jQuery document ready - function calls: sequential or asynch? - javascript

I recognise this question probably goes to how Javascript functions operate in general (and not just my particular case), but...
I want to know how my document ready function... umm... functions. In stylised form, it's like the following:
$(function () {
object1.init();
object2.init();
object3.init(); etc...
Will object2.init() only fire when object1.init() returns? Or will they all fire in an asynchronous kind of way?
UPDATE: If they fire sequentially, is there any way I can get them to go simultaneously (which I possibly don't need to do)?
Thanks.

Will object2.init() only fire when object1.init() returns? Or will they all fire in an asynchronous kind of way?
object2.init() only fire when object1.init() returns.
All the functions are stored in a queue, and get fired one after the other.
There is no way to make them fire simultaneously.
Not just jQuery, but javascript doesn't support parallel programming.
You can see the jQuery source code:
( Update: I removed the actuall code, because the answer became a mini jQuery source code...)
// Handle when the DOM is ready
ready: function(wait) {
...
// Call all callbacks with the given context and arguments
fireWith: function(context, args) {
...
jQuery.Callbacks = function( flags ) {
...
// The deferred used on DOM ready
readyList,
Check those functions and variables in the jQuery source code

It wil run sequencially.
If one of the init()'s does an async call, that will obviously be async, but each function (or any line actually) will run in turn.

