I need to edit the function which locates inside of the constructor.
Example:
some.thing = function() {
this.somefn = function() { // this is the function that I need to fix
...
}
}
But function should be edited not just only for a single object (new obj = some.thing();) but also for any created objects by this constructor.
So is there any way to edit such inner-functions?
Here is a solution based on prototype:
var Something = function () {
this.f = function () {
console.log("Something");
};
};
var Old = Something;
var Something = function () {
Old.apply(this);
this.f = function () {
console.log("New");
};
};
Something.prototype = new Old();
var s = new Something();
s.f(); // prints "New"
The solutions seem just a little too obvious, so I'm wondering if the trouble is that you don't have access to the original code, and you need a more dynamic solution.
If so, one option may be to override the constructor with your own constructor, and have it call the original, and then update the object.
Original code:
some.thing = function() {
this.somefn = function() { // this is the function that I need to fix
...
}
}
Your code:
// cache a reference to the original constructor
var _thing = some.thing;
// your constructor
some.thing = function() {
// invoke the original constructor on the new object.
_thing.apply(this, arguments);
this.somefn = function() { /*your updated function*/ };
};
// maintain inheritance
some.thing.prototype = Object.create(some.thing.prototype);
// make an instance
var theThing = new some.thing();
Now you're getting the benefit of the original constructor and prototype chain, but you're injecting your own function on to the objects being created.
Only trouble may be that the original function you replaced could make special use of the original constructor's variable scope. If that's the case, there would be an issue to resolve.
It would be possible to retain and invoke the original method that you overwrote before invoking yours. Not sure if this situation calls for that or not.
I exactly know your need cause last week I passed through it. I just implemented a complete inheritance model in javascript and as far as I remember, I had a problem with overriding constructors and calling the parent class's ctor when child class is initializing.
So I just solved the problem with modifing some points in my design and it's now working like a charm! (something like C# but in Javascript)
By the way, I don't suggest you to change a method contents this way, but here is a way to do that (I myself did not do that this way and AGIAIN I DO NOT RECOMMEND IT. THERE ARE MANY OTHER WAYS, BUT THIS IS THE EASIEST):
var test = function() { /*InjectionPlace*/ };
eval("var newTest = " + test.toString().replace(
"/*InjectionPlace*/",
"var i = 10; alert(i);"
));
test();
newTest();
Cheers
Related
When I try a code that is structured as followed:
function foo(bar) {
this.bar = bar;
this.rec = function(e) {
return function() {
var elem = $('');
var new_foo = new foo(elem);
};
};
this.init = function() {
this.bar.click(this.rec());
};
}
var obj = new foo($(''));
I get TypeError: foo is not a constructor
I'm thinking that it has to do with scope, but I don't know if what I'm trying to do is even possible. Is there a way for me to create a new instance of the same class from within the click function that is also inside the same class? Or am I just going about this the wrong way?
Edit: as some pointed out i was replacing the function, but that was just a typo in this example, that doesn't happen in the final code where I'm getting the problem. But thank you for pointing it out, Im editing it now.
var foo = new foo($(''));
You're overwriting the foo constructor function with an instance of foo.
Don't do that. Use a different variable name.
I am trying to understand better the use of that and this in JavaScript. I am following Douglas Crockford's tutorial here: http://javascript.crockford.com/private.html
but I am confused regarding a couple of things. I have given an example below, and I would like to know if I am making a correct use of them:
function ObjectC()
{
//...
}
function ObjectA(givenB)
{
ObjectC.call(this); //is the use of this correct here or do we need that?
var aa = givenB;
var that = this;
function myA ()
{
that.getA(); //is the use of that correct or do we need this?
}
this.getA = function() //is the use of this correct?
{
console.log("ObjectA");
};
}
function ObjectB()
{
var that = this;
var bb = new ObjectA(that); //is the use of that correct or do we need this?
this.getB = function()
{
return bb;
};
that.getB(); //is the use of that correct or do we need this?
}
Note this is just an example.
this in JavaScript always refers to current object, method of which was called. But sometimes you need to access this of your object in deeper. For example, in callbacks. Like so:
function MyClass() {
this.a = 10;
this.do = function() {
http.get('blablabla', function(data) {
this.a = data.new_a;
});
};
}
It will not work, because this in callback may refer to http, to some dom element or just window(which is really common). So, it is common solution to define self or that, an alias for this or your object, so you can refer it anywhere inside.
function MyClass() {
var self = this;
this.a = 10;
this.do = function() {
http.get('blablabla', function(data) {
self.a = data.new_a;
});
};
}
This should give you vision why it is used and how it should be used.
There is no other reasons(currect me if I'm wrong) to create special variable, you can use this to send your object to other objects and do things, many assignments, such logic, wow...
ObjectC.call(this); //is the use of this correct here or do we need that?
The first thing you need to understand is how the this keyword works. It's value depends on how the function/method/constructor is called.
In this case, function ObjectA is a constructor, so you can just use this inside the code of it. In fact, with var that = this; you declare them to be absolutely identical (unless you use that before assigning to it).
function myA() {
that.getA(); //is the use of that correct or do we need this?
}
Again, it depends on how the function is called - which you unfortunately have not show us. If if was a method of the instance, this would have been fine; but but it seems you will need to use that.
this.getA = function() //is the use of this correct?
As stated above, using that would not make any difference.
var bb = new ObjectA(that) //is the use of that correct or do we need this?
var that = this;
that is undefined when it is used here. And it would be supposed to have the same value as this anyway. Better use this.
that.getB(); //is the use of that correct or do we need this?
Again, both have the same effect. But since you don't need that, you should just use this.
Everything is correct except for :
function ObjectB()
{
var bb = new ObjectA(that) //this is wrong
var that = this;
this.getB = function()
{
return bb;
};
that.getB();
}
You are missing ; and that isn't declare.
You need that (in your case, this is the variable name you use) when you want to use this in another scope :
function ObjectB()
{
var that = this;
// here 'this' is good
function()
{
// Here 'this' doesn't refer to the 'this' you use in function ObjectB()
// It's not the same scope
// You'll need to use 'that' (any variable from the ObjectB function that refers to 'this')
};
// Here 'that' = 'this', so there is no difference in using one or another
}
What "that" is in this context is simply a variable that is equal to "this". That means saying "that" is exactly the same as saying "this", which makes in unnecessarily complicating.
This code:
var that=this;
that.getA();
Will yield the same result as this code:
this.getA();
Having a variable to represent "this" just complicates things when you can just say "this".
I am trying to understand the way that javascript passes functions around and am having a bit of a problem groking why a prototype function can NOT access a var defined in a function constructor while a function defined in the constructor can access the var. Here is code that works:
var model = function model() {
this.state = 1;
this.GetState = (function(scope){
return function(){ return scope.state;};
})(this);
}
var othermodel = function othermodel(mdl) {
this.GetStateFn = mdl.GetState;
}
othermodel.prototype.WriteState = function() {
console.log(this.GetStateFn.call());
};
var m = new model();
var o = new othermodel(m)
o.WriteState();
This works and makes sense - the GetState() function can access this.state.
However, if I create GetState as follows:
model.prototype.GetState = (function(scope){
return function(){ return scope.state;};
})(this);
The result will be an error that scope is not defined.
I would prefer to have this work with the prototype method as I do not want a copy of the function in ever model, but it would seem that prototype can't work because it can't access the specific instance of the model.
So, can someone provide me with a good explanation of a) what I need to do to get this to work with prototype (assuming I can) and b) if I can't get it to work with prototype, what is the reason so I can understand better the underpinnings of the issue.
Why not simply write the function this way
model.prototype.GetState = function() { return this.state; }
var othermodel = function othermodel(mdl) {
this.GetStateFn = mdl.GetState.bind(mdl);
}
othermodel.prototype.WriteState = function() {
console.log(this.GetStateFn.call());
};
The above code will work, as in most cases you will execute code like m.GetState(). That is an example of invoking a function as an object method. In that case, this is guaranteed to point to the object m. You seem to know how the prototype chains work, so I won't go there.
When assigning the function reference to the other model, we use the .bind to ensure that within GetState, this points to mdl. Reference for bind: https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Function/bind
Your original IIFE's were in effect your implementation of bind. The issue was the value of this was wrong. Currently, every time you need to assign models function to some other function, you will need to use bind at all those times. You have tagged your question as node.js, bind is available on the Function prototype in node.js and any ES5 compatible browser. If you need to run the above code on older browsers or environments that do not support bind, replace bind with your IIFE.
As for why your code isn't working,
model.prototype.GetState = (function(scope){
return function(){ return scope.state;};
})(this);
Here, this doesn't refer to the eventual model object (m). this can refer to any one of 5 options in javascript. Refer: https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/this
Lets assume the above code is in an html file inside some script tag. Then this will refer to the window object. window doesn't have any property called state, hence the undefined. If you were to console.log(this.m, this.o) at the end of you script, you would see the respective m and o objects.
When defined like this:
var model = function model() {
this.state = 1;
this.GetState = (function(scope){
return function(){ return scope.state;};
})(this);
}
the anonymous function is declared and immediately executed. this is passed as a parameter to that self-executing function. As a result - a new function is returned, but this function has scope parameter in its closure - so that it is accessible after the scope has exited. As a result - the function, when invoked, can still access state property of that "enclosed" this (the one that became scope and was closed upon).
If you define it like this:
model.prototype.GetState = (function(scope){
return function(){ return scope.state;};
})(this);
the mechanism is the same, it's just this is not. It is now the context of the scope you execute the above code in. Assuming it's done in global scope - it would be window object.
If you don't want to use bind because of its support with older browsers, you could try this:
http://jsfiddle.net/j7h97/1/
var model = function (state) {
this.state = state || new Date().getTime();
};
model.prototype.GetState = function () {
return this.state;
};
model.prototype.WriteState = function () {
console.log("model WriteState: " + this.GetState());
};
var othermodel = function othermodel (mdl) {
this.GetStateFn = function () {
return mdl.GetState.call(mdl);
};
};
othermodel.prototype.WriteState = function () {
console.log("othermodel WriteState: " + this.GetStateFn());
};
var model1 = new model();
model1.WriteState();
var othermodel1 = new othermodel(model1);
othermodel1.WriteState();
var model2 = new model();
model2.WriteState();
var othermodel2 = new othermodel(model2);
othermodel2.WriteState();
Seems to do what you want without bind. I created the model.prototype.WriteState for testing purposes.
It depends on where it is called. If it's in global scope, this will not refer the the model. If it's running in a browser it will refer to the global window object instead.
I have the following code example to use an object that receives the action from the callback. Doesn't seem like this is a good design pattern. Or is it?
When setTimeOut() fires on the function after 1 second, it uses the objInstance global variable (DOM scope) to access the ClassExample object instance. Can someone recommend a better way to utilize callbacks within an object oriented design?
The whole idea is so I can use the callback to update data within my object instance (increment a variable for example).
function ClassExample{
this.initiate = function() {
setTimeOut(objInstance.afterTimeOut,1000); //using the objects global handle
}
this.afterTimeOut = function() {
alert("Received!");
}
}
var objInstance = new ClassExample(); //instance
objInstance.initiate();
No, you're not. You'll want to do this:
this.initiate = function() {
setTimeOut(objInstance.afterTimeOut,1000); //using the objects global handle
}
Now, if "afterTimeout" needs the proper object context, you could do this:
this.initiate = function() {
var instance = this;
setTimeout(function() { instance.afterTimeOut(); }, 1000);
}
OK well you changed the question considerably with that little edit :-) If I were you, I'd just do this (like my original second example):
this.initiate = function() {
var instance = this;
setTimeout(function() { instance.afterTimeOut(); }, 1000);
}
Then you don't need any ugly global variables around at all.
edit — Stackoverflow user #Christoph comments that this isn't particularly pretty. One thing that might help would be to use a "bind" facility, as provided by newer browsers natively (as a method on the Function prototype) or by some libraries (Prototype or Functional for example). What "bind" lets you do is create a little wrapper function like I've got above:
this.initiate = function() {
setTimeout(this.afterTimeOut.bind(this), 1000);
}
That call to "bind" returns a function that is effectively the same sort of thing as the little wrapper I coded explicitly in the example.
function ClassExample{
this.afterTimeOut = function() {
alert("Received!");
}; // Don't forget these
setTimeOut(afterTimeOut, 1000); // Don't use () if you're passing the function as an argument
}
var objInstance = new ClassExample(); //instance
That way you don't need the initiate() method.
