Related
In a typical js class, all calls to member functions must be preceded by this. I was looking at a technique that would let me create a library of inter-dependent STATIC functions and relying on closure/scope to make things a bit easier.
Example:
var Singleton={
//main entry point
// call with fn name, args...
call:function(){
var args=[];
if (arguments.length==0) {
return;
}
// get the fn name
var fn=arguments[0];
var x;
// make args array
for (x=1;x<arguments.length;x++) {
args[args.length]=arguments[x];
}
// I want to get rid of this part
// See below for what I wish
// Here I have access to fns below due to hoisting in js
// so I put them in a map...
var fns={
test:test
// etc, more like this I do not want to type/maintain
}
// ... all so I can do this
// get my function.
var fun=fns[fn];
// instead of that, I would like to "override whitespace" and
// say something like:
// var fun=['fn_name'];
// so I can index into local scope and get a fn
//
// log error if not found
if (typeof fun=='undefined') {
loge('Singleton: function not found:'+fn);
return;
}
// ok, run the function
return fun.apply(window,args);
// the test fn accesses test2() without dot notation
function test(a){
// Note: here in test fn it can access test2()
// without using this.test2() syntax
// as you would in normal objects
var s=test2();
alert(s+' test:'+a);
};
function test2(){
return 'test2';
};
}
}
I was hoping someone more familiar with advances in javascript might have advice on how to emulate an "implied but unnecessary this", it always struck me as strange that this defaults to window, and wouldn't it be nice if this could be pointed to an anonymous object with the local scope attached.
I would love to say ['localObject'] to get something in scope.
Edit:
After seeing some of the responses, I will restate this in the form of a challenge:
What I am looking for is a syntax cheat, a way to, as #Varuna put it, "1. Access static methods without using this variable i.e. they will remain global to one another. 2. Do not want to maintain a local array for static methods and want to achieve with in the local scope itself."
Put differently, I need to have the declared functions Register themselves, but I don't want to state the function name more than once. I suppose #Varuna has a solution using eval to access the local scope.
The following approach wont work:
var o={};
o['fn']=function fn(){};
o['fn2']=function fn2(){};
...because you have to state the fn name twice, but closure is preserved.
And this:
var a=[
function fn(){}
,function fn2(){}
];
Register(a);
Will not work because, AFAIK, you lose closure, ie. fn2 cannot see fn. Which also makes the following declarative style a "this nightmare":
window.MINE={
fn:function fn(){
//this?
// want to say fn2(), not this.fn2(), nor MINE.fn2()
}
,fn2:function fn2(){
//this?
}
,deeper:{
//more
}
};
But something like this might work, if you created a weird property that does the registration on assignment:
var registar=new Registar();
registar.reg=function fn(){};
registar.reg=function fn2(){};
//then access
var fn=registar.getFn(n);
// or
var fn=registar._[n];
The above relies on js properties and having access to fn.name, which is not available in all cases AFAIK.
If I understand correctly, you want to create objects that:
have static members
... which can be accessed without using the this notation
The easiest solution (assuming I've properly understood your query), would be to simply use a closure to store your stratic fields, access them directly by name, then explicitly add them as object members.
Consider:
var myConstructor = (function(){
var foo = 'someStaticField';
var bar = function(){
alert('A static method returns ' + foo);
};
return function(){
return {
foo : foo,
bar : bar
};
};
})();
var myInstance = new myConstructor();
As per my understanding, you want to:
1. Access static methods without using this variable i.e. they will remain global to one another.
2. Do not want to maintain a local array for static methods and want to achieve with in the local scope itself.
You can check whether a method exist using eval.Check Here
Only drawback is that this will be using eval method.
Code will be:
var Singleton = {
//main entry point
// call with fn name, args...
call: function () {
var args = [];
if (arguments.length == 0) {
return;
}
// get the fn name
var fn = arguments[0];
var x;
// make args array
for (x = 1; x < arguments.length; x++) {
args[args.length] = arguments[x];
}
//check whether function exist in local scope and not in global scope
if (typeof eval(fn) !== 'undefined' && typeof window[fn] === 'undefined') {
// ok, run the function
return eval(fn).apply(window, args);
}
else{
// log error if not found
loge('Singleton: function not found:' + fn);
return;
}
// the test fn accesses test2() without dot notation
function test(a) {
// Note: here in test fn it can access test2()
// without using this.test2() syntax
// as you would in normal objects
var s = test2();
alert(s + ' test:' + a);
};
function test2() {
return 'test2';
};
}
}
How about declaring functions that can access each other in separate closure, and exporting them to main method by binding your call method to an object containing the functions? Something like previous post (modified slightly):
var Singleton = {
call: (function() {
// here 'call' is bound to object containig your test functions
// this: {test, test2}
if (0 == arguments.length) return;
// log error if not found
if ('function' != typeof this[arguments[0]]) {
console.warn('Singleton: function not found:' + arguments[0]);
return;
}
// '...index into local scope and get function
// ie. get the function by it's name
return this[arguments[0]].