Related

Returning Chrome storage API value without function

For the past two days I have been working with chrome asynchronous storage. It works "fine" if you have a function. (Like Below):
chrome.storage.sync.get({"disableautoplay": true}, function(e){
console.log(e.disableautoplay);
});
My problem is that I can't use a function with what I'm doing. I want to just return it, like LocalStorage can. Something like:
var a = chrome.storage.sync.get({"disableautoplay": true});
or
var a = chrome.storage.sync.get({"disableautoplay": true}, function(e){
return e.disableautoplay;
});
I've tried a million combinations, even setting a public variable and setting that:
var a;
window.onload = function(){
chrome.storage.sync.get({"disableautoplay": true}, function(e){
a = e.disableautoplay;
});
}
Nothing works. It all returns undefined unless the code referencing it is inside the function of the get, and that's useless to me. I just want to be able to return a value as a variable.
Is this even possible?
EDIT: This question is not a duplicate, please allow me to explain why:
1: There are no other posts asking this specifically (I spent two days looking first, just in case).
2: My question is still not answered. Yes, Chrome Storage is asynchronous, and yes, it does not return a value. That's the problem. I'll elaborate below...
I need to be able to get a stored value outside of the chrome.storage.sync.get function. I -cannot- use localStorage, as it is url specific, and the same values cannot be accessed from both the browser_action page of the chrome extension, and the background.js. I cannot store a value with one script and access it with another. They're treated separately.
So my only solution is to use Chrome Storage. There must be some way to get the value of a stored item and reference it outside the get function. I need to check it in an if statement.
Just like how localStorage can do
if(localStorage.getItem("disableautoplay") == true);
There has to be some way to do something along the lines of
if(chrome.storage.sync.get("disableautoplay") == true);
I realize it's not going to be THAT simple, but that's the best way I can explain it.
Every post I see says to do it this way:
chrome.storage.sync.get({"disableautoplay": true, function(i){
console.log(i.disableautoplay);
//But the info is worthless to me inside this function.
});
//I need it outside this function.
Here's a tailored answer to your question. It will still be 90% long explanation why you can't get around async, but bear with me — it will help you in general. I promise there is something pertinent to chrome.storage in the end.
Before we even begin, I will reiterate canonical links for this:
After calling chrome.tabs.query, the results are not available
(Chrome specific, excellent answer by RobW, probably easiest to understand)
Why is my variable unaltered after I modify it inside of a function? - Asynchronous code reference (General canonical reference on what you're asking for)
How do I return the response from an asynchronous call?
(an older but no less respected canonical question on asynchronous JS)
You Don't Know JS: Async & Performance (ebook on JS asynchronicity)
So, let's discuss JS asynchonicity.
Section 1: What is it?
First concept to cover is runtime environment. JavaScript is, in a way, embedded in another program that controls its execution flow - in this case, Chrome. All events that happen (timers, clicks, etc.) come from the runtime environment. JavaScript code registers handlers for events, which are remembered by the runtime and are called as appropriate.
Second, it's important to understand that JavaScript is single-threaded. There is a single event loop maintained by the runtime environment; if there is some other code executing when an event happens, that event is put into a queue to be processed when the current code terminates.
Take a look at this code:
var clicks = 0;
someCode();
element.addEventListener("click", function(e) {
console.log("Oh hey, I'm clicked!");
clicks += 1;
});
someMoreCode();
So, what is happening here? As this code executes, when the execution reaches .addEventListener, the following happens: the runtime environment is notified that when the event happens (element is clicked), it should call the handler function.
It's important to understand (though in this particular case it's fairly obvious) that the function is not run at this point. It will only run later, when that event happens. The execution continues as soon as the runtime acknowledges 'I will run (or "call back", hence the name "callback") this when that happens.' If someMoreCode() tries to access clicks, it will be 0, not 1.
This is what called asynchronicity, as this is something that will happen outside the current execution flow.
Section 2: Why is it needed, or why synchronous APIs are dying out?
Now, an important consideration. Suppose that someMoreCode() is actually a very long-running piece of code. What will happen if a click event happened while it's still running?
JavaScript has no concept of interrupts. Runtime will see that there is code executing, and will put the event handler call into the queue. The handler will not execute before someMoreCode() finishes completely.
While a click event handler is extreme in the sense that the click is not guaranteed to occur, this explains why you cannot wait for the result of an asynchronous operation. Here's an example that won't work:
element.addEventListener("click", function(e) {
console.log("Oh hey, I'm clicked!");
clicks += 1;
});
while(1) {
if(clicks > 0) {
console.log("Oh, hey, we clicked indeed!");
break;
}
}
You can click to your heart's content, but the code that would increment clicks is patiently waiting for the (non-terminating) loop to terminate. Oops.
Note that this piece of code doesn't only freeze this piece of code: every single event is no longer handled while we wait, because there is only one event queue / thread. There is only one way in JavaScript to let other handlers do their job: terminate current code, and let the runtime know what to call when something we want occurs.
This is why asynchronous treatment is applied to another class of calls that:
require the runtime, and not JS, to do something (disk/network access for example)
are guaranteed to terminate (whether in success or failure)
Let's go with a classic example: AJAX calls. Suppose we want to load a file from a URL.
Let's say that on our current connection, the runtime can request, download, and process the file in the form that can be used in JS in 100ms.
On another connection, that's kinda worse, it would take 500ms.
And sometimes the connection is really bad, so runtime will wait for 1000ms and give up with a timeout.
If we were to wait until this completes, we would have a variable, unpredictable, and relatively long delay. Because of how JS waiting works, all other handlers (e.g. UI) would not do their job for this delay, leading to a frozen page.
Sounds familiar? Yes, that's exactly how synchronous XMLHttpRequest works. Instead of a while(1) loop in JS code, it essentially happens in the runtime code - since JavaScript cannot let other code execute while it's waiting.
