Javascript Regex for Javascript Regex and Digits - javascript

The title might seem a bit recursive, and indeed it is.
I am working on a Javascript which can highlight/color Javascript code displayed in HTML. Thus, in the Internet Browser, comments will be turned green, definitions (for, if, while, etc.) will be turned a dark blue and italic, numbers will be red, and so on for other elements. However, the coloring is not all that important.
I am trying to figure out two different regular expressions which have started to cause a minor headache.
1. Finding a regular expression using a regular expression
I want to find regular expressions within the script-tags of HTML using a Javascript, such as:
match(/findthis/i);
, where the regex part of course is "/findthis/i".
The rules are as follows:
Finding multiple occurrences (/g) is not important.
It must be on the same line (not /m).
Caseinsensitive (/i).
If a backward slash (ignore character) is followed directly by a forward slash, "/", the forward slash is part of the expression - not an escape character. E.g.: /itdoesntstop\/untilnow:/
Two forward slashes right next to each other (//) is: (A) At the beginning: Not a regex; it's a comment. (B) Later on: First slash is the end of the regex and the second slash is nothing but a character.
Regex continues until the line breaks or end of input (\n|$), or the escape character (second forward slash which complies with rule 4) is encountered. However, also as long as only alphabetic characters are encountered, following the second forward slash, they are considered part of the regex. E.g.: /aregex/allthisispartoftheregex
So far what I've got is this:
'\\/(?:[^\\/\\\\]|\\/\\*)*\\/([a-zA-Z]*)?'
However, it isn't consistent. Any suggestions?
2. Find digits (alphanumeric, floating) using a regular expression
Finding digits on their own is simple. However, finding floating numbers (with multiple periods) and letters including underscore is more of a challenge.
All of the below are considered numbers (a new number starts after each space):
3 3.1 3.1.4 3a 3.A 3.a1 3_.1
The rules:
Finding multiple occurrences (/g) is not important.
It must be on the same line (not /m).
Caseinsensitive (/i).
A number must begin with a digit. However, the number can be preceeded or followed by a non-word (\W) character. E.g.: "=9.9;" where "9.9" is the actual number. "a9" is not a number. A period before the number, ".9", is not considered part of the number and thus the actual number is "9".
Allowed characters: [a-zA-Z0-9_.]
What I've got:
'(^|\\W)\\d([a-zA-Z0-9_.]*?)(?=([^a-zA-Z0-9_.]|$))'
It doesn't work quite the way I want it.

For the first part, I think you are quite close. Here is what I would use (as a regex literal, to avoid all the double escapes):
/\/(?:[^\/\\\n\r]|\\.)+\/([a-z]*)/i
I don't know what you intended with your second alternative after the character class. But here the second alternative is used to consume backslashes and anything that follows them. The last part is important, so that you can recognize the regex ending in something like this: /backslash\\/. And the ? at the end of your regex was redundant. Otherwise this should be fine.
Test it here.
Your second regex is just fine for your specification. There are a few redundant elements though. The main thing you might want to do is capture everything but the possible first character:
/(?:^|\W)(\d[\w.]*)/i
Now the actual number (without the first character) will be in capturing group 1. Note that I removed the ungreediness and the lookahead, because greediness alone does exactly the same.
Test it here.

Related

Get integer number using regex in javascript

I am trying to write a regex to get only integer numbers e.g, 23, 234, 45, etc, and not select numbers with decimal points.
For Context :
I need it in a larger regex that I am writing to convert mixed fraction latex input
For example:
5\frac{7}{8}
But it should not select latex such as:
3.5\frac{7}{8}
The regex That I have so far is:
(^(.*)(?!(\.))(.*))\\frac{([^{}]+(?:{(?:[^{}]+)}|))}{([^{}]+(?:{(?:[^{}]+)}|))}
But it is for integer and decimal numbers alike. Need to change the regex for group1.
Maybe this will do it for you:
(?<!\d\.)\b(\d+)\\frac{([^{}]+(?:{(?:[^{}]+)}|))}{([^{}]+(?:{(?:[^{}]+)}|))}
It captures an integer expression before \fraq, unless it's preceded by a digit and a full stop.
(?<!\d\.) This ensures the number isn't preceded by a digit followed by a full stop, i.e.
the integer part of a floating.
\b Must be at the start of a number (to make sure we don't get a match with the end
of a multi digit number).
(\d+) Captures the integer number
\\frac Matches the string "\fraq"
The rest is the same as you original expression.
See it here at regex101.
Edit
Since there obviously are people out there, however unbelievable, that still haven't moved to a real browser ;) - the answer has to change to:
It depends of the syntax of latex, whether you can do it or not.
(And since I don't know that, I shouldn't have said anything in the first place ;)
The problem is that, without look behinds, you can't do it without matching characters outside the expression your interested in. In your regexr-example you clearly show that you want to be able to match expression not only at the beginning of strings, but also in the middle of the. Thus we need to be able to tell that the part before our match isn't the integer part of a decimal number. Now, doing this with matching isn't a problem. E.g.
