
And you would include a reference to that casper.d.ts at the top above your import/module:
/// <reference path="casper.d.js" />
import casper = import("casper");
casper is installed through npm on the global scope.
typings install dt~casperjs --global --save
declare var casper; (on your code)
A short casper with typescript how to can be seen here:
https://medium.com/#guyavraham/smoke-tests-casper-js-with-typescript-8b01b504f3a4
I wrote a fairly comprehensive post on using Require in TypeScript. My approach does NOT require you to use the ugly
require(['dependency'], function() {
}
syntax. Instead, in TypeScript you get to use the convenient import x = module("x") syntax.
Related
Is it possible to pass options to ES6 imports?
How do you translate this:
var x = require('module')(someoptions);
to ES6?
There is no way to do this with a single import statement, it does not allow for invocations.
So you wouldn't call it directly, but you can basically do just the same what commonjs does with default exports:
// module.js
export default function(options) {
return {
// actual module
}
}
// main.js
import m from 'module';
var x = m(someoptions);
Alternatively, if you use a module loader that supports monadic promises, you might be able to do something like
System.import('module').ap(someoptions).then(function(x) {
…
});
With the new import operator it might become
const promise = import('module').then(m => m(someoptions));
or
const x = (await import('module'))(someoptions)
however you probably don't want a dynamic import but a static one.
Concept
Here's my solution using ES6
Very much inline with #Bergi's response, this is the "template" I use when creating imports that need parameters passed for class declarations. This is used on an isomorphic framework I'm writing, so will work with a transpiler in the browser and in node.js (I use Babel with Webpack):
./MyClass.js
export default (Param1, Param2) => class MyClass {
constructor(){
console.log( Param1 );
}
}
./main.js
import MyClassFactory from './MyClass.js';
let MyClass = MyClassFactory('foo', 'bar');
let myInstance = new MyClass();
The above will output foo in a console
EDIT
Real World Example
For a real world example, I'm using this to pass in a namespace for accessing other classes and instances within a framework. Because we're simply creating a function and passing the object in as an argument, we can use it with our class declaration likeso:
export default (UIFramework) => class MyView extends UIFramework.Type.View {
getModels() {
// ...
UIFramework.Models.getModelsForView( this._models );
// ...
}
}
The importation is a bit more complicated and automagical in my case given that it's an entire framework, but essentially this is what is happening:
// ...
getView( viewName ){
//...
const ViewFactory = require(viewFileLoc);
const View = ViewFactory(this);
return new View();
}
// ...
I hope this helps!
Building on #Bergi's answer to use the debug module using es6 would be the following
// original
var debug = require('debug')('http');
// ES6
import * as Debug from 'debug';
const debug = Debug('http');
// Use in your code as normal
debug('Hello World!');
I've landed on this thread looking up for somewhat similar and would like to propose a sort of solution, at least for some cases (but see Remark below).
Use case
I have a module, that is running some instantiation logic immediately upon loading. I do not like to call this init logic outside the module (which is the same as call new SomeClass(p1, p2) or new ((p1, p2) => class SomeClass { ... p1 ... p2 ... }) and alike).
I do like that this init logic will run once, kind of a singular instantiation flow, but once per some specific parametrized context.
Example
service.js has at its very basic scope:
let context = null; // meanwhile i'm just leaving this as is
console.log('initialized in context ' + (context ? context : 'root'));
Module A does:
import * as S from 'service.js'; // console has now "initialized in context root"
Module B does:
import * as S from 'service.js'; // console stays unchanged! module's script runs only once
So far so good: service is available for both modules but was initialized only once.
Problem
How to make it run as another instance and init itself once again in another context, say in Module C?
Solution?
This is what I'm thinking about: use query parameters. In the service we'd add the following:
let context = new URL(import.meta.url).searchParams.get('context');
Module C would do:
import * as S from 'service.js?context=special';
the module will be re-imported, it's basic init logic will run and we'll see in the console:
initialized in context special
Remark: I'd myself advise to NOT practice this approach much, but leave it as the last resort. Why? Module imported more than once is more of an exception than a rule, so it is somewhat unexpected behavior and as such may confuse a consumers or even break it's own 'singleton' paradigms, if any.
I believe you can use es6 module loaders.
http://babeljs.io/docs/learn-es6/
System.import("lib/math").then(function(m) {
m(youroptionshere);
});
You just need to add these 2 lines.
import xModule from 'module';
const x = xModule('someOptions');
Here's my take on this question using the debug module as an example;
On this module's npm page, you have this:
var debug = require('debug')('http')
In the line above, a string is passed to the module that is imported, to construct. Here's how you would do same in ES6
import { debug as Debug } from 'debug'
const debug = Debug('http');
Hope this helps someone out there.