apply(window, Array.prototype.slice.call(arguments, 1));
// --- or:
// you can explicitly introduce function names to current scope,
// by `eval`-ing them here (not very much preferred way in JavaScript world):
for (var fname in this)
if (this.hasOwnProperty(fname))
eval('var ' + fname + ' = ' + this[fname]);
// and you can reference them directly by using their names
var fn = eval(arguments[0]);
return fn.apply(window, Array.prototype.slice.call(arguments, 1));
}).bind(
(function() {
var _exports = {};
function test (a) {
var s = test2();
alert(s + ' test: ' + a);
}
function test2 () {
return 'test2';
}
_exports['test'] = test;
_exports['test2'] = test2;
return _exports;
})()
)};
Singleton.call('test', 'foo and stuff');
//
previous post:
You are talking about Function#bind functionality that enables 'customizing' function's context. .bind() your call method to required 'local context' like this:
var Singleton = {
//main entry point
// call with fn name, args...
call: (function() {
// here `this` (context) is object bound to `call` method
// not `global` object, which is default for 'unbound' functions
var locals = this; // {fns, shift, loge, isfunc}
var fn;
var fun;
var x;
if (arguments.length == 0)
return;
// get the fn name
fn = locals.shift(arguments);
// '...index into local scope and get a fn'
fun = locals.fns[fn];
// log error if not found
if (!locals.isfunc(fun)) {
locals.loge('Singleton: function not found:' + fn);
return;
}
// ok, run the function
return fun.apply(window, arguments);
// lock `call`'s context to provided object
// and use `this` to reference it inside `call`
}).bind({
fns: (function(_) {
// and you can '...create a library of inter-dependent STATIC functions'
// in this closure and invoke them in `call` method above
_.test = function (a) {
var s = _.test2();
alert(s + ' test: ' + a);
};
_.test2 = function() {
return 'test2';
};
return _;
})({}),
// and create couple of helper methods as well...
isfunc: (function(_getclass) {
_getclass.func = _getclass(_getclass);
return ('function' !== typeof(/foo/)) ?
function(node) {
return 'function' == typeof node;
} :
function(node) {
return _getclass.func === _getclass(node);
};
})(Function.prototype.call.bind(Object.prototype.toString)),
loge: console.warn,
shift: Function.prototype.call.bind(Array.prototype.shift)
}),
};
Singleton.call('test', 'foo and stuff');
// eof
Here's one 'in your face answer', because I really don't like what I see here.
I don't see why you need this kind of construct, you already have that as part of language core.
1. dynamic lookup
you are doing it in a rather 'unprecedented' kind of way,
hashes already do that for you, and it's lightning fast to do a hash search.
If you are eval()-ing random strings to do simple name lookup you really have to
step aside from a keybord for a while... (no offense please)
2. closures
you are saying about 'using closures' which you actualy don't use.
your call function redeclares test functions each time it gets called,
and looks the ('fresh version') functions in it's own variable scope table,
instead of lookig them up in parent scope chains (aka. closures)
outside it's lexical location
3. nfe vs. nfd
ie. named function expressions vs. named function declarations
...you cannot assign a function to a local var and have it retain closure.
It is a feature, you might not be aware of how it works (it tripped me up as well).
check this article out for clarification
4. exceptions
Singleton: function name not found... x4!
Just go ahead and call a function,
interpreter will throw for you anyway if it cannot find/execute
5. eval (aka. ^^)
Singleton.call.ctx.fun = eval(Singleton.call.ctx.fn);
eval takes any string here(#!), and gladly executes ones like:
'for(;;);', or 'while(1);'... forever.
You probably don't want to have any code running unless it was your stuff.
6. arguments handling
It is considered best practice out there to use single (Object) options parameter
to 'fine tune' any significant piece of bundled functionality,
instead of trying to figure that out by type checking provided argument list
Here's, in couple of simple lines, what I (and as I can see #Jimmy Breck-McKye) suggest you should do:
var Singleton.call = (function () {
var funcmap = {
'f_1': function () {},
// etc.
'f_N': function () {},
};
return function (options) {
// options members:
// context, (Object) context, (defaults to global if none is given)
// func, (String) function_name,
// args, (Array) arguments to pass into a function
// this line does everything your 100+ lines long snippet was trying to:
// look's up parent scope for a function, tries to run it
// passing provided data, throws if it gets stuck.
return funcmap[options.func].apply(options.context, options.args);
};
})();
//
Answering my own question here.
The core of the issue is that you cannot assign a function to a local var and have it retain closure.
Consider that when writing a function with global and window scope, this is not necessary to call another function with identical scope. Such is not the case with member functions.
Another way of saying this is that there is no space where your cursor can sit and as you declare a function it automatically gets attached to the current this.
function fn(){}// if we are in global scope, then window.fn becomes defined
// but if we are inside, say, a constructor, simple declaration will not attach
// it to this, but fn is available in scope.
Any assignment on function declaration BREAKS part of the expected closure:
var IdentifierAvailableToClosure=function Unavailable(){}
But assignment after declaration works:
function NowAvailable(){}
var SynonymAvailableToo=NowAvailable;
This is what I meant by not wanting to repeat the name twice to get the mechanism to work.
This fact made me abandon other methods and rely on eval as suggested. Here is a first draft:
// This object is an encapsulation mechanism for a group of
// inter-dependent, static-ish, functions that can call each other
// without a this pointer prefix.
// Calls take the form of:
// Singleton.call(functionName:String [,arg1]...)
// or
// Singleton.call(contextObject:Object, functionName:String [,arg1]...)
// If a context is not provided, window is used.