(?:^|[^\d.])(\d+)\\frac{...
like Wiktor suggested in comments, will match if the expression is on the start of the line (^), or is preceded by something that isn't a decimal point or a digit ([^\d.]). That should do it. (Here at regex101.)
Well, as pointed out earlier, it depends on the syntax of latex. If two expressions can be directly adjacent, without any operators or stuff between them, you can't (as far as I can tell) do it with JS regex. Consider 1\fraq{0}{1}2\fraq{2}{3} (which I have no idea if it's syntactically correct). The first expression 1\fraq{0}{1} is a piece of a cake. But after that has been matched, we'd need to match a character before the second expression to verify the it doesn't start with a decimal number, but since the first expression already ate the characters, we can't. Because the test (?:^|[^\d.]) to verify that our expression doesn't start with a decimal number, would match one of the characters that actually belongs to our expression (the 2 in 2\fraq{2}{3}), thus making the match fail, because the remaining part doesn't start with the digit needed to satisfy the rest of the regex (\d+)\\frac{....
If, however, an expression always starts the string tested, or is preceded by and operator, or such, then it should be possible using
(?:^|[^\d.])(\d+)\\frac{([^{}]+(?:{(?:[^{}]+)})?)}{([^{}]+(?:{(?:[^{}]+)})?)}
Here at regex101.
(Sorry for my rambling)

JavaScript regular expression match amount

I'm trying to write a regular expression to match amounts. In my case, what I need is that either the amount should be a positive integer or if the decimal is used, it must be followed by one or two integers. So basically, the following are valid amounts:
34000
345.5
876.45
What I wrote was this: /[0-9]+(\.[0-9]{1,2}){0,1}/
My thinking was that by using parenthesis like so: (\.[0-9]{1,2}), I would be able to bundle the whole "decimal plus one or two integers" part. But it isn't happening. Among other problems, this regex is allowing stuff like 245. and 345.567 to slip through. :(
Help, please!
Your regular expression is good, but you need to match the beginning and end of the string. Otherwise, your regex can match only a portion of the string and still (correctly) return a match. To match the beginning of the string, use ^, for the end, use $.
Update: as Avinash has noted, you can replace {0,1} with ?. JS supports \d for digits, so the regex can be further simplified
Finally, since if are only testing against a regex, you can use a non-capturing group ( (?:...) instead of (...)), which offers better performance.
original:
/[0-9]+(\.[0-9]{1,2}){0,1}/.test('345.567')
Fixed, and faster ;)
/^\d+(?:\.\d{1,2})?$/.test('345.567')

Capture multiline content between two words in javascript with RegExp [duplicate]

I know it's possible to match a word and then reverse the matches using other tools (e.g. grep -v). However, is it possible to match lines that do not contain a specific word, e.g. hede, using a regular expression?
Input:
hoho
hihi
haha
hede
Code:
grep "<Regex for 'doesn't contain hede'>" input
Desired output:
hoho
hihi
haha
The notion that regex doesn't support inverse matching is not entirely true. You can mimic this behavior by using negative look-arounds:
^((?!hede).)*$
The regex above will match any string, or line without a line break, not containing the (sub)string 'hede'. As mentioned, this is not something regex is "good" at (or should do), but still, it is possible.
And if you need to match line break chars as well, use the DOT-ALL modifier (the trailing s in the following pattern):
/^((?!hede).)*$/s
or use it inline:
/(?s)^((?!hede).)*$/
(where the /.../ are the regex delimiters, i.e., not part of the pattern)
If the DOT-ALL modifier is not available, you can mimic the same behavior with the character class [\s\S]:
/^((?!hede)[\s\S])*$/
Explanation
A string is just a list of n characters. Before, and after each character, there's an empty string. So a list of n characters will have n+1 empty strings. Consider the string "ABhedeCD":
┌──┬───┬──┬───┬──┬───┬──┬───┬──┬───┬──┬───┬──┬───┬──┬───┬──┐
S = │e1│ A │e2│ B │e3│ h │e4│ e │e5│ d │e6│ e │e7│ C │e8│ D │e9│
└──┴───┴──┴───┴──┴───┴──┴───┴──┴───┴──┴───┴──┴───┴──┴───┴──┘
index 0 1 2 3 4 5 6 7
where the e's are the empty strings. The regex (?!hede). looks ahead to see if there's no substring "hede" to be seen, and if that is the case (so something else is seen), then the . (dot) will match any character except a line break. Look-arounds are also called zero-width-assertions because they don't consume any characters. They only assert/validate something.
So, in my example, every empty string is first validated to see if there's no "hede" up ahead, before a character is consumed by the . (dot). The regex (?!hede). will do that only once, so it is wrapped in a group, and repeated zero or more times: ((?!hede).)*. Finally, the start- and end-of-input are anchored to make sure the entire input is consumed: ^((?!hede).)*$
As you can see, the input "ABhedeCD" will fail because on e3, the regex (?!hede) fails (there is "hede" up ahead!).