Yes, this allows for a familiar form of code:
var file = get("http://example.com/cat_video.mp4");
But at a terrible, terrible cost of everything freezing. A cost so terrible that, in fact, the modern browsers consider this deprecated. Here's a discussion on the topic on MDN.
Now let's look at localStorage. It matches the description of "terminating call to the runtime", and yet it is synchronous. Why?
To put it simply: historical reasons (it's a very old specification).
While it's certainly more predictable than a network request, localStorage still needs the following chain:
JS code <-> Runtime <-> Storage DB <-> Cache <-> File storage on disk
It's a complex chain of events, and the whole JS engine needs to be paused for it. This leads to what is considered unacceptable performance.
Now, Chrome APIs are, from ground up, designed for performance. You can still see some synchronous calls in older APIs like chrome.extension, and there are calls that are handled in JS (and therefore make sense as synchronous) but chrome.storage is (relatively) new.
As such, it embraces the paradigm "I acknowledge your call and will be back with results, now do something useful meanwhile" if there's a delay involved with doing something with runtime. There are no synchronous versions of those calls, unlike XMLHttpRequest.
Quoting the docs:
It's [chrome.storage] asynchronous with bulk read and write operations, and therefore faster than the blocking and serial localStorage API.
Section 3: How to embrace asynchronicity?
The classic way to deal with asynchronicity are callback chains.
Suppose you have the following synchronous code:
var result = doSomething();
doSomethingElse(result);
Suppose that, now, doSomething is asynchronous. Then this becomes:
doSomething(function(result) {
doSomethingElse(result);
});
But what if it's even more complex? Say it was:
function doABunchOfThings() {
var intermediate = doSomething();
return doSomethingElse(intermediate);
}
if (doABunchOfThings() == 42) {
andNowForSomethingCompletelyDifferent()
}
Well.. In this case you need to move all this in the callback. return must become a call instead.
function doABunchOfThings(callback) {
doSomething(function(intermediate) {
callback(doSomethingElse(intermediate));
});
}
doABunchOfThings(function(result) {
if (result == 42) {
andNowForSomethingCompletelyDifferent();
}
});
Here you have a chain of callbacks: doABunchOfThings calls doSomething immediately, which terminates, but sometime later calls doSomethingElse, the result of which is fed to if through another callback.
Obviously, the layering of this can get messy. Well, nobody said that JavaScript is a good language.. Welcome to Callback Hell.
There are tools to make it more manageable, for example Promises and async/await. I will not discuss them here (running out of space), but they do not change the fundamental "this code will only run later" part.
Section TL;DR: I absolutely must have the storage synchronous, halp!
Sometimes there are legitimate reasons to have a synchronous storage. For instance, webRequest API blocking calls can't wait. Or Callback Hell is going to cost you dearly.
What you can do is have a synchronous cache of the asynchronous chrome.storage. It comes with some costs, but it's not impossible.
Consider:
var storageCache = {};
chrome.storage.sync.get(null, function(data) {
storageCache = data;
// Now you have a synchronous snapshot!
});
// Not HERE, though, not until "inner" code runs
If you can put ALL your initialization code in one function init(), then you have this:
var storageCache = {};
chrome.storage.sync.get(null, function(data) {
storageCache = data;
init(); // All your code is contained here, or executes later that this
});
By the time code in init() executes, and afterwards when any event that was assigned handlers in init() happens, storageCache will be populated. You have reduced the asynchronicity to ONE callback.
Of course, this is only a snapshot of what storage looks at the time of executing get(). If you want to maintain coherency with storage, you need to set up updates to storageCache via chrome.storage.onChanged events. Because of the single-event-loop nature of JS, this means the cache will only be updated while your code doesn't run, but in many cases that's acceptable.
Similarly, if you want to propagate changes to storageCache to the real storage, just setting storageCache['key'] is not enough. You would need to write a set(key, value) shim that BOTH writes to storageCache and schedules an (asynchronous) chrome.storage.sync.set.
Implementing those is left as an exercise.
Make the main function "async" and make a "Promise" in it :)
async function mainFuction() {
var p = new Promise(function(resolve, reject){
chrome.storage.sync.get({"disableautoplay": true}, function(options){
resolve(options.disableautoplay);
})
});
const configOut = await p;
console.log(configOut);
}
Yes, you can achieve that using promise:
let getFromStorage = keys => new Promise((resolve, reject) =>
chrome.storage.sync.get(...keys, result => resolve(result)));
chrome.storage.sync.get has no returned values, which explains why you would get undefined when calling something like
var a = chrome.storage.sync.get({"disableautoplay": true});
chrome.storage.sync.get is also an asynchronous method, which explains why in the following code a would be undefined unless you access it inside the callback function.
var a;
window.onload = function(){
chrome.storage.sync.get({"disableautoplay": true}, function(e){
// #2
a = e.disableautoplay; // true or false
});
// #1
a; // undefined
}
If you could manage to work this out you will have made a source of strange bugs. Messages are executed asynchronously which means that when you send a message the rest of your code can execute before the asychronous function returns. There is not guarantee for that since chrome is multi-threaded and the get function may delay, i.e. hdd is busy.
Using your code as an example:
var a;
window.onload = function(){
chrome.storage.sync.get({"disableautoplay": true}, function(e){
a = e.disableautoplay;
});
}
if(a)
console.log("true!");
else
console.log("false! Maybe undefined as well. Strange if you know that a is true, right?");
So it will be better if you use something like this:
chrome.storage.sync.get({"disableautoplay": true}, function(e){
a = e.disableautoplay;
if(a)
console.log("true!");
else
console.log("false! But maybe undefined as well");
});
If you really want to return this value then use the javascript storage API. This stores only string values so you have to cast the value before storing and after getting it.
//Setting the value
localStorage.setItem('disableautoplay', JSON.stringify(true));
//Getting the value
var a = JSON.stringify(localStorage.getItem('disableautoplay'));
var a = await chrome.storage.sync.get({"disableautoplay": true});
This should be in an async function. e.g. if you need to run it at top level, wrap it:
(async () => {
var a = await chrome.storage.sync.get({"disableautoplay": true});
})();