If you really want the initiate() method, I'd do it like this:
function ClassExample{
var self = this;
self.afterTimeOut = function() {
alert("Received!");
};
self.initiate = function() {
setTimeOut(self.afterTimeOut, 1000);
};
}
var objInstance = new ClassExample(); //instance
objInstance.initiate();
This is how I'd do it to allow timer reuse and minimize the number of closures:
function Timer(timeout, callback) {
this.timeout = timeout;
this.callback = callback;
}
Timer.prototype.run = function(thisArg /*, args... */) {
var argArray = Array.prototype.slice.call(arguments, 1);
var timer = this;
setTimeout(function() {
timer.callback.apply(thisArg, argArray);
}, timer.timeout);
};
var timer = new Timer(1000, alert);
timer.run(null, 'timer fired!');
And just for fun, a golfed version which is functionally equivalent, but replaces the object with a closure:
function delay(func, timeout) {
return function() {
var self = this, args = arguments;
setTimeout(function() { func.apply(self, args); }, timeout);
};
}
delay(alert, 1000).call(null, 'timer fired!');
You are right it is not the optimal way of doing what you are aiming for. however i have to wonder why you need to break the callstack as part of the initiation, it seems very academic.
apart from that if i had to do that, i'd probably use a closure like so:
function ClassExample{
this.initiate = function() {
setTimeOut((function(self) { return function() { self.afterTimeout();}})(this),1000); //using the objects global handle
}
this.afterTimeOut = function() {
alert("Received!");
}
}
var objInstance = new ClassExample(); //instance
objInstance.initiate()
this.initiate = function() {
var instance = this;
setTimeOut(function() {
instance.afterTimeOut();
}, 1000);
};
By saving this to a local variable, you can avoid using the global handle at all. Also this prevent the afterTimeout() from losing it's this.
Building on Znarkus answer...
I really don't know in which environment his code is running but for me the first approach just do not works. I got: 'ReferenceError: afterTimeOut is not defined'...
The second one, nevertheless, is really cool... I just changed setTimeOut for setTimeout (using lowercase 'o') and included parenthesis after the class name definition turning the first line of code into 'function ClassExample(){'; solved my problem.
My snippet of example code:
Oop with private behaviour, intern callback calling and etc.
function MyTry (name){
// keep this object pointer... that's the trick!
var self = this;
// create private variable
var d = new Date()toJSON().slice(0, 10);
// create a private function
function getName(){return name}
// create public access method
self.hello = function(){alert('Hello '+getName()+'!\nToday is: '+d)}
// note instance method hello passed as a callback function!
self.initiate = function(){setTimeout(self.hello, 3000)}
}
I thought I understood the concept of the JavaScript prototype object, as well as [[proto]] until I saw a few posts regarding class inheritance.
Firstly, "JavaScript OOP - the smart way" at http://amix.dk/blog/viewEntry/19038
See the implementation section:
var parent = new this('no_init');
And also "Simple JavaScript Inheritance" on John Resig's great blog.
var prototype = new this();
What does new this(); actually mean?
This statement makes no sense to me because my understand has been that this points to an object and not a constructor function. I've also tried testing statements in Firebug to figure this one out and all I receive is syntax errors.
My head has gone off into a complete spin.
Could someone please explain this in detail?
In a javascript static function, you can call new this() like so,
var Class = function(){}; // constructor
Class.foo = function(){return this;} // will return the Class function which is also an object
Therefore,
Class.foo = function(){ return new this();} // Will invoke the global Class func as a constructor
This way you get a static factory method. The moral of the story is, not to forget functions are just like any other objects when you are not calling them.
What is confusing you, I think, is just where "this" is really coming from. So bear with me-- here is a very brief explanation that I hope will make it quite clear.
In JavaScript, what "this" refers to within a function is always determined at the time the function is called. When you do:
jimmy.nap();
The nap function (method) runs and receives jimmy as "this".