Note that the solution to does not start with “hede”:
^(?!hede).*$
is generally much more efficient than the solution to does not contain “hede”:
^((?!hede).)*$
The former checks for “hede” only at the input string’s first position, rather than at every position.
If you're just using it for grep, you can use grep -v hede to get all lines which do not contain hede.
ETA Oh, rereading the question, grep -v is probably what you meant by "tools options".
Answer:
^((?!hede).)*$
Explanation:
^the beginning of the string,
( group and capture to \1 (0 or more times (matching the most amount possible)),
(?! look ahead to see if there is not,
hede your string,
) end of look-ahead,
. any character except \n,
)* end of \1 (Note: because you are using a quantifier on this capture, only the LAST repetition of the captured pattern will be stored in \1)
$ before an optional \n, and the end of the string
The given answers are perfectly fine, just an academic point:
Regular Expressions in the meaning of theoretical computer sciences ARE NOT ABLE do it like this. For them it had to look something like this:
^([^h].*$)|(h([^e].*$|$))|(he([^h].*$|$))|(heh([^e].*$|$))|(hehe.+$)
This only does a FULL match. Doing it for sub-matches would even be more awkward.
If you want the regex test to only fail if the entire string matches, the following will work:
^(?!hede$).*
e.g. -- If you want to allow all values except "foo" (i.e. "foofoo", "barfoo", and "foobar" will pass, but "foo" will fail), use: ^(?!foo$).*
Of course, if you're checking for exact equality, a better general solution in this case is to check for string equality, i.e.
myStr !== 'foo'
You could even put the negation outside the test if you need any regex features (here, case insensitivity and range matching):
!/^[a-f]oo$/i.test(myStr)
The regex solution at the top of this answer may be helpful, however, in situations where a positive regex test is required (perhaps by an API).
FWIW, since regular languages (aka rational languages) are closed under complementation, it's always possible to find a regular expression (aka rational expression) that negates another expression. But not many tools implement this.
Vcsn supports this operator (which it denotes {c}, postfix).
You first define the type of your expressions: labels are letter (lal_char) to pick from a to z for instance (defining the alphabet when working with complementation is, of course, very important), and the "value" computed for each word is just a Boolean: true the word is accepted, false, rejected.
In Python:
In [5]: import vcsn
c = vcsn.context('lal_char(a-z), b')
c
Out[5]: {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z} → 𝔹
then you enter your expression:
In [6]: e = c.expression('(hede){c}'); e
Out[6]: (hede)^c
convert this expression to an automaton:
In [7]: a = e.automaton(); a
finally, convert this automaton back to a simple expression.
In [8]: print(a.expression())
\e+h(\e+e(\e+d))+([^h]+h([^e]+e([^d]+d([^e]+e[^]))))[^]*
where + is usually denoted |, \e denotes the empty word, and [^] is usually written . (any character). So, with a bit of rewriting ()|h(ed?)?|([^h]|h([^e]|e([^d]|d([^e]|e.)))).*.
You can see this example here, and try Vcsn online there.
Here's a good explanation of why it's not easy to negate an arbitrary regex. I have to agree with the other answers, though: if this is anything other than a hypothetical question, then a regex is not the right choice here.
With negative lookahead, regular expression can match something not contains specific pattern. This is answered and explained by Bart Kiers. Great explanation!
However, with Bart Kiers' answer, the lookahead part will test 1 to 4 characters ahead while matching any single character. We can avoid this and let the lookahead part check out the whole text, ensure there is no 'hede', and then the normal part (.*) can eat the whole text all at one time.
Here is the improved regex:
/^(?!.*?hede).*$/
Note the (*?) lazy quantifier in the negative lookahead part is optional, you can use (*) greedy quantifier instead, depending on your data: if 'hede' does present and in the beginning half of the text, the lazy quantifier can be faster; otherwise, the greedy quantifier be faster. However if 'hede' does not present, both would be equal slow.
Here is the demo code.
For more information about lookahead, please check out the great article: Mastering Lookahead and Lookbehind.
Also, please check out RegexGen.js, a JavaScript Regular Expression Generator that helps to construct complex regular expressions. With RegexGen.js, you can construct the regex in a more readable way:
var _ = regexGen;
var regex = _(
_.startOfLine(),
_.anything().notContains( // match anything that not contains:
_.anything().lazy(), 'hede' // zero or more chars that followed by 'hede',
// i.e., anything contains 'hede'
),
_.endOfLine()
);
Benchmarks
I decided to evaluate some of the presented Options and compare their performance, as well as use some new Features.
Benchmarking on .NET Regex Engine: http://regexhero.net/tester/
Benchmark Text:
The first 7 lines should not match, since they contain the searched Expression, while the lower 7 lines should match!
Regex Hero is a real-time online Silverlight Regular Expression Tester.
XRegex Hero is a real-time online Silverlight Regular Expression Tester.
Regex HeroRegex HeroRegex HeroRegex HeroRegex Hero is a real-time online Silverlight Regular Expression Tester.
Regex Her Regex Her Regex Her Regex Her Regex Her Regex Her Regex Hero is a real-time online Silverlight Regular Expression Tester.
Regex Her is a real-time online Silverlight Regular Expression Tester.Regex Hero
egex Hero egex Hero egex Hero egex Hero egex Hero egex Hero Regex Hero is a real-time online Silverlight Regular Expression Tester.
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRegex Hero is a real-time online Silverlight Regular Expression Tester.
Regex Her
egex Hero
egex Hero is a real-time online Silverlight Regular Expression Tester.
Regex Her is a real-time online Silverlight Regular Expression Tester.
Regex Her Regex Her Regex Her Regex Her Regex Her Regex Her is a real-time online Silverlight Regular Expression Tester.
Nobody is a real-time online Silverlight Regular Expression Tester.
Regex Her o egex Hero Regex Hero Reg ex Hero is a real-time online Silverlight Regular Expression Tester.
Results:
Results are Iterations per second as the median of 3 runs - Bigger Number = Better
01: ^((?!Regex Hero).)*$ 3.914 // Accepted Answer
02: ^(?:(?!Regex Hero).)*$ 5.034 // With Non-Capturing group
03: ^(?!.*?Regex Hero).* 7.356 // Lookahead at the beginning, if not found match everything
04: ^(?>[^R]+|R(?!egex Hero))*$ 6.137 // Lookahead only on the right first letter
05: ^(?>(?:.*?Regex Hero)?)^.*$ 7.426 // Match the word and check if you're still at linestart
06: ^(?(?=.*?Regex Hero)(?#fail)|.*)$ 7.371 // Logic Branch: Find Regex Hero? match nothing, else anything
P1: ^(?(?=.*?Regex Hero)(*FAIL)|(*ACCEPT)) ????? // Logic Branch in Perl - Quick FAIL
P2: .*?Regex Hero(*COMMIT)(*FAIL)|(*ACCEPT) ????? // Direct COMMIT & FAIL in Perl
Since .NET doesn't support action Verbs (*FAIL, etc.) I couldn't test the solutions P1 and P2.
Summary:
The overall most readable and performance-wise fastest solution seems to be 03 with a simple negative lookahead. This is also the fastest solution for JavaScript, since JS does not support the more advanced Regex Features for the other solutions.
Not regex, but I've found it logical and useful to use serial greps with pipe to eliminate noise.
eg. search an apache config file without all the comments-
grep -v '\#' /opt/lampp/etc/httpd.conf # this gives all the non-comment lines
and
grep -v '\#' /opt/lampp/etc/httpd.conf | grep -i dir
The logic of serial grep's is (not a comment) and (matches dir)
Since no one else has given a direct answer to the question that was asked, I'll do it.
The answer is that with POSIX grep, it's impossible to literally satisfy this request:
grep "<Regex for 'doesn't contain hede'>" input
The reason is that with no flags, POSIX grep is only required to work with Basic Regular Expressions (BREs), which are simply not powerful enough for accomplishing that task, because of lack of alternation in subexpressions. The only kind of alternation it supports involves providing multiple regular expressions separated by newlines, and that doesn't cover all regular languages, e.g. there's no finite collection of BREs that matches the same regular language as the extended regular expression (ERE) ^(ab|cd)*$.
However, GNU grep implements extensions that allow it. In particular, \| is the alternation operator in GNU's implementation of BREs. If your regular expression engine supports alternation, parentheses and the Kleene star, and is able to anchor to the beginning and end of the string, that's all you need for this approach. Note however that negative sets [^ ... ] are very convenient in addition to those, because otherwise, you need to replace them with an expression of the form (a|b|c| ... ) that lists every character that is not in the set, which is extremely tedious and overly long, even more so if the whole character set is Unicode.
Thanks to formal language theory, we get to see how such an expression looks like. With GNU grep, the answer would be something like:
grep "^\([^h]\|h\(h\|eh\|edh\)*\([^eh]\|e[^dh]\|ed[^eh]\)\)*\(\|h\(h\|eh\|edh\)*\(\|e\|ed\)\)$" input
(found with Grail and some further optimizations made by hand).
You can also use a tool that implements EREs, like egrep, to get rid of the backslashes, or equivalently, pass the -E flag to POSIX grep (although I was under the impression that the question required avoiding any flags to grep whatsoever):
egrep "^([^h]|h(h|eh|edh)*([^eh]|e[^dh]|ed[^eh]))*(|h(h|eh|edh)*(|e|ed))$" input
Here's a script to test it (note it generates a file testinput.txt in the current directory). Several of the expressions presented in other answers fail this test.