I ran into an analogous syntax issue when trying to convert some CJS (require()) code to ESM (import) - here's what worked when I needed to import Redis:
CJS
const RedisStore = require('connect-redis')(session);
ESM Equivalent
import connectRedis from 'connect-redis';
const RedisStore = connectRedis(session);
You can pass parameters in the module specifier directly:
import * as Lib from "./lib?foo=bar";
cf: https://flaming.codes/en/posts/es6-import-with-parameters
I have created a number of String.prototype functions which for maintainability I'd like to have in its own file. That is, I'd like to include the file in a javascript project and thus have all the String functions defined.
I could create a module that exports each function, but then I'd have to assign each function as its own String prototype, yes? Something like
var myStringFunctions = require("myStringFunctions");
String.prototype.func1 = myStringFunctions.func1;
Is there a way to include such a file so that the prototypes are defined as part of the inclusion?
Try it, you will see your code and using require("./myStringFunctions"); works just fine.
./myStringFunctions.js
String.prototype.func1 = function() {
return this.toUpperCase(this);
};
./index.js
require("./myStringFunctions");
console.log("foo".func1()); // FOO
If your JS is going to run in the browser, you can use JS modules with the import and export syntax if you use a module bundling build tool like Webpack: https://webpack.js.org/ .
If your JS is running in a Node.js environment, modules are supported: https://www.w3schools.com/nodejs/nodejs_modules.asp
I have an external JS library with a global parameter:
function Thing() { ... }
...
var thing = new Thing();
There is a TypeScript definition file, so in thing.d.ts:
declare var thing: ThingStatic;
export default thing;
export interface ThingStatic {
functionOnThing(): ThingFoo;
}
export interface ThingFoo {
... and so on
Then I import this into my own TS files with:
import thing from 'thing';
import {ThingFoo} from 'thing';
...
const x:ThingFoo = thing.functionOnThing();
The problem is that transpiles to:
const thing_1 = require("thing");
...
thing_1.default.functionOnThing();
Which throws an error. I've asked about that in another question, and the suggestion is to use:
import * as thing from 'thing';
That doesn't fix it - it gives me thing.default in TS but then that's undefined once transpiled to JS.
I think there's something wrong with thing.d.ts - there must be a way to define a typed global parameter that can be imported.
How should I write thing.d.ts so that it represents the JS correctly and doesn't transpile to include default or other properties not actually present?
If the only way to use that library is by accessing its globals (as opposed to importing it as node module or amd or umd module), then the easiest way to go is have a declaration file without any exports at top level. Just declaring a variable is enough. To use it, you have to include that declaration file when compiling your typescript code, either by adding it to files or include in tsconfig.json, or directly on command line. You also have to include the library with a <script> tag at runtime.
Example: thing.d.ts
declare var thing: ThingStatic;
declare interface ThingStatic {
functionOnThing(): ThingFoo;
}
declare interface ThingFoo {
}
test-thing.ts
const x:ThingFoo = thing.functionOnThing();
can be compiled together
./node_modules/.bin/tsc test-thing.ts thing.d.ts
the result in test-thing.js:
var x = thing.functionOnThing();
See also this question about ambient declarations.
Note: there are module loaders out there that allow using global libraries as if they were modules, so it's possible to use import statement instead of <script> tag, but how to configure these module loaders to do that is another, more complicated question.
I'm writing a browser api with es6 (translated with babel). Since other js are going to call my api, I need to make my api accessible from the global (window) scope.
With module pattern in plain js (es5) I would have done something like this:
myApp.js
var myApp = (function(){
var a, b, c;
function setA(){
// set a
}
// other functions
return {
"setA": setA,
// ... other functions
};
}());
myAppExt.js
window.myApp = window.myApp || {};
(function(app){
app.Module1 = (function(){
return {
// methods of this module
};
}());
}(myApp));
With es6 we're not supposed to do something like this but to achieve the same objective I'm writing my app in this way:
myApp.js
import method1 from './common/module1.js'
import init from './folder/init.js'
import {method2, method3} from './folder/module2.js'
import log from './common/log.js'
const myApp = {};
window.myApp = myApp;
myApp.method1 = method1;
myApp.method2 = method2;
myApp.method3 = method3;
myApp.log = log;
init();
Is this the best way to achieve this goal or is there any better design solution?
If you are going to develop a library you will probably end up generating one single bundled file which contains all the contents of your library. To create a a a bundle you need a tool like webpack or browserify, both tools allow you to create your library in a way that can be consumed in many ways (AMD, CommonJS, global...).
So you need to create a root module:
myLibrary.js
import something from './framework/module1.js';
import somethingElse from './framework/module2.js';
// export public parts of your library
export {something};
export {somethingElse };
Then use webpack library setting:
{
output: {
// export itself to a global var
libraryTarget: "var",
// name of the global var: "Foo"
library: "Foo"
},
externals: {
// require("jquery") is external and available
// on the global var jQuery
"jquery": "jQuery"
}
}
More info here.
You can also use browserify standalone setting:
--standalone -s Generate a UMD bundle for the supplied export name.
This bundle works with other module systems and sets the name
given as a window global if no module system is found.