//
// This type of mechanism is useful when you have defined a group
// of functions in the window/global scope and they are not ready
// to be formalized into a set of classes, or you have no intention
// of doing that
//
// To illustrate the issue, consider that a function
// which is defined in window/global scope
// does not have to use the this pointer to call a function of
// identical scope -- yet in a class member function, the this pointer
// MUST be used
// Therefore, trying to package such functions requires injecting
// the this pointer into function bodies where calls to associater
// functions are made
//
// Usage is primarily for development where one has control over
// global namespace pollution and the mechanism is useful in
// refactoring prior to formalization of methods into classes
var Singleton={
// Main call point
call:function(){
// Bail with error if no args
if (arguments.length==0) {
throw('Singleton: need at least 1 arg');
}
// As all functions in the local scope library below
// have access to the local scope via closure, we want to reduce
// pollution here, so lets attach locals to this call
// function instead of declaring locals
//
// Prepare to call anon fn
Singleton.call.args=arguments;
// Make ctx have args, context object, and function name
Singleton.call.ctx=(function (){// return args,ctx,name
// out
var args=[];
//locals
var x, fn;
// collapse identifier
var a=Singleton.call.args;
// closure object avail to functions, default to window
that=window;
// first real function argument
var arg_start=1;
// first arg must be function name or object
if (typeof a[0]=='string') {// use window ctx
fn=a[0];
// if first arg is object, second is name
}else if (typeof a[0]=='object') {
// assign given context
that=a[0];
// check second arg for string, function name
if (typeof a[1]!='string') {
var err='Singleton: second argument needs to be a fn name'
+' when first arg is a context object';
throw(err)
return;
}
// ok, have a name
fn=a[1];
// args follow
arg_start=2;
}else{
// improper arg types
var err='Singleton: first argument needs to be a string or object';
throw(err)
}
// build args array for function
for (x=arg_start;x<a.length;x++) {
args[args.length]=a[x];
}
// return context
return {
args: args
,that:that
,fn:fn
};
})();
// using function library present in local scope, try to find specified function
try{
Singleton.call.ctx.fun=eval(Singleton.call.ctx.fn);
}catch (e){
console.error('Singleton: function name not found:' + Singleton.call.ctx.fn);
throw('Singleton: function name not found:' + Singleton.call.ctx.fn);
}
// it must be a function
if (typeof Singleton.call.ctx.fun !== 'function') {
console.error('Singleton: function name not found:' + Singleton.call.ctx.fn);
throw('Singleton: function name not found:' + Singleton.call.ctx.fn);
}
// library functions use that instead of this
// that is visible to them due to closure
var that=Singleton.call.ctx.that;
// Do the call!
return Singleton.call.ctx.fun.apply(that, Singleton.call.ctx.args);
//
// cool library of functions below,
// functions see each other through closure and not through this.fn
function test(s){
alert(test2()+' test:'+s);
}
function info_props(){
console.info(this_props());
}
function test2(){
return 'test2';
}
function this_props(){
var s='';
for (var i in that) {
s+=' '+i;
}
return s;
};
}
};
I'm trying to determine wether a function in javascript is a simple, plain (anonymous) function, or a constructor ( a function with a prototype ). So far, I've come up with the following function:
function isPlainFunction(value) {
var own = Object.getOwnPropertyNames(value.prototype),
ctorIndex = own.indexOf('constructor');
if ( ctorIndex !== -1 ) {
own.splice( ctorIndex, 1);
}
if (own.length) {
return false;
}
// walk prototype chain
var proto = Object.getPrototypeOf(value.prototype);
if (proto === Object.prototype) {
return true;
}
return isPlainFunction(proto);
}
I'm only targeting ES5, (node.js) but I am uncertain whether this covers all edge cases, or if there's still something I havent found regarding this subject.
I have (roughly) the following testcases in mind:
assert.ok( isPlainFunction(function(){}) );
var bar = function(){};
bar.prototype = { get one(){ return 1 } };
assert.equal( isPlainFunction(bar), false );
var foo = function(){};
foo.prototype = Object.create( bar );
assert.equal( isPlainFunction(bar), false );
That is, any function that has a prototype or inherited a prototype from one of the not-native types...
If what you are trying to test for is whether or not a function should be used as a constructor, then unfortunately this cannot be accurately determined.
You can invoke the new operator on any function, whether intended to be used that way or not without issues.
If I have this method, for instance:
function doSomethingWithThisObject(someValue) {
this.someVariable = someValue;
}
Which has the following prototype:
doSomethingWithThisObject.prototype = { prototypeVariable : 'I came from prototype' };
I could use it in the following ways:
// Use my function as a constructor:
var obj = new doSomethingWithThisObject('hi there!');
console.log(obj.someVariable); // prints "hi there!"
console.log(obj.prototypeVariable); // prints "I came from prototype"
// Use my function in an object:
var myObject = {
doSomething : doSomethingWithThisObject
};
myObject.doSomething('hi again!');
console.log(myObject.someVariable); // prints "hi again!"
console.log(myObject.prototypeVariable); // prints "undefined"
// Use my function to change global state:
doSomethingWithThisObject('you owe me ice cream!');
console.log(someVariable); // prints "you owe me ice cream!"
console.log(prototypeVariable); // prints "undefined"
Determining whether or not one of those use cases is the correct one is impossible unless the intention is specified somewhere in the code.
