Say I have this:
// different things you can do
var CAN_EAT = 1,
CAN_SLEEP = 2,
CAN_PLAY = 4,
CAN_DANCE = 8,
CAN_SWIM = 16,
CAN_RUN = 32,
CAN_JUMP = 64,
CAN_FLY = 128,
CAN_KILL = 256,
CAN_BE_JESUS = Math.pow(2, 70);
// the permissions that I have
var MY_PERMS = CAN_EAT | CAN_SLEEP | CAN_PLAY | CAN_BE_JESUS;
// can I eat?
if(MY_PERMS & CAN_EAT) alert('You can eat!'); /* RUNS */
// can I sleep?
if(MY_PERMS & CAN_SLEEP) alert('You can sleep!'); /* RUNS */
// can I play?
if(MY_PERMS & CAN_PLAY) alert('You can play!'); /* RUNS */
// can I be jesus?
if(MY_PERMS & CAN_BE_JESUS) alert('You can be jesus!'); /* WONT RUN */
Then if I run it, it will print out that I can eat, sleep and play. It will not print out that I can be jesus, because that number is 2^70. If I make the number 2^31 then it will work (I'm on a 64bit machine but must be running Chrome in 32bit mode when I ran the above example).
I face this problem in PHP all the time as well, when dealing with bitwise operators. Often I can work the scenario I'm in to make it so having a maximum of 31 or 63 things in my list isn't a big deal, but sometimes I need to have much more than that. Is there any way around this limitation? Bitwise operators are so speedy, and convenient.
Well, the problem with this is apparently, as you suspected, the width of the integer in javascript. According to this, numbers in js can go up to 2^53, so you can have 53 different bits. According to this, in 64-bit machines, php goes all the way up to 2^63 - 1, so you get 62 bits.
If you need more, you should re-think your design - could you perhaps divide the flags into 2 (or more) groups, where each group has its own meaning (like food-related actions, other actions, anything else, etc.)?
You can read more about it in the ECMAScript Language Specification, ECMAScript is a subset of JavaScript, check here and here.
` Some ECMAScript operators deal only with integers in the range -2^31
through 2^31 - 1, inclusive, or in the range 0 through 2^32-1, inclusive.
These operators accept any value of the Number type but first convert
each such value to one of 2^32 integer values.
See the descriptions of the ToInt32 and ToUint32 operators in 9.5 and
9.6, respectively. `
Related
If you call setTimeout with a small or large negative number, the callback is run immediately, but with a medium-sized negative number, the callback is never run. Can someone explain this?
// Y and Z are printed, but not X
var x = -7677576503;
var y = -1000000000;
var z = -10000000000;
setTimeout(function () {
console.log('x');
}, x);
setTimeout(function () {
console.log('y');
}, y);
setTimeout(function () {
console.log('z');
}, z);
JSFiddle version
(tested on Chromium 57.0.2987.98 and on Firefox 50.1.0)
I think I have the answer.
according to MDN:
Browsers including Internet Explorer, Chrome, Safari, and Firefox store the delay as a 32-bit signed integer internally.
the browser is converting this value to a 32-bit signed int.
so when it sees the values you've passed we can assume it is actually acting on the ones it converts to that type, and the ECMAScript specification says the return values from bitwise operations must be a 32-bit int.
Runtime Semantics: Evaluation
The production A : A # B, where # is one of the bitwise operators in the productions above, is evaluated as follows:
... [snipped].
Return the result of applying the bitwise operator # to lnum and rnum. The result is a signed 32 bit integer.
so if we put that together and test the values you've given:
x | 0 === 912358089, so the timeout will eventually be executed.. just in a while.
y | 0 === -1000000000, and the callback is fired immediately*.
z | 0 === -1410065408, still a negative, still fired immediately*.
*all tests done in chrome latest stable
you can test this with other negatives that would result in a positive when converted to a 32-bit signed int.
-7000000000 | 0 would result in 1589934592, and calling setTimeout(fn, -7000000000) doesn't appear to fire... today.
keeping in mind, this is my best guess at what is happening. good luck!
edit: thanks to Vivek Athalye, I think I have confirmation this is what is happening.
-4294967290000 | 0 === 6000, and if you run setTimeout(_ => console.log(1), -4294967290000) that fires in aprox. 6 seconds.
I am looking for a portable algorithm for creating a hashCode for binary data. None of the binary data is very long -- I am Avro-encoding keys for use in kafka.KeyedMessages -- we're probably talking anywhere from 2 to 100 bytes in length, but most of the keys are in the 4 to 8 byte range.
So far, my best solution is to convert the data to a hex string, and then do a hashCode of that. I'm able to make that work in both Scala and JavaScript. Assuming I have defined b: Array[Byte], the Scala looks like this:
b.map("%02X" format _).mkString.hashCode
It's a little more elaborate in JavaScript -- luckily someone already ported the basic hashCode algorithm to JavaScript -- but the point is being able to create a Hex string to represent the binary data, I can ensure the hashing algorithm works off the same inputs.
On the other hand, I have to create an object twice the size of the original just to create the hashCode. Luckily most of my data is tiny, but still -- there has to be a better way to do this.
Instead of padding the data as its hex value, I presume you could just coerce the binary data into a String so the String has the same number of bytes as the binary data. It would be all garbled, more control characters than printable characters, but it would be a string nonetheless. Do you run into portability issues though? Endian-ness, Unicode, etc.
Incidentally, if you got this far reading and don't already know this -- you can't just do:
val b: Array[Byte] = ...
b.hashCode
Luckily I already knew that before I started, because I ran into that one early on.
Update
Based on the first answer given, it appears at first blush that java.util.Arrays.hashCode(Array[Byte]) would do the trick. However, if you follow the javadoc trail, you'll see that this is the algorithm behind it, which is as based on the algorithm for List and the algorithm for byte combined.
int hashCode = 1;
for (byte e : list) hashCode = 31*hashCode + (e==null ? 0 : e.intValue());
As you can see, all it's doing is creating a Long representