Or, in other words, how to make this work:
function foo(){}
//do something that modifies foo as if it was defined with "function foo(a,b,c){};"
console.log(foo.length);
//output: 3
It is possible, but maybe not very nice:
function lengthDecorator(fun) {
function update(len) {
var args = []; // array of parameter names
for (var i = 0; i < len; ++i) {
args.push('a' + i);
}
var result = new Function('fun',
'return function(' + args.join(',') + ') {' +
'var args = Array.prototype.slice.call(arguments);' +
'return fun.apply(this, args);' + // call supplied function
'}'
); // create a function that will return a function
result = result(fun); // make the fun param known to the inner function
result.update = update;
return result;
}
return update(fun.length);
}
Example usage:
var foo = lengthDecorator(function(a,b) {
return a+b;
});
print('foo.length: ' + foo.length);
print('foo(2, 3): ' + foo(2, 3));
print('');
foo = foo.update(42);
print('foo.length: ' + foo.length);
print('foo(2, 3): ' + foo(2, 3));
Output:
foo.length: 2
foo(2, 3): 5
foo.length: 42
foo(2, 3): 5
(Live demo: Ideone.com, jsFiddle)
lengthDecorator wraps the supplied function with a function that takes the same amount of parameters as the supplied function. The parameter count can be changed with update.
C.f.
new Function(...): Dynamically create a new function.
fun.apply(...): "Calls a function with a given this value and arguments provided as an array."
function foo() {}
alert(foo.length); // 0
foo = function (a, b, c) {}
alert(foo.length); // 3
I'm not sure what you're actually trying to do, but you can store the old foo in var and then redefine foo.
function foo() {...}
var oldfoo = foo;
foo = function (a, b, c) {
oldfoo();
}
But what's the point?
The length property of a function object is non-writable and non-configurable, so there is no way to change its value.
You could define a new function which invokes the original function internally...
Related
foo is equal to iCantThinkOfAName, but the iCantThinkOfAName has two parameters, and foo only one. I don’t understand how foo(2) returns num: 4.
function iCantThinkOfAName(num, obj) {
// This array variable, along with the 2 parameters passed in,
// are 'captured' by the nested function 'doSomething'
var array = [1, 2, 3];
function doSomething(i) {
num += i;
array.push(num);
console.log('num: ' + num);
console.log('array: ' + array);
console.log('obj.value: ' + obj.value);
}
return doSomething;
}
var referenceObject = {
value: 10
};
var foo = iCantThinkOfAName(2, referenceObject); // closure #1
var bar = iCantThinkOfAName(6, referenceObject); // closure #2
foo(2);
/*
num: 4
array: 1,2,3,4
obj.value: 10
*/
foo is not equal to iCantThinkOfAName, it is equal to iCantThinkOfAName(2, referenceObject) which returns the inner function doSomething within a closure containing num (which is equal to the 2 you passed in), obj which is your referenceObject you passed in, and array = [1, 2, 3];.
When you call foo(2) you are directly calling that inner doSomething where i is your 2 you are passing in, which gets added to your num which was your original 2; thus, num within the closure, is now 4.
I am reading a book which contains the following example:
var composition1 = function(f, g) {
return function(x) {
return f(g(x));
}
};
Then the author writes: "...naive implementation of composition, because it does not take the execution context into account..."
So the preferred function is that one:
var composition2 = function(f, g) {
return function() {
return f.call(this, g.apply(this, arguments));
}
};
Followed by an entire example:
var composition2 = function composition2(f, g) {
return function() {
return f.call(this, g.apply(this, arguments));
}
};
var addFour = function addFour(x) {
return x + 4;
};
var timesSeven = function timesSeven(x) {
return x * 7;
};
var addFourtimesSeven2 = composition2(timesSeven, addFour);
var result2 = addFourtimesSeven2(2);
console.log(result2);
Could someone please explain to me why the composition2 function is the preferred one (maybe with an example)?
EDIT:
In the meantime i have tried to use methods as arguments as suggested, but it did not work. The result was NaN:
var composition1 = function composition1(f, g) {
return function(x) {
return f(g(x));
};
};
var composition2 = function composition2(f, g) {
return function() {
return f.call(this, g.apply(this, arguments));
}
};
var addFour = {
myMethod: function addFour(x) {
return x + this.number;
},
number: 4
};
var timesSeven = {
myMethod: function timesSeven(x) {
return x * this.number;
},
number: 7
};
var addFourtimesSeven1 = composition1(timesSeven.myMethod, addFour.myMethod);
var result1 = addFourtimesSeven1(2);
console.log(result1);
var addFourtimesSeven2 = composition2(timesSeven.myMethod, addFour.myMethod);
var result2 = addFourtimesSeven2(2);
console.log(result2);
This just answers what composition2 actually does:
composition2 is used when you want to keep this as context in the functions itself. The following example shows that the result is 60 by using data.a and data.b:
'use strict';
var multiply = function(value) {
return value * this.a;
}
var add = function(value) {
return value + this.b;
}
var data = {
a: 10,
b: 4,
func: composition2(multiply, add)
};
var result = data.func(2);
// uses 'data' as 'this' inside the 'add' and 'multiply' functions
// (2 + 4) * 10 = 60
But yet, it still breaks the following example (unfortunately):
'use strict';
function Foo() {
this.a = 10;
this.b = 4;
}
Foo.prototype.multiply = function(value) {
return value * this.a;
};
Foo.prototype.add = function(value) {
return value + this.b;
};
var foo = new Foo();
var func = composition2(foo.multiply, foo.add);
var result = func(2); // Uncaught TypeError: Cannot read property 'b' of undefined
Because the context of composition2 (this) is undefined (and is not called in any other way, such as .apply, .call or obj.func()), you'd end up with this being undefined in the functions as well.
On the other hand, we can give it another context by using the following code:
'use strict';
var foo = new Foo();
var data = {
a: 20,
b: 8,
func: composition2(foo.multiply, foo.add)
}
var result = data.func(2);
// uses 'data' as 'this'
// (2 + 8) * 10 = 200 :)
Or by explicitly setting the context:
'use strict';
var multiply = function(value) {
return value * this.a;
};
var add = function(value) {
return value + this.b;
};
var a = 20;
var b = 8;
var func = composition2(multiply, add);
// All the same
var result1 = this.func(2);
var result2 = func.call(this, 2);
var result3 = func.apply(this, [2]);
composition1 would not pass arguments other than the first to g()
If you do:
var composition1 = function(f, g) {
return function(x1, x2, x3) {
return f(g(x1, x2, x3));
}
};
the function will work for the first three arguments. If you however want it to work for an arbitrary number, you need to use Function.prototype.apply.
f.call(...) is used to set this as shown in Caramiriel's answer.
I disagree with the author.
Think of the use-case for function-composition. Most of the time I utilize function-composition for transformer-functions (pure functions; argument(s) in, result out and this is irrelevant).
2nd. Utilizing arguments the way he does it leads into a bad practice/dead end, because it implies that the function g() might depend on multiple arguments.
That means, that the composition I create is not composable anymore, because it might not get all arguments it needs.
composition that prevents composition; fail
(And as a side-effect: passing the arguments-object to any other function is a performance no-go, because the JS-engine can't optimize this anymore)
Take a look at the topic of partial application, usually misreferenced as currying in JS, wich is basically: unless all arguments are passed, the function returns another function that takes the remaining args; until I have all my arguments I need to process them.