Some people suggest to name constructor methods with an uppercase first letter to determine that they should be used as constructors. If you decide for this suggestion with your project's coding guidelines, you could simply check if the function's name begins with an uppercase letter which would denote that the person who wrote the function intends for it to be used as a constructor.
As Ben Barkay has said, any function can become a constructor in JS through the new keyword. Behind the scenes all new is doing is setting the function's context -- you can see this with a simple test:
function test() {
console.log(this)
}
test()
output: Window {top: Window, window: Window…}
new test()
output: test {}
test {}
In JS all you need to make a function a constructor is a new keyword, and all a new does is set the function's this variable. So any function can become a constructor.
Distinguishing an anon function is easier: if it doesn't have a name, it's anonymous:
//anon:
(function() {
console.log("I'm anon")
})()
var anon = function() {
console.log("I, too, am anon")
}
If you programmatically need the function's name, you can get it through function.name
To determine whether a function does not have an extended prototype, e.g. can be assumed to be more then a plain function, the following function would return false:
function isPlainFunction(value) {
if (typeof value !== 'function') {
return false;
}
var own = Object.getOwnPropertyNames(value.prototype);
if ( own.length >= 2 || ( own.indexOf('constructor') < 0 && own.length >= 1 ) ) {
return false;
}
return Object.getPrototypeOf(value.prototype) === Object.prototype;
}
Assume I have a simple object in js with one private variable:
function test(){
var value=true;
}
and now I want to create one instance:
var r=new test() //I want to get r === true
How can I return a value from it?
If I write:
function test(){
var value=true;
return value;
}
I have a test {} in result.
If I write:
function test(){
var value=true;
return function(){ return value; }
}
then I can get the value, but I must add additional parentheses:
var r=new test()() //r === true
I don't want the parentheses, so I tried to change the code to:
function test(){
var value=true;
return (function(){ return value; } )();
}
But in response, again I get test {}
How to write the return statement in this situation?
I believe you need to do something like:
function test(){
this.value = true;
}
and then
var r=new test();
if (r.value == true) {
//Do something
}
First I feel obliged to clarify a possible misunderstanding:
function test(){
var value=true;
}
is not an object with a private variable. It is a function with a local variable. When you call the function with new, it creates an object inheriting from the functions's prototype with no properties. If you call the function normally, it simply executes the function body and returns undefined (since you are not returning anything).
Solutions:
Do you actually need a constructor function? I'm asking because your example is very simple. Obviously you cannot have the function return two values, true and the object.
So, you could just call the function without new:
function test() {
var value = true;
return value;
}
var r = test();
If you really want r to be true then I see no reason to call the function as a constructor function.
The reason why you got test {} as result was because you called the function with new. If you do that, the function will always return an object and if you don't do so explicitly (value is a boolean, not an object), it implicitly returns this (which is an object).
So again, if you really want r to be equal to value from inside the function, then simply don't call the function with new.
If you need an object though, there are a couple of ways:
You can assign the value to a property and access it instead, like PokeHerOne showed in his answer or add a function which returns that value, as papaiatis demonstrates. The advantage is that the value is accessed explicitly and other people looking at your code understand what's going on.
Additionally, depending on what you want to do with that value / object, you can implement the valueOf methods, which gets called by various operators.
For example:
function Test(){
var value = true;
this.valueOf = function() {
return value;
}
}
var t = new Test();
console.log(t); // logs the Test instance
console.log(t == true); // logs `true`
I.e. t is an object but behaves like the value true (value) in various operations. This is powerful but can also be quite confusing, since the type conversion is somewhat implicit and it's not something that is used in JavaScript very often.
Used methods defined internally:
function TestClass(){
var value = true;
this.getValue = function(){
return value;
};
}
var t = new TestClass();
alert(t.getValue()); // true
Since value is defined as private it is not accessible from outside:
alert(t.value) // undefined
How can this object be rewritten so you don't need to declare it with "new"?
var Lang = new function(){
this.get = function(str, trans){
if(TRANSLATE[str]){
var str = TRANSLATE[str][LANG];
if(count_obj(trans) > 0){
for(var key in trans){
str = str.replace('%'+key+'%', trans[key]);
}
}
}
return str;
};
};
To something like this:
var Lang = {
get : function(){}
};
You wrote the solution to your own question in the question...this is a perfectly valid way to create an object in javascript:
var Lang = {
get: function(str, trans){
if(TRANSLATE[str]){
var str = TRANSLATE[str][LANG];
if(count_obj(trans) > 0){
for(var key in trans){
str = str.replace('%'+key+'%', trans[key]);
}
}
}
return str;
};
};
If you want private variables, the usual way to do that is to create a function with local variables that return the object with those variables encapsulated in a closure like so:
var Lang = (function() {
var p1; // private variable
var p2; // another private variable
return {
getP1: function () {
return p1;
},
setP1: function(value) {
p1 = value;
}
};
})();
Note that the function that creates the object you want is executed right away and returns the object with two private variables captured in the closure. Those variables will not be accessible from outside the object.
Patterns for Enforcing new
As mentioned already, constructors are still just functions but invoked with new.
What
happens if you forget new when you invoke a constructor? This is not going to cause
syntax or runtime errors but might lead to logical errors and unexpected behavior.
That’s because when you forget new, this inside the constructor will point to the global
object. (In browsers this will point to window.)