What objects have references to nap is irrelevant. For example:
var jimmy = {}, billy = {};
jimmy.nap = function(){ alert("zzz"); };
var jimmy_nap = jimmy.nap;
jimmy_nap(); // during this function's execution, this is *NOT* jimmy!
// it is the global object ("window" in browsers), which is given as the
// context ("this") to all functions which are not given another context.
billy.sleep = jimmy.nap;
billy.sleep(); // during this function's excution, this is billy, *NOT* jimmy
jimmy.nap(); //okay, this time, this is jimmy!
In other words, whenever you have:
var some_func = function(arg1, arg2){ /*....*/ };
// let's say obj and other_obj are some objects that came from somewhere or another
obj.some_meth = some_func;
other_obj.some_meth = some_func;
obj.some_meth(2, 3);
other_obj.some_meth(2, 3);
What it's getting "translated" into (not literally-- this is pedagogical, not about how javascript interpreters actually work at all) is something like:
var some_func = function(this, arg1, arg2){ /* ...*/ };
// let's say obj and other_obj are some objects that came from somewhere or another
obj.some_meth = some_func;
other_obj.some_meth = some_func;
obj.some_meth(obj, 2, 3);
other_obj.some_meth(other_obj, 2, 3);
So, notice how extend is used in the example on that page:
UniversityPerson = Person.extend({ /* ... */ });
Pop quiz: When extend runs, what does it think "this" refers to?
Answer: That's right. "Person".
So the puzzling code above really is the same as (in that particular case):
var prototype = new Person('no_init');
Not so mysterious anymore, eh? This is possible because unlike in some languages,
a JavaScript variable-- including "this"-- can hold any value, including a function such as Person.
(There is nothing that makes Person specifically a constructor. Any function can be invoked with the new keyword. If I recall the exact semantics, I think they are that when a function is called with the new keyword, it is automatically given an empty object ({}) as its context ("this") and when the function returns, the return value is that same object unless (maybe?) the function returns something else)
This is a cool question because it speaks to a pretty essential part of JavaScript's neatness or oddness (depending on how you see it).
Does that answer your question? I can clarify if necessary.
AJS.Class effectively* translates this:
var Person = new AJS.Class({
init: function(name) {
this.name = name;
Person.count++;
},
getName: function() {
return this.name;
}
});
Person.count = 0;
into this:
var Person = function (name) {
this.name = name;
Person.count++;
};
Person.prototype = {
getName: function() {
return this.name;
}
};
Person.extend = AJS.Class.prototype.extend;
Person.implement = AJS.Class.prototype.implement;
Person.count = 0;
Therefore, in this case, this in AJS.Class.prototype.extend refers to Person, because:
Person.extend(...);
// is the same as
Person.extend.call(Person, ...);
// is the same as
AJS.Class.prototype.extend.call(Person, ...);
* There are a lot of cases I don't go over; this rewrite is for simplicity in understanding the problem.
Imagine the following situation :
var inner = function () {
var obj = new this;
console.log(obj.myProperty);
};
var f1 = function () {
this.myProperty = "my Property"
}
f1.f2 = inner;
f1.f2();
Here the calling object is itself a function, so this will return a function, and we can instantiate it.
In order to use this()(not this) the outer function(the context) must itself return smth that can be instantiated(another function):
var inner = function () {
var obj = new this();
console.log(obj.myProperty);
};
var f1 = function () {
var func = function () {};
func.myProperty = 'my property';
return func;
};
f1.f2 = inner;
f1.f2();
A simpler code explaination:
class User {
constructor() {
this.name = '';
this.age = '';
}
static getInfo() {
let user = new this();
console.log(user);
}
}
User.getInfo()
Output:
Object {
age: "",
name: ""
}
see this link http://www.quirksmode.org/js/this.html It will tell you about the this keyword, but I am not sure what this() is, may be its some kind of user defined function...... that you are not aware of...
"this" means the context of the function currently running.
The code you are posting surely appears in a function that act as a method for an object.
So the object is the context of the function.
"new this()" will return a clone of the current object after running its constructor function with the passed arguments.
this() refers to the the function that the code is in, but this() would have to be within that function. Calling new this(); within a function would create a never ending loop. Calling it outside of a function would be redundant because there is no function/class set as this().