More info here.
I've actually merged the solution proposed from OweR ReLoaDeD with another I've found.
After configuring webpack to export global variable, instead of importing and then exporting methods I've exported directly what I needed to be available in the public api.
export {method} from './common/file1.js';
export * from './dir/file2.js'
export {anothermethod} from './common/file2.js
Thank you for the help
Is it possible to pass options to ES6 imports?
How do you translate this:
var x = require('module')(someoptions);
to ES6?
There is no way to do this with a single import statement, it does not allow for invocations.
So you wouldn't call it directly, but you can basically do just the same what commonjs does with default exports:
// module.js
export default function(options) {
return {
// actual module
}
}
// main.js
import m from 'module';
var x = m(someoptions);
Alternatively, if you use a module loader that supports monadic promises, you might be able to do something like
System.import('module').ap(someoptions).then(function(x) {
…
});
With the new import operator it might become
const promise = import('module').then(m => m(someoptions));
or
const x = (await import('module'))(someoptions)
however you probably don't want a dynamic import but a static one.
Concept
Here's my solution using ES6
Very much inline with #Bergi's response, this is the "template" I use when creating imports that need parameters passed for class declarations. This is used on an isomorphic framework I'm writing, so will work with a transpiler in the browser and in node.js (I use Babel with Webpack):
./MyClass.js
export default (Param1, Param2) => class MyClass {
constructor(){
console.log( Param1 );
}
}
./main.js
import MyClassFactory from './MyClass.js';
let MyClass = MyClassFactory('foo', 'bar');
let myInstance = new MyClass();
The above will output foo in a console
EDIT
Real World Example
For a real world example, I'm using this to pass in a namespace for accessing other classes and instances within a framework. Because we're simply creating a function and passing the object in as an argument, we can use it with our class declaration likeso:
export default (UIFramework) => class MyView extends UIFramework.Type.View {
getModels() {
// ...
UIFramework.Models.getModelsForView( this._models );
// ...
}
}
The importation is a bit more complicated and automagical in my case given that it's an entire framework, but essentially this is what is happening:
// ...
getView( viewName ){
//...
const ViewFactory = require(viewFileLoc);
const View = ViewFactory(this);
return new View();
}
// ...
I hope this helps!
Building on #Bergi's answer to use the debug module using es6 would be the following
// original
var debug = require('debug')('http');
// ES6
import * as Debug from 'debug';
const debug = Debug('http');
// Use in your code as normal
debug('Hello World!');
I've landed on this thread looking up for somewhat similar and would like to propose a sort of solution, at least for some cases (but see Remark below).
Use case
I have a module, that is running some instantiation logic immediately upon loading. I do not like to call this init logic outside the module (which is the same as call new SomeClass(p1, p2) or new ((p1, p2) => class SomeClass { ... p1 ... p2 ... }) and alike).
I do like that this init logic will run once, kind of a singular instantiation flow, but once per some specific parametrized context.
Example
service.js has at its very basic scope:
let context = null; // meanwhile i'm just leaving this as is
console.log('initialized in context ' + (context ? context : 'root'));
Module A does:
import * as S from 'service.js'; // console has now "initialized in context root"
Module B does:
import * as S from 'service.js'; // console stays unchanged! module's script runs only once
So far so good: service is available for both modules but was initialized only once.
Problem
How to make it run as another instance and init itself once again in another context, say in Module C?
Solution?
This is what I'm thinking about: use query parameters. In the service we'd add the following:
let context = new URL(import.meta.url).searchParams.get('context');
Module C would do:
import * as S from 'service.js?context=special';
the module will be re-imported, it's basic init logic will run and we'll see in the console:
initialized in context special
Remark: I'd myself advise to NOT practice this approach much, but leave it as the last resort. Why? Module imported more than once is more of an exception than a rule, so it is somewhat unexpected behavior and as such may confuse a consumers or even break it's own 'singleton' paradigms, if any.
I believe you can use es6 module loaders.
http://babeljs.io/docs/learn-es6/
System.import("lib/math").then(function(m) {
m(youroptionshere);
});
You just need to add these 2 lines.
import xModule from 'module';
const x = xModule('someOptions');
Here's my take on this question using the debug module as an example;
On this module's npm page, you have this:
var debug = require('debug')('http')
In the line above, a string is passed to the module that is imported, to construct. Here's how you would do same in ES6
import { debug as Debug } from 'debug'
const debug = Debug('http');
Hope this helps someone out there.
I ran into an analogous syntax issue when trying to convert some CJS (require()) code to ESM (import) - here's what worked when I needed to import Redis:
CJS
const RedisStore = require('connect-redis')(session);
ESM Equivalent
import connectRedis from 'connect-redis';
const RedisStore = connectRedis(session);
You can pass parameters in the module specifier directly:
import * as Lib from "./lib?foo=bar";
cf: https://flaming.codes/en/posts/es6-import-with-parameters