When your constructor has something like this.member and you invoke the constructor
without new, you’re actually creating a new property of the global object called
member and accessible through window.member or simply member. This behavior is highly
undesirable, because you know you should always strive for keeping the global namespace
clean.
// constructor
function Waffle() {
this.tastes = "yummy";
}
// a new object
var good_morning = new Waffle();
console.log(typeof good_morning); // "object"
console.log(good_morning.tastes); // "yummy"
// antipattern:
// forgotten `new`
var good_morning = Waffle();
console.log(typeof good_morning); // "undefined"
console.log(window.tastes); // "yummy"
Self-Invoking Constructor
To address the drawback of the previous pattern and have prototype properties available
to the instance objects, consider the following approach. In the constructor you
check whether this is an instance of your constructor, and if not, the constructor invokes
itself again, this time properly with new:
function Waffle() {
if (!(this instanceof Waffle)) {
return new Waffle();
}
this.tastes = "yummy";
}
Waffle.prototype.wantAnother = true;
// testing invocations
var first = new Waffle(),
second = Waffle();
console.log(first.tastes); // "yummy"
console.log(second.tastes); // "yummy"
console.log(first.wantAnother); // true
console.log(second.wantAnother); // true
Another general-purpose way to check the instance is to compare with
arguments.callee instead of hard-coding the constructor name.
if (!(this instanceof arguments.callee)) {
return new arguments.callee();
}
This pattern uses the fact that inside every function, an object called arguments is created
containing all parameters passed to the function when it was invoked. And arguments
has a property called callee, which points back to the function that was called. Be
aware that arguments.callee is not allowed in ES5’s strict mode, so it’s best if you limit
its future use and also remove any instances should you find them in existing code.
“JavaScript Patterns, by Stoyan Stefanov (O’Reilly). Copyright 2010 Yahoo!, Inc., 9780596806750.”
just leave the "new" out, rest is the same. :)
var Lang = function(){
...
}
Edit: example copy-paste from firebug, "dsa" is just an object, "dsaFunc" is a function, but you can do the same with them:
>>> var dsa = {};
undefined
>>> dsa.get = function(a){ return a+1;}
function()
>>> dsa.get(2)
3
>>> var dsaFunc = function(){};
undefined
>>> dsaFunc.get = function(a){ return a+1;}
function()
>>> dsaFunc.get(2)
3
Given a function:
function x(arg) { return 30; }
You can call it two ways:
result = x(4);
result = new x(4);
The first returns 30, the second returns an object.
How can you detect which way the function was called inside the function itself?
Whatever your solution is, it must work with the following invocation as well:
var Z = new x();
Z.lolol = x;
Z.lolol();
All the solutions currently think the Z.lolol() is calling it as a constructor.
As of ECMAScript 6, this is possible with new.target
new.target will be set as true if the function is called with new (or with Reflect.construct, which acts like new), otherwise it's undefined.
function Foo() {
if (new.target) {
console.log('called with new');
} else {
console.log('not called with new');
}
}
new Foo(); // "called with new"
Foo(); // "not called with new"
Foo.call({}); // "not called with new"
NOTE: This is now possible in ES2015 and later. See Daniel Weiner's answer.
I don't think what you want is possible [prior to ES2015]. There simply isn't enough information available within the function to make a reliable inference.
Looking at the ECMAScript 3rd edition spec, the steps taken when new x() is called are essentially:
Create a new object
Assign its internal [[Prototype]] property to the prototype property of x
Call x as normal, passing it the new object as this
If the call to x returned an object, return it, otherwise return the new object
Nothing useful about how the function was called is made available to the executing code, so the only thing it's possible to test inside x is the this value, which is what all the answers here are doing. As you've observed, a new instance of* x when calling x as a constructor is indistinguishable from a pre-existing instance of x passed as this when calling x as a function, unless you assign a property to every new object created by x as it is constructed:
function x(y) {
var isConstructor = false;
if (this instanceof x // <- You could use arguments.callee instead of x here,
// except in in EcmaScript 5 strict mode.
&& !this.__previouslyConstructedByX) {
isConstructor = true;
this.__previouslyConstructedByX = true;
}
alert(isConstructor);
}
Obviously this is not ideal, since you now have an extra useless property on every object constructed by x that could be overwritten, but I think it's the best you can do.
(*) "instance of" is an inaccurate term but is close enough, and more concise than "object that has been created by calling x as a constructor"
1) You can check this.constructor:
function x(y)
{
if (this.constructor == x)
alert('called with new');
else
alert('called as function');
}
2) Yes, the return value is just discarded when used in the new context
NOTE: This answer was written in 2008, when javascript was still in ES3 from 1999. A lot of new functionality has been added since then, so now better solutions exists. This answer is kept for historical reasons.
The benefit of the code below is that you don't need to specify the name of the function twice and it works for anonymous functions too.
function x() {
if ( (this instanceof arguments.callee) ) {
alert("called as constructor");
} else {
alert("called as function");
}
}
Update
As claudiu have pointed out in a comment below, the above code doesn't work if you assign the constructor to the same object it has created. I have never written code that does that and have newer seen anyone else do that eighter.
Claudius example:
var Z = new x();
Z.lolol = x;
Z.lolol();
By adding a property to the object, it's possible to detect if the object has been initialized.
function x() {
if ( (this instanceof arguments.callee && !this.hasOwnProperty("__ClaudiusCornerCase")) ) {
this.__ClaudiusCornerCase=1;
alert("called as constructor");
} else {
alert("called as function");
}
}
Even the code above will break if you delete the added property. You can however overwrite it with any value you like, including undefined, and it still works. But if you delete it, it will break.