#!/bin/bash
REGEX="^\([^h]\|h\(h\|eh\|edh\)*\([^eh]\|e[^dh]\|ed[^eh]\)\)*\(\|h\(h\|eh\|edh\)*\(\|e\|ed\)\)$"
# First four lines as in OP's testcase.
cat > testinput.txt <<EOF
hoho
hihi
haha
hede
h
he
ah
head
ahead
ahed
aheda
ahede
hhede
hehede
hedhede
hehehehehehedehehe
hedecidedthat
EOF
diff -s -u <(grep -v hede testinput.txt) <(grep "$REGEX" testinput.txt)
In my system it prints:
Files /dev/fd/63 and /dev/fd/62 are identical
as expected.
For those interested in the details, the technique employed is to convert the regular expression that matches the word into a finite automaton, then invert the automaton by changing every acceptance state to non-acceptance and vice versa, and then converting the resulting FA back to a regular expression.
As everyone has noted, if your regular expression engine supports negative lookahead, the regular expression is much simpler. For example, with GNU grep:
grep -P '^((?!hede).)*$' input
However, this approach has the disadvantage that it requires a backtracking regular expression engine. This makes it unsuitable in installations that are using secure regular expression engines like RE2, which is one reason to prefer the generated approach in some circumstances.
Using Kendall Hopkins' excellent FormalTheory library, written in PHP, which provides a functionality similar to Grail, and a simplifier written by myself, I've been able to write an online generator of negative regular expressions given an input phrase (only alphanumeric and space characters currently supported, and the length is limited): http://www.formauri.es/personal/pgimeno/misc/non-match-regex/
For hede it outputs:
^([^h]|h(h|e(h|dh))*([^eh]|e([^dh]|d[^eh])))*(h(h|e(h|dh))*(ed?)?)?$
which is equivalent to the above.
with this, you avoid to test a lookahead on each positions:
/^(?:[^h]+|h++(?!ede))*+$/
equivalent to (for .net):
^(?>(?:[^h]+|h+(?!ede))*)$
Old answer:
/^(?>[^h]+|h+(?!ede))*$/
Aforementioned (?:(?!hede).)* is great because it can be anchored.
^(?:(?!hede).)*$ # A line without hede
foo(?:(?!hede).)*bar # foo followed by bar, without hede between them
But the following would suffice in this case:
^(?!.*hede) # A line without hede
This simplification is ready to have "AND" clauses added:
^(?!.*hede)(?=.*foo)(?=.*bar) # A line with foo and bar, but without hede
^(?!.*hede)(?=.*foo).*bar # Same
An, in my opinon, more readable variant of the top answer:
^(?!.*hede)
Basically, "match at the beginning of the line if and only if it does not have 'hede' in it" - so the requirement translated almost directly into regex.
Of course, it's possible to have multiple failure requirements:
^(?!.*(hede|hodo|hada))
Details: The ^ anchor ensures the regex engine doesn't retry the match at every location in the string, which would match every string.
The ^ anchor in the beginning is meant to represent the beginning of the line. The grep tool matches each line one at a time, in contexts where you're working with a multiline string, you can use the "m" flag:
/^(?!.*hede)/m # JavaScript syntax
or
(?m)^(?!.*hede) # Inline flag
Here's how I'd do it:
^[^h]*(h(?!ede)[^h]*)*$
Accurate and more efficient than the other answers. It implements Friedl's "unrolling-the-loop" efficiency technique and requires much less backtracking.
Another option is that to add a positive look-ahead and check if hede is anywhere in the input line, then we would negate that, with an expression similar to:
^(?!(?=.*\bhede\b)).*$
with word boundaries.
The expression is explained on the top right panel of regex101.com, if you wish to explore/simplify/modify it, and in this link, you can watch how it would match against some sample inputs, if you like.
RegEx Circuit
jex.im visualizes regular expressions:
If you want to match a character to negate a word similar to negate character class:
For example, a string:
<?
$str="aaa bbb4 aaa bbb7";
?>
Do not use:
<?
preg_match('/aaa[^bbb]+?bbb7/s', $str, $matches);
?>
Use:
<?
preg_match('/aaa(?:(?!bbb).)+?bbb7/s', $str, $matches);
?>
Notice "(?!bbb)." is neither lookbehind nor lookahead, it's lookcurrent, for example:
"(?=abc)abcde", "(?!abc)abcde"
The OP did not specify or Tag the post to indicate the context (programming language, editor, tool) the Regex will be used within.
For me, I sometimes need to do this while editing a file using Textpad.
Textpad supports some Regex, but does not support lookahead or lookbehind, so it takes a few steps.
If I am looking to retain all lines that Do NOT contain the string hede, I would do it like this:
1. Search/replace the entire file to add a unique "Tag" to the beginning of each line containing any text.
Search string:^(.)
Replace string:<##-unique-##>\1
Replace-all
2. Delete all lines that contain the string hede (replacement string is empty):
Search string:<##-unique-##>.*hede.*\n
Replace string:<nothing>
Replace-all
3. At this point, all remaining lines Do NOT contain the string hede. Remove the unique "Tag" from all lines (replacement string is empty):
Search string:<##-unique-##>
Replace string:<nothing>
Replace-all
Now you have the original text with all lines containing the string hede removed.