Then you should rethink the way you implement argument-order, because this works best when you define them as configs-first, data-last.Example:
//a transformer: value in, lowercased string out
var toLowerCase = function(str){
return String(str).toLowerCase();
}
//the original function expects 3 arguments,
//two configs and the data to process.
var replace = curry(function(needle, heystack, str){
return String(str).replace(needle, heystack);
});
//now I pass a partially applied function to map() that only
//needs the data to process; this is really composable
arr.map( replace(/\s[A-Z]/g, toLowerCase) );
//or I create another utility by only applying the first argument
var replaceWhitespaceWith = replace(/\s+/g);
//and pass the remaining configs later
arr.map( replaceWhitespaceWith("-") );
A slightly different approach is to create functions that are, by design, not intended to get all arguments passed in one step, but one by one (or in meaningful groups)
var prepend = a => b => String(a) + String(b); //one by one
var substr = (from, to) => value => String(str).substr(from, to); //or grouped
arr.map( compose( prepend("foo"), substr(0, 5) ) );
arr.map( compose( prepend("bar"), substr(5) ) );
//and the `to`-argument is undefined; by intent
I don't intend to ever call such functions with all the arguments, all I want to pass them is their configs, and to get a function that does the job on the passed data/value.
Instead of substr(0, 5, someString), I would always write someString.substr(0, 5), so why take any efforts to make the last argument (data) applyable in the first call?
With this code:
function printStuff(thing1, thing2) {
console.log(thing1 + ', ' + thing2);
};
function callWith() {
theFunc = arguments[0];
theArgs = [].slice.call(arguments, 1);
return function() {
theFunc.apply(this, theArgs);
};
};
x = callWith(printStuff, "apples", "cheese");
y = callWith(printStuff, "monkeys", "bananas");
x();
y();
...why is it that x and y seem to hold the same function? How do I get the desired behavior (i.e., store two different functions which always run printStuff with the parameters they were given when created)?
You need to create a different NEW instant of the printStuff method like this --
function printStuff(thing1, thing2) {
console.log(thing1 + ', ' + thing2);
};
function callWith() {
theFunc = arguments[0];
theArgs = [].slice.call(arguments, 1);
return new function() { // RETURN A NEW INSTANCE SO THAT IT HAS ITS OWN ARGUMENTS
theFunc.apply(this, theArgs);
};
};
x = callWith(printStuff, "apples", "cheese");
y = callWith(printStuff, "monkeys", "bananas");
x();
y();
How do I get this to return a value for x+y+z instead of an error?
function A (x) {
return function B (y) {
return function(z) {
return x+y+z;
}
}
};
var outer = new A(4);
var inner = new outer(B(9));
inner(4);
Like yent said, no "new"s are necessary. "new" returns an instance.
For instance (pun intended):
function foo(a){
return a;
}
foo(4); // this will return 4, but
new foo(); // this will return a 'foo' object
But now on to your question. Like rid said, B is declared within the scope of function A. So, your new outer(B(9)); will throw an error because B doesn't exist in the scope of where you called it.
Secondly, back to what yent said. Since each function is returning a function, we call what was returned.
function A (x) {
return function B (y) {
return function C (z) {
return x+y+z;
}
}
};
var f = A(2); // f is now function B, with x = 2
var g = f(3); // g is now function C, with x = 2, and y = 3
var h = g(4); // Function C returns x+y+z, so h = 2 + 3 + 4 = 9
However, we can use the following 'shortcut':
A(2)(3)(4);
// each recursive '(x)' is attempting to call the value in front of it as if it was a function (and in this case they are).
To sort of explain:
A(2)(3)(4) = ( A(2)(3) )(4) = ( ( A(2) )(3) )(4);
// A(2) returns a function that we assigned to f, so
( ( A(2) )(3) )(4) = ( ( f )(3) )(4) = ( f(3) )(4);
// We also know that f(3) returns a function that we assigned to g, so
( f(3) )(4) = g(4);
I hope that helped!
I am working on the curring function and partial application,
I am trying to improve the function schonfinkelize:
function schonfinkelize(fn){
var
slice = Array.prototype.slice,
stored_args = slice.call(arguments, 1);
return function(){
var
new_args = slice.call(arguments),
args = stored_args.concat(new_args);
return fn.apply(null, args);
}
}
This function permit to pass as argument a function and a part of the argument of the function passed as argument (partial application) so the first time you return a function and then when you fire the function again the result.
function add(x, y, z){
return x + y + z;
}
var val = schonfinkelize(add, 1, 2);
console.log( val(3) ) // console output--> 6
I want check inside schonfinkelize the number of arguments need to the function "add" (but it should work with every function) so I can choose when return another function or directly the result of the function "add".
bacause if I use schonfinkelize in this way:
var val2 = schonfinkelize(add, 1, 2, 3);
console.log( val2 ) // --> function
console.log( val2() ) // --> 6
I have to fire the function two time, instead a want avoid this behavior and define directly the value if the arguments are sufficient.