There is at this time no native support in ecmascript for detecting if a function was called as a constructor. This is the closest thing I have come up with so far, and it should work unless you delete the property.
Two ways, essentially the same under the hood. You can test what the scope of this is or you can test what this.constructor is.
If you called a method as a constructor this will be a new instance of the class, if you call the method as a method this will be the methods' context object. Similarly the constructor of an object will be the method itself if called as new, and the system Object constructor otherwise. That's clear as mud, but this should help:
var a = {};
a.foo = function ()
{
if(this==a) //'a' because the context of foo is the parent 'a'
{
//method call
}
else
{
//constructor call
}
}
var bar = function ()
{
if(this==window) //and 'window' is the default context here
{
//method call
}
else
{
//constructor call
}
}
a.baz = function ()
{
if(this.constructor==a.baz); //or whatever chain you need to reference this method
{
//constructor call
}
else
{
//method call
}
}
Checking for the instance type of the [this] within the constructor is the way to go. The problem is that without any further ado this approach is error prone. There is a solution however.
Lets say that we are dealing with function ClassA(). The rudimentary approach is:
function ClassA() {
if (this instanceof arguments.callee) {
console.log("called as a constructor");
} else {
console.log("called as a function");
}
}
There are several means that the above mentioned solution will not work as expected. Consider just these two:
var instance = new ClassA;
instance.classAFunction = ClassA;
instance.classAFunction(); // <-- this will appear as constructor call
ClassA.apply(instance); //<-- this too
To overcome these, some suggest that either a) place some information in a field on the instance, like "ConstructorFinished" and check back on it or b) keep a track of your constructed objects in a list. I am uncomfortable with both, as altering every instance of ClassA is way too invasive and expensive for a type related feature to work. Collecting all objects in a list could provide garbage collection and resource issues if ClassA will have many instances.
The way to go is to be able to control the execution of your ClassA function. The simple approach is:
function createConstructor(typeFunction) {
return typeFunction.bind({});
}
var ClassA = createConstructor(
function ClassA() {
if (this instanceof arguments.callee) {
console.log("called as a function");
return;
}
console.log("called as a constructor");
});
var instance = new ClassA();
This will effectively prevent all attempts to trick with the [this] value. A bound function will always keep its original [this] context unless you call it with the new operator.
The advanced version gives back the ability to apply the constructor on arbitrary objects. Some uses could be using the constructor as a typeconverter or providing an callable chain of base class constructors in inheritance scenarios.
function createConstructor(typeFunction) {
var result = typeFunction.bind({});
result.apply = function (ths, args) {
try {
typeFunction.inApplyMode = true;
typeFunction.apply(ths, args);
} finally {
delete typeFunction.inApplyMode;
}
};
return result;
}
var ClassA = createConstructor(
function ClassA() {
if (this instanceof arguments.callee && !arguments.callee.inApplyMode) {
console.log("called as a constructor");
} else {
console.log("called as a function");
}
});
actually the solution is very possible and simple... don't understand why so many words been written for such a tiny thing
UPDATE: thanks to TwilightSun the solution is now completed, even for the test Claudiu suggested! thank you guys!!!
function Something()
{
this.constructed;
if (Something.prototype.isPrototypeOf(this) && !this.constructed)
{
console.log("called as a c'tor"); this.constructed = true;
}
else
{
console.log("called as a function");
}
}
Something(); //"called as a function"
new Something(); //"called as a c'tor"
demonstrated here: https://jsfiddle.net/9cqtppuf/
Extending Gregs solution, this one works perfectly with the test cases you provided:
function x(y) {
if( this.constructor == arguments.callee && !this._constructed ) {
this._constructed = true;
alert('called with new');
} else {
alert('called as function');
}
}
EDIT: adding some test cases
x(4); // OK, function
var X = new x(4); // OK, new
var Z = new x(); // OK, new
Z.lolol = x;
Z.lolol(); // OK, function
var Y = x;
Y(); // OK, function
var y = new Y(); // OK, new
y.lolol = Y;
y.lolol(); // OK, function
There is no reliable way to distinguish how a function is called in JavaScript code.1
However, a function call will have this assigned to the global object, while a constructor will have this assigned to a new object. This new object cannot ever be the global object, because even if an implementation allows you to set the global object, you still haven't had the chance to do it.
You can get the global object by having a function called as a function (heh) returning this.
My intuition is that in the specification of ECMAScript 1.3, constructors that have a defined behavior for when called as a function are supposed to distinguish how they were called using this comparison:
function MyClass () {
if ( this === (function () { return this; })() ) {
// called as a function
}
else {
// called as a constructor
}
}
Anyway, anyone can just use a function's or constructor's call or apply and set this to anything. But this way, you can avoid "initializing" the global object:
function MyClass () {
if ( this === (function () { return this; })() ) {
// Maybe the caller forgot the "new" keyword
return new MyClass();
}
else {
// initialize
}
}
1. The host (aka implementation) may be able to tell the difference, if it implements the equivalent to the internal properties [[Call]] and [[Construct]]. The former is invoked for function or method expressions, while the latter is invoked for new expressions.