If I am looking to Do Something Else to only lines that Do NOT contain the string hede, I would do it like this:
1. Search/replace the entire file to add a unique "Tag" to the beginning of each line containing any text.
Search string:^(.)
Replace string:<##-unique-##>\1
Replace-all
2. For all lines that contain the string hede, remove the unique "Tag":
Search string:<##-unique-##>(.*hede)
Replace string:\1
Replace-all
3. At this point, all lines that begin with the unique "Tag", Do NOT contain the string hede. I can now do my Something Else to only those lines.
4. When I am done, I remove the unique "Tag" from all lines (replacement string is empty):
Search string:<##-unique-##>
Replace string:<nothing>
Replace-all
Since the introduction of ruby-2.4.1, we can use the new Absent Operator in Ruby’s Regular Expressions
from the official doc
(?~abc) matches: "", "ab", "aab", "cccc", etc.
It doesn't match: "abc", "aabc", "ccccabc", etc.
Thus, in your case ^(?~hede)$ does the job for you
2.4.1 :016 > ["hoho", "hihi", "haha", "hede"].select{|s| /^(?~hede)$/.match(s)}
=> ["hoho", "hihi", "haha"]
Through PCRE verb (*SKIP)(*F)
^hede$(*SKIP)(*F)|^.*$
This would completely skips the line which contains the exact string hede and matches all the remaining lines.
DEMO
Execution of the parts:
Let us consider the above regex by splitting it into two parts.
Part before the | symbol. Part shouldn't be matched.
^hede$(*SKIP)(*F)
Part after the | symbol. Part should be matched.
^.*$
PART 1
Regex engine will start its execution from the first part.
^hede$(*SKIP)(*F)
Explanation:
^ Asserts that we are at the start.
hede Matches the string hede
$ Asserts that we are at the line end.
So the line which contains the string hede would be matched. Once the regex engine sees the following (*SKIP)(*F) (Note: You could write (*F) as (*FAIL)) verb, it skips and make the match to fail. | called alteration or logical OR operator added next to the PCRE verb which inturn matches all the boundaries exists between each and every character on all the lines except the line contains the exact string hede. See the demo here. That is, it tries to match the characters from the remaining string. Now the regex in the second part would be executed.
PART 2
^.*$
Explanation:
^ Asserts that we are at the start. ie, it matches all the line starts except the one in the hede line. See the demo here.
.* In the Multiline mode, . would match any character except newline or carriage return characters. And * would repeat the previous character zero or more times. So .* would match the whole line. See the demo here.
Hey why you added .* instead of .+ ?
Because .* would match a blank line but .+ won't match a blank. We want to match all the lines except hede , there may be a possibility of blank lines also in the input . so you must use .* instead of .+ . .+ would repeat the previous character one or more times. See .* matches a blank line here.
$ End of the line anchor is not necessary here.
The TXR Language supports regex negation.
$ txr -c '#(repeat)
#{nothede /~hede/}
#(do (put-line nothede))
#(end)' Input
A more complicated example: match all lines that start with a and end with z, but do not contain the substring hede:
$ txr -c '#(repeat)
#{nothede /a.*z&~.*hede.*/}
#(do (put-line nothede))
#(end)' -
az <- echoed
az
abcz <- echoed
abcz
abhederz <- not echoed; contains hede
ahedez <- not echoed; contains hede
ace <- not echoed; does not end in z
ahedz <- echoed
ahedz
Regex negation is not particularly useful on its own but when you also have intersection, things get interesting, since you have a full set of boolean set operations: you can express "the set which matches this, except for things which match that".
It may be more maintainable to two regexes in your code, one to do the first match, and then if it matches run the second regex to check for outlier cases you wish to block for example ^.*(hede).* then have appropriate logic in your code.
OK, I admit this is not really an answer to the posted question posted and it may also use slightly more processing than a single regex. But for developers who came here looking for a fast emergency fix for an outlier case then this solution should not be overlooked.
The below function will help you get your desired output
<?PHP
function removePrepositions($text){
$propositions=array('/\bfor\b/i','/\bthe\b/i');
if( count($propositions) > 0 ) {
foreach($propositions as $exceptionPhrase) {
$text = preg_replace($exceptionPhrase, '', trim($text));
}
$retval = trim($text);
}
return $retval;
}
?>
I wanted to add another example for if you are trying to match an entire line that contains string X, but does not also contain string Y.
For example, let's say we want to check if our URL / string contains "tasty-treats", so long as it does not also contain "chocolate" anywhere.
This regex pattern would work (works in JavaScript too)
^(?=.*?tasty-treats)((?!chocolate).)*$
(global, multiline flags in example)
Interactive Example: https://regexr.com/53gv4
Matches
(These urls contain "tasty-treats" and also do not contain "chocolate")
example.com/tasty-treats/strawberry-ice-cream
example.com/desserts/tasty-treats/banana-pudding
example.com/tasty-treats-overview
Does Not Match
(These urls contain "chocolate" somewhere - so they won't match even though they contain "tasty-treats")
example.com/tasty-treats/chocolate-cake
example.com/home-cooking/oven-roasted-chicken
example.com/tasty-treats/banana-chocolate-fudge
example.com/desserts/chocolate/tasty-treats
example.com/chocolate/tasty-treats/desserts
As long as you are dealing with lines, simply mark the negative matches and target the rest.