How should I deal with an ajax get function, that is reused across multiple pages?

I have a web application with booking/reservation-functionality. One of my core functions is to check whether a booking conflicts with other bookings, and this function is used across multiple pages. Its return data is not usually loaded with a page, as it's request parameters are dependent upon user input. In other words:
I have an ajax function, that gets booking data
It is abstracted away into it's own .js file, for reusability
The ajax function is wrapped in a javascript function.
However, an ajax function is not suitable for my intended use. The wrapper function will return nothing, before the ajax call is complete, due to it's asynchronous nature. If i need to execute something with the returned data, it should be inside the success-function of the ajax call, but as I need different things to happen, based on in which page, and which situation the data is needed.
I see three solutions to my problem. I just can't decide which is the best approach, or if there might be a fourth and better option:
1. Skip the abstraction of the ajax function. In other words, just copy/paste it into every function where I need the data, and voilla; I would have the success-condition function available at all times.
2. Pass a succes-function as a parameter. If i need something dynamic to happen, I could make it so, by passing a function to the ajax-wrapper function, and making sure that the passed function accepts the ajax returned data as it's own parameter.
3. Make the ajax call synchronous. Possible, but kind of ruins the concept of ajax (actually I am also using JSON, so that will make ajax into sjoj).
Honestly, I really can't see that either of the solutions stand out as the winner here. I would greatly appreciate any help.
I suggest using an event based approach.
Inside ajax success you can fire (trigger) an event for example booking-check-complete and the specific page handles the event the way it needs.
This way you keep the benefits of the ajax being well - asynchronous and keep the pages decoupled.
For uses like this I use jQuery event mechanism, but there are also other libraries available. Check it out here - trigger
For example in page one you have:
$( document ).on( "booking-check-complete", function( event, param1, param2 ) {
alert( "Hello from page 1" );
});
On the second page you have:
$( document ).on( "booking-check-complete", function( event, param1, param2 ) {
alert( "Hello from page 2" );
});
And in ajax success:
$( document ).trigger( "booking-check-complete", [ "Custom", "Event" ] );
NOTE
You don't need jQuery to use events as described here
This uses plain javascript, but it is not compatible with IE.
var event = new Event('build');
// Listen for the event.
elem.addEventListener('build', function (e) { ... }, false);
// Dispatch the event.
elem.dispatchEvent(event);
No. That violates DRY.
Yes. This is idiomatic JavaScript.
No. That locks up the UI (and synchronous XHR is deprecated).
Option 2 is the standout winner.

What's the most efficient way to wait for an asynchronous function call in Javascript?