In my testing for http://packagesinjavascript.wordpress.com/ I found the test if (this == window) to be working cross-browser in all cases, so that's the one I ended up using.
-Stijn
Until I saw this thread I never considered that the constructor might be a property of an instance, but I think the following code covers that rare scenario.
// Store instances in a variable to compare against the current this
// Based on Tim Down's solution where instances are tracked
var Klass = (function () {
// Store references to each instance in a "class"-level closure
var instances = [];
// The actual constructor function
return function () {
if (this instanceof Klass && instances.indexOf(this) === -1) {
instances.push(this);
console.log("constructor");
} else {
console.log("not constructor");
}
};
}());
var instance = new Klass(); // "constructor"
instance.klass = Klass;
instance.klass(); // "not constructor"
For most cases I'll probably just check instanceof.
From John Resig:
function makecls() {
return function(args) {
if( this instanceof arguments.callee) {
if ( typeof this.init == "function")
this.init.apply(this, args.callee ? args : arguments)
}else{
return new arguments.callee(args);
}
};
}
var User = makecls();
User.prototype.init = function(first, last){
this.name = first + last;
};
var user = User("John", "Resig");
user.name
If you're going hackish, then instanceof is the minimum solution after new.target as by other answers. But using the instanceof solution it would fail with this example:
let inst = new x;
x.call(inst);
Combining with #TimDown solution, you can use ES6's WeakSet if you want compatibility with older ECMAScript versions to prevent putting properties inside instances. Well, WeakSet will be used in order to allow unused objects be garbage collected. new.target won't be compatible in the same source code, as it is a ES6's syntax feature. ECMAScript specifies identifiers cannot be one of the reserved words, and new is not an object, anyways.
(function factory()
{
'use strict';
var log = console.log;
function x()
{
log(isConstructing(this) ?
'Constructing' :
'Not constructing'
);
}
var isConstructing, tracks;
var hasOwnProperty = {}.hasOwnProperty;
if (typeof WeakMap === 'function')
{
tracks = new WeakSet;
isConstructing = function(inst)
{
if (inst instanceof x)
{
return tracks.has(inst) ?
false : !!tracks.add(inst);
}
return false;
}
} else {
isConstructing = function(inst)
{
return inst._constructed ?
false : inst._constructed = true;
};
}
var z = new x; // Constructing
x.call(z) // Not constructing
})();
ECMAScript 3's instanceof operator of is specified as:
11.8.6 The instanceof operator
--- The production RelationalExpression: RelationalExpression instanceof ShiftExpression is evaluated
as follows:
--- 1. Evaluate RelationalExpression.
--- 2. Call GetValue(Result(1)).
--- 3. Evaluate ShiftExpression.
--- 4. Call GetValue(Result(3)).
--- 5. If Result(4) is not an object, throw a TypeError exception.
--- 6. If Result(4) does not have a [[HasInstance]] method, throw a TypeError exception.
--- 7. Call the [[HasInstance]] method of Result(4) with parameter Result(2).
--- 8. Return Result(7).
15.3.5.3 [[HasInstance]] (V)
--- Assume F is a Function object.
--- When the [[HasInstance]] method of F is called with value V, the following steps are taken:
--- 1. If V is not an object, return false.
--- 2. Call the [[Get]] method of F with property name "prototype".
--- 3. Let O be Result(2).
--- 4. If O is not an object, throw a TypeError exception.
--- 5. Let V be the value of the [[Prototype]] property of V.
--- 6. If V is **null**, return false.
--- 7. If O and V refer to the same object or if they refer to objects joined to each other (13.1.2), return true.
--- 8. Go to step 5.
And that means it'll be recursing the left hand side value after going to its prototype until it is not an object or until it is equal to the prototype of the right hand side object with the specified [[HasInstance]] method. What means it'll check if left hand side is an instance of the right hand side, consuming all internal prototypes of the left hand side though.
function x() {
if (this instanceof x) {
/* Probably invoked as constructor */
} else return 30;
}
maybe I`m wrong but (at the cost of a parasite) the following code seems like a solution:
function x(arg) {
//console.debug('_' in this ? 'function' : 'constructor'); //WRONG!!!
//
// RIGHT(as accepted)
console.debug((this instanceof x && !('_' in this)) ? 'function' : 'constructor');
this._ = 1;
return 30;
}
var result1 = x(4), // function
result2 = new x(4), // constructor
Z = new x(); // constructor
Z.lolol = x;
Z.lolol(); // function
Although this thread is ancient, I'm surprised that nobody has mentioned that under strict mode ('use strict') a function's default this value is undefined, instead of set to global/window as before, so to check if new is not used simply test for falsey value of !this
- EG:
function ctor() { 'use strict';
if (typeof this === 'undefined')
console.log('Function called under strict mode (this == undefined)');
else if (this == (window || global))
console.log('Function called normally (this == window)');
else if (this instanceof ctor)
console.log('Function called with new (this == instance)');
return this;
}
If you test that function as-is, you will get undefined as this value, due to the 'use strict' directive at the start of the function. Of course, if already has strict mode on then it won't change if you remove the 'use strict' directive, but otherwise if you remove it the this value will be set to window or global.
If you use new to call the function then the this value will match the instanceof check (although if you checked the other things, then instance is last option so this check is not needed, and to be avoided if you want to inherit instances anyway)
function ctor() { 'use strict';
if (!this) return ctor.apply(Object.create(ctor.prototype), arguments);
console.log([this].concat([].slice.call(arguments)));
return this;
}
This will log the this value and any arguments you pass to the function to console, and return the this value. If the this value is falsey then it creates a new instance using Object.create(ctor.prototype) and uses Function.apply() to re-call the constructor with the same params but with correct instance as this. If the this value is anything other than falsey then it is assumed to be a valid instance and returned.
I believe the solution is to turn your Constructor function into a wrapper of the real Constructor function and its prototype Constructor if required. This method will work in ES5 from 2009 and also work in strict mode. In the code window below I have an example using the module pattern, to hold the real constructor and its prototype's constructor, in a closure, which is accessible through scope within the constructor(wrapper). This works because no property is added to the "this" keyword within the Constructor(wrapper) and the Constructor(wrapper).prototype is not set, so is Object by default; thus the array returned from Object.getpropertyNames will have a length equal to 0, if the new keyword has been used with the Constructor(wrapper). If true then return new Vector.
var Vector = (function() {
var Vector__proto__ = function Vector() {
// Vector methods go here
}
var vector__proto__ = new Vector__proto__();;
var Vector = function(size) {
// vector properties and values go here
this.x = 0;
this.y = 0;
this.x = 0;
this.maxLen = size === undefined? -1 : size;
};
Vector.prototype = vector__proto__;
return function(size){
if ( Object.getOwnPropertyNames(this).length === 0 ) {
// the new keyword WAS USED with the wrapper constructor
return new Vector(size);
} else {
// the new keyword was NOT USED with the wrapper constructor
return;
};
};
})();
Tim Down I think is correct. I think that once you get to the point where you think you need to be able to distinguish between the two calling modes, then you should not use the "this" keyword. this is unreliable, and it could be the global object, or it could be some completely different object. the fact is, that having a function with these different modes of activation, some of which work as you intended, others do something totally wild, is undesirable. I think maybe you're trying to figure this out because of that.
There is an idiomatic way to create a constructor function that behaves the same no matter how it's called. whether it's like Thing(), new Thing(), or foo.Thing(). It goes like this:
function Thing () {
var that = Object.create(Thing.prototype);
that.foo="bar";
that.bar="baz";
return that;
}
where Object.create is a new ecmascript 5 standard method which can be implemented in regular javascript like this:
if(!Object.create) {
Object.create = function(Function){
// WebReflection Revision
return function(Object){
Function.prototype = Object;
return new Function;
}}(function(){});
}
Object.create will take an object as a parameter, and return a new object with that passed in object as its prototype.
If however, you really are trying to make a function behave differently depending on how it's called, then you are a bad person and you shouldn't write javascript code.
If you don't want to put a __previouslyConstructedByX property in the object - because it pollutes the object's public interface and could easily be overwritten - just don't return an instance of x:
function x() {
if(this instanceof x) {
console.log("You invoked the new keyword!");
return that;
}
else {
console.log("No new keyword");
return undefined;
}
}
x();
var Z = new x();
Z.lolol = x;
Z.lolol();
new Z.lolol();
Now the x function never returns an object of type x, so (I think) this instanceof x only evaluates to true when the function is invoked with the new keyword.
The downside is this effectively screws up the behaviour of instanceof - but depending on how much you use it (I don't tend to) that may not be a problem.
If you're goal is for both cases to return 30, you could return an instance of Number instead of an instance of x:
function x() {
if(this instanceof x) {
console.log("You invoked the new keyword!");
var that = {};
return new Number(30);
}
else {
console.log("No new");
return 30;
}
}
console.log(x());
var Z = new x();
console.log(Z);
Z.lolol = x;
console.log(Z.lolol());
console.log(new Z.lolol());
I had this same problem when I tried to implement a function that returns a string instead of an object.
It seems to be enough to check for the existence of "this" in the beginning of your function:
function RGB(red, green, blue) {
if (this) {
throw new Error("RGB can't be instantiated");
}
var result = "#";
result += toHex(red);
result += toHex(green);
result += toHex(blue);
function toHex(dec) {
var result = dec.toString(16);
if (result.length < 2) {
result = "0" + result;
}
return result;
}
return result;
}
Anyway, in the end I just decided to turn my RGB() pseudoclass into an rgb() function, so I just won't try to instantiate it, thus needing no safety check at all. But that would depend on what you're trying to do.
function createConstructor(func) {
return func.bind(Object.create(null));
}
var myClass = createConstructor(function myClass() {
if (this instanceof myClass) {
console.log('You used the "new" keyword');
} else {
console.log('You did NOT use the "new" keyword');
return;
}
// constructor logic here
// ...
});
On the top of the question, below code will auto-fix the issue in case function is called without new.
function Car() {
if (!(this instanceof Car)) return new Car();
this.a = 1;
console.log("Called as Constructor");
}
let c1 = new Car();
console.log(c1);
This can achieved without using ES6 new.target. You can run your code in strict mode and in this case value of this will be undefined if called without new otherwise it will be empty object.
Example::
"use strict"
function Name(){
console.log(this)
if(this){
alert("called by new")
}
else
alert("did not called using new")
}
new Name()
Use this instanceof arguments.callee (optionally replacing arguments.callee with the function it's in, which improves performance) to check if something is called as a constructor. Do not use this.constructor as that can be easily changed.