In fact, I use this trick with sed because ^((?!hede).)*$ looks not supported by it.
For the desired output
Mark the negative match: (e.g. lines with hede), using a character not included in the whole text at all. An emoji could probably be a good choice for this purpose.
s/(.*hede)/🔒\1/g
Target the rest (the unmarked strings: e.g. lines without hede). Suppose you want to keep only the target and delete the rest (as you want):
s/^🔒.*//g
For a better understanding
Suppose you want to delete the target:
Mark the negative match: (e.g. lines with hede), using a character not included in the whole text at all. An emoji could probably be a good choice for this purpose.
s/(.*hede)/🔒\1/g
Target the rest (the unmarked strings: e.g. lines without hede). Suppose you want to delete the target:
s/^[^🔒].*//g
Remove the mark:
s/🔒//g
^((?!hede).)*$ is an elegant solution, except since it consumes characters you won't be able to combine it with other criteria. For instance, say you wanted to check for the non-presence of "hede" and the presence of "haha." This solution would work because it won't consume characters:
^(?!.*\bhede\b)(?=.*\bhaha\b)
How to use PCRE's backtracking control verbs to match a line not containing a word
Here's a method that I haven't seen used before:
/.*hede(*COMMIT)^|/
How it works
First, it tries to find "hede" somewhere in the line. If successful, at this point, (*COMMIT) tells the engine to, not only not backtrack in the event of a failure, but also not to attempt any further matching in that case. Then, we try to match something that cannot possibly match (in this case, ^).
If a line does not contain "hede" then the second alternative, an empty subpattern, successfully matches the subject string.
This method is no more efficient than a negative lookahead, but I figured I'd just throw it on here in case someone finds it nifty and finds a use for it for other, more interesting applications.
Simplest thing that I could find would be
[^(hede)]
Tested at https://regex101.com/
You can also add unit-test cases on that site
A simpler solution is to use the not operator !
Your if statement will need to match "contains" and not match "excludes".
var contains = /abc/;
var excludes =/hede/;
if(string.match(contains) && !(string.match(excludes))){ //proceed...
I believe the designers of RegEx anticipated the use of not operators.

Find out the position where a regular expression failed

I'm trying to write a lexer in JavaScript for finding tokens of a simple domain-specific language. I started with a simple implementation which just tries to match subsequent regexps from the current position in a line to find out whether it matches some token format and accept it then.
The problem is that when something doesn't match inside such regexp, the whole regexp fails, so I don't know which character exactly caused it to fail.
Is there any way to find out the position in the string which caused the regular expression to fail?
INB4: I'm not asking about debugging my regexp and verifying its correctness. It is correct already, matches correct strings and drops incorrect ones. I just want to know programmatically where exactly the regexp stopped matching, to find out the position of a character which was incorrect in the user input, and how much of them were OK.
Is there some way to do it with just simple regexps instead of going on with implementing a full-blown finite state automaton?
Short answer
There is no such thing as a "position in the string that causes the
regular expression to fail".
However, I will show you an approach to answer the reverse question:
At which token in the regex did the engine become unable to match the
string?
Discussion
In my view, the question of the position in the string which caused the regular expression to fail is upside-down. As the engine moves down the string with the left hand and the pattern with the right hand, a regex token that matches six characters one moment can later, because of quantifiers and backtracking, be reduced to matching zero characters the next—or expanded to match ten.
In my view, a more proper question would be:
At which token in the regex did the engine become unable to match the
string?
For instance, consider the regex ^\w+\d+$ and the string abc132z.
The \w+ can actually match the entire string. Yet, the entire regex fails. Does it make sense to say that the regex fails at the end of the string? I don't think so. Consider this.
Initially, \w+ will match abc132z. Then the engine advances to the next token: \d+. At this stage, the engine backtracks in the string, gradually letting the \w+ give up the 2z (so that the \w+ now only corresponds to abc13), allowing the \d+ to match 2.
At this stage, the $ assertion fails as the z is left. The engine backtracks, letting the \w+, give up the 3 character, then the 1 (so that the \w+ now only corresponds to abc), eventually allowing the \d+ to match 132. At each step, the engine tries the $ assertion and fails. Depending on engine internals, more backtracking may occur: the \d+ will give up the 2 and the 3 once again, then the \w+ will give up the c and the b. When the engine finally gives up, the \w+ only matches the initial a. Can you say that the regex "fails on the "3"? On the "b"?
No. If you're looking at the regex pattern from left to right, you can argue that it fails on the $, because it's the first token we were not able to add to the match. Bear in mind that there are other ways to argue this.