This might be the opposite of my previous question here but anyway, I need to know its answer as well.
I have an Ajax call in my algorithm that I need to wait for it to run some code. There are two solutions:
1) The typical solution:
ajaxCall(function(result){
//the code to run after the call is returned
});
2) The one I'm wondering if it can be an alternative:
res=null;
ajaxCall(function(result){
res=result;
});
while(res==null)/*wait! but this will lock the GUI I guess*/;
//do the rest of the code because now res is initialized
The question is how can I write the second solution in an efficient way that doesn't freeze the GUI?
Just make the ajax call synchronous.
ref: http://developer.mozilla.org/en/XMLHttpRequest
look for the async parameter
I suggest hooking all dependent code to execute as a callback from your ajax call 's return. That way, all other javascript can continue to execute and you will not make your browser unresponsive for the duration of the call.
Alternatively, which is not something I would never ever do, you can make your ajax call synchronous, using async: false like so:
$.ajax({ url: ..., async: false });
A generic answer:
There are only two methods available in async. programming: events and callbacks. Period.
(Technically speaking, there is not really a difference between the two on the lowest level, an "event" is just a (library) function - the one doing the event "firing" - executing all functions registered as listeners so it's the same as a callback - technically, i.e. when you write event.fire() or whatever the event syntax of your preferred lib it's synchronous invocation of all registered event handler functions). When to use one or the other is a matter of preference, convention and style when designing an API.)
Javascript programming, especially AJAX, is asynchronous by definition. So if you have an algorithm that needs to "wait" for something, you're better off reconsidering the algorithm. Ironically enough, Javascript syntax is not best suitable for async programming, but there are many libraries that help you keep callbacks under control and avoid spaghetti code.
Example of callbacks spaghetti:
function ajaxRequest(url1, function() {
animateSomething(div, function() {
ajaxRequest(url2, function() {
....
})
})
})
the same with async.js looks much cleaner:
async.series([
function(_) { ajaxRequest(url1, _) },
function(_) { animateSomething(div, _) },
function(_) { ajaxRequest(url2, _) }
])
there are many ways to do this one. one of the is passing a callback to the ajax (or at least a reference of it). your code #1 would be an example of that.
another is that you have a notifier object which you add the ajax success call to it. then you can have other functions (one or more) plug into it to listen for a "success" announcement.

What are the proper use cases for process.nextTick in Node.js?

I have seen process.nextTick used in a few places and can't quite tell what it's being used for.
https://github.com/andrewvc/node-paperboy/blob/master/lib/paperboy.js#L24
https://github.com/substack/node-browserify/blob/master/index.js#L95
What are the main/proper use cases of process.nextTick in Node.js? The docs basically say it's a more optimized way of doing setTimeout, but that doesn't help much.
I used to do a lot of ActionScript, so the idea of "waiting until the next frame" to execute code makes sense on some level - if you're running an animation you can have it update every frame rather than every millisecond for example. It also makes sense when you want to coordinate setting a bunch of variables - you change the variables in frame 1, and apply the changes in frame 2. Flex implemented something like this in their component lifecycle.
My question is, what should I be using this for in server-side JavaScript? I don't see any places right off the bat where you'd need this kind of fine-tuned performance/flow control. Just looking for a point in the right direction.
process.nextTick puts a callback into a queue. Every callback in this queue will get executed at the very beginning of the next tick of the event loop. It's basically used as a way to clear your call stack. When the documentation says it's like setTimeout, it means to say it's like using setTimeout(function() { ... }, 1) in the browser. It has the same use cases.
One example use case would be, you create a constructor for some object that needs events bound to it. However, you can't start emitting events right away, because the code instantiating it hasn't had time to bind to events yet. Your constructor call is above them in the call stack, and if you continue to do synchronous things, it will stay that way. In this case, you could use a process.nextTick before proceeding to whatever you were about to do. It guarantees that the person using your constructor will have time enough to bind events.
Example:
var MyConstructor = function() {
...
process.nextTick(function() {
self._continue();
});
};
MyConstructor.prototype.__proto__ = EventEmitter.prototype;
MyConstructor.prototype._continue = function() {
// without the process.nextTick
// these events would be emitted immediately
// with no listeners. they would be lost.
this.emit('data', 'hello');
this.emit('data', 'world');
this.emit('end');
};
Example Middleware using this constructor
function(req, res, next) {
var c = new MyConstructor(...);
c.on('data', function(data) {
console.log(data);
});
c.on('end', next);
}
It simply runs your function at the end of the current operation before the next I/O callbacks. Per documentation you can use it run your code after the callers synchronous code has executed, potentially if you can use this to give your API/library user an opportunity to register event handlers which need to be emitted ASAP. Another use case is to ensure that you always call the callbacks with asynchronously to have consistent behaviours in different cases.
In the past process.nextTick would be have been used provide an opportunities for I/O events to be executed however this is not the behaviour anymore and setImmediate was instead created for that behaviour. I explained a use case in the answer of this question.
"Every callback in this queue will get executed at the very beginning of the next tick of the event loop" is not correct. Actually, nextTick() runs right after completing the current phase and before starting the next phase. Minute details are important!
A function passed to process.nextTick() is going to be executed on the current iteration of the event loop, after the current operation ends. This means it will always execute before setTimeout and setImmediate.
Understanding setImmediate()

asynchronous javascript prepare function

To speed up my application I want to prepare some data before DOM is ready and then use this data when DOM is ready.
Here's how it might be:
var data = function prepareData(){
...
}();
$(document).ready(function() {
// use data to build page
}
How to prepare the data for later use?
Thanks
You need should use parentheses around the function expression for clarity (and because in a similar situation where you're defining and calling a function but not using the return value, it would be a syntax error without them). Also, when you use a function expression, you want to not give it a name. So:
var data = (function(){
...
})();
or use a function declaration instead:
var data = processData();
function processData() {
...
}
(Why not use a name with a function expression? Because of bugs in various implementations, especially Internet Explorer prior to IE9, which will create two completely unrelated functions.)
However, it's not clear to me what you're trying to achieve. When the browser reaches the script element, it hands off to the JavaScript interpreter and waits for it to finish before continuing building the DOM (because your script might use document.write to add to the HTML token stream). You can use the async or defer attributes to promise the browser you're not going to use document.write, on browsers that support them, but...
Update: Below you've said:
because prepareData is long time function and I assumed that browser can execute this while it's building DOM tree. Unfortunately '$(document).ready' fires before prepareData is finished. The question is how to teach '$(document).ready' to wait for ready data
The only way the ready handler can possibly trigger while processData is running is if processData is using asynchronous ajax (or a couple of edge conditions around alert, confirm, and the like, but I assume you're not doing that). And if it were, you couldn't be returning the result as a return value from the function (though you could return an object that you continued to update as the result of ajax callbacks). Otherwise, it's impossible: JavaScript on browsers is single-threaded, the ready handler will queue waiting for the interpreter to finish its previous task (processData).
If processData isn't doing anything asynchronous, I suspect whatever the symptom is that you're seeing making you think the ready handler is firing during processData has a different cause.
But in the case of asynchronous stuff, three options:
If you're not in control of the ready handlers you want to hold up, you might look at jQuery's holdReady feature. Call $.holdReady(true); to hold up the event, and use $.holdReady(false); to stop holding it up.
It's simple enough to reschedule the ready handler. Here's how I'd do it (note that I've wrapped everything in a scoping function so these things aren't globals):
(function() {
var data = processData();
$(onPageReady);
function processData() {
}
function onPageReady() {
if (!data.ready) {
// Wait for it to be ready
setTimeout(onPageReady, 0); // 0 = As soon as possible, you may want a
// longer delay depending on what `processData`
// is waiting for
return;
}
}
})();
Note that I happily use data in the onPageReady function, because I know that it's there; that function will not run until processData has returned. But I'm assuming processData is returning an object that is slowly being filled in via ajax calls, so I've used a ready flag on the object that will get set when all the data is ready.
If you can change processData, there's a better solution: Have processData trigger the ready handler when it's done. Here's the code for when processData is done with what it needs to do:
$(onPageReady);
That works because if the DOM isn't ready yet, that just schedules the call. If the DOM is already ready, jQuery will call your function immediately. This prevents the messy looping above.

Categories