A possible solution could be the following:
function schonfinkelize(fn){
var
slice = Array.prototype.slice,
stored_args = slice.call(arguments, 1);
//* I have added this ********
if(fn.apply(null, stored_args))
return fn.apply(null, stored_args);
//****************************
return function(){
var
new_args = slice.call(arguments),
args = stored_args.concat(new_args);
return fn.apply(null, args);
}
}
Could be because it returns immediately the result if the fn.apply(null, stored_args) return something that is not "null" or "NaN" but I think is not really performant and then I want work with the arguments.
As long as you put in place a requirement that the parameters defined for the function passed reflect the actually number of arguments that are to be ultimately received, you can use the .length property of the function to do the comparison of passed arguments to anticipated arguments.
function schonfinkelize(fn) {
if (fn.length === arguments.length - 1)
return fn.apply(this, [].slice.call(arguments, 1));
var
slice = Array.prototype.slice,
stored_args = slice.call(arguments, 1);
return function(){
var
new_args = slice.call(arguments),
args = stored_args.concat(new_args);
return fn.apply(null, args);
}
}
Side note... you can avoid the .slice() if you cache the fn in a new variable, and overwrite the first argument with the this value, then use .call.apply()...
if (fn.length === arguments.length - 1) {
var func = fn;
arguments[0] = this;
return func.call.apply(func, arguments);
}
In strict mode browsers you could even avoid having the make the new variable since the parameters are no longer mapped to changes in the arguments. But this doesn't work in browsers that don't support strict mode.
I don't think there is a correct way to determine number of arguments for arbitrary function. I prefer to store len in function if it is necessary, and check if it is defined, and if it is and if fn.len == stored_args.length then return function that just returns value.
function schonfinkelize(fn){
var
slice = Array.prototype.slice,
stored_args = slice.call(arguments, 1);
if (fn.len != undefined && fn.len == stored_args.length) {
var val = fn.apply(null, stored_args);
return function () {
return val;
};
}
return function () {
var
new_args = slice.call(arguments),
args = stored_args.concat(new_args);
return fn.apply(null, args);
};
}
var f = function (a, b, c) {
return a + b + c;
};
f.len = 3;
var g = schonfinkelize(f, 1, 2);
alert(g); // function () { var new_args = slice.call(arguments), args = stored_args.concat(new_args); return fn.apply(null, args); };
alert(g(3)); // 6
var g = schonfinkelize(f, 1, 2, 3);
alert(g); // function () { return val; };
alert(g()); // 6
I want propose also a personal evolution of the code but I have to said thanks to squint to has resolved the problem, simply suggest me to use the property .length.
The next level it is in my opinion permit to create a partial function able to be called every time you want until you finish to fill all the arguments, I have also simplified the code:
function schonfinkelize(fn, stored_args){
if(fn.length == stored_args.length)
return fn.apply(null, stored_args);
return function(){
var
new_args = arguments[0],
args = stored_args.concat(new_args);
if(fn.length == args.length)
return fn.apply(null, args);
return schonfinkelize(fn, args);
}
}
function add(x, y, w, z){
return x + y + w + z;
}
var
val = schonfinkelize(add, [1, 2, 3, 4]),
val2 = schonfinkelize(add, [1, 2]),
val3 = schonfinkelize(add, [1]);
// checking
console.log(val); // output --> 10 // called only 1 time
console.log(val2([3, 4])); // output --> 10 // called in 2 times
val3 = val3([2]);
val3 = val3([3]);
console.log(val3([4])); // output --> 10 // called 4 times!