Lower, I'll give you a screenshot to visualize this. But first, let's see if we can answer the other question.
The Other Question
Are there techniques that allow us to answer the other question:
At which token in the regex did the engine become unable to match the
string?
It depends on your regex. If you are able to slice your regex into clean components, then you can devise an expression with a series of optional lookaheads inside capture groups, allowing the match to always succeed. The first unset capture group is the one that caused the failure.
Javascript is a bit stingy on optional lookaheads, but you can write something like this:
^(?:(?=(\w+)))?(?:(?=(\w+\d+)))?(?:(?=(\w+\d+$)))?.
In PCRE, .NET, Python... you could write this more compactly:
^(?=(\w+))?(?=(\w+\d+))?(?=(\w+\d+$))?.
What happens here? Each lookahead builds incrementally on the last one, adding one token at a time. Therefore we can test each token separately. The dot at the end is an optional flourish for visual feedback: we can see in a debugger that at least one character is matched, but we don't care about that character, we only care about the capture groups.
Group 1 tests the \w+ token
Group 2 seems to test \w+\d+, therefore, incrementally, it tests the \d+ token
Group 3 seems to test \w+\d+$, therefore, incrementally, it tests the $ token
There are three capture groups. If all three are set, the match is a full success. If only Group 3 is not set (as with abc123a), you can say that the $ caused the failure. If Group 1 is set but not Group 2 (as with abc), you can say that the \d+ caused the failure.
For reference: Inside View of a Failure Path
For what it's worth, here is a view of the failure path from the RegexBuddy debugger.
You can use a negated character set RegExp,
[^xyz]
[^a-c]
A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen, but if the hyphen appears as the first
or last character enclosed in the square brackets it is taken as a
literal hyphen to be included in the character set as a normal
character.
index property of String.prototype.match()
The returned Array has an extra input property, which contains the
original string that was parsed. In addition, it has an index
property, which represents the zero-based index of the match in the
string.
For example to log index where digit is matched for RegExp /[^a-zA-z]/ in string aBcD7zYx
var re = /[^a-zA-Z]/;
var str = "aBcD7zYx";
var i = str.match(re).index;
console.log(i); // 4
Is there any way to find out the position in the string which caused the regular expression to fail?
No, there isn't. A Regex either matches or doesn't. Nothing in between.
Partial Expressions can match, but the whole pattern doesnt. So the engine always needs to evaluates the whole expression:
Take the String Hello my World and the Pattern /Hello World/. While each word will match individually, the whole Expression fails. You cannot tell whether Hello or World matched - independent, both do. Also the whitespace between them is available.

Regular expressions and regex special characters in javascript

I have the following code:
var html = "<div class='test'><b>Hello</b> <i>world!</i></div>";
var results = html.match(/<(\/?) (\w+) ([^>]*?)>/);
About the three sets of parenthesis:
First mean: forward slash or nothing.
Second mean: one or more alphanumeric characters.
Third mean: anything but '>' then I don't understand the '*?' !
Also how do I interpret the fact that there are three sets of parenthesis separated by white spaces?
Regards,
* means "match as much as possible" (possibly zero characters) of the previously defined literal, ? means: match just enough so that the RegExp returns a match.
Example:
String:
Tester>
[^>]*
Tester
[^>]*?
<empty string>
[^>]*e
Teste
[^>]*?e
Te (Including T is required to produce a valid match)
In your case:
String:
<input value=">"> junk
[^>]*>
<input value=">">
[^>]*?>
<input value=">
An asterisk (*) means match the preceding bit zero or more times. The preceding bit is [^>], meaning anything but a >. As #user278064 says, the ? is redundant. It's meant to make the * non-greedy, but there's no need as the [^>] already specifies what the * should refer to. (You could replace [^>] with a . (full-stop/period) which would match any character, then the ? would make sure it matches anything until >.)
As for the spaces, they shouldn't be there... they literally match spaces, which I don't think you want.
*? in regex is a "lazy star".
A star means "repeat the previous item zero or more times". The previous item in this case is a character class that defines "any character except >".
By default a star on its own is "greedy", which means that it will match as many characters as possible while still meeting the criteria for the rest of the expression around it.
Changing it to a lazy star by adding the question mark means that it will instead match as few characters as possible while still meeting the rest of the criteria.
In the case of your expression, this will in fact make no difference at all to the actual results, because you the character to match immediately after the star is a >, which is the exact opposite of the previous match. This means that the expression will always match the same result for the [^>]* regardless of whether it is lazy or greedy.
In other regular expressions, the difference is more important because greedy expressions can swallow parts of the string that would have otherwise matched later in the expression.
However, although there may be no difference to the result, there may still be a difference between greedy and lazy expressions, because the different ways in which they are processed can result in the expressions running at different speeds. Again, I don't think it will make much different in your case, but in some cases it can make a big impact.
I recommend reading up on regex at http://www.regular-expressions.info/ -- it's got an excellent reference table for all the regex syntax you're likely to need, and articles on many of the difficult topics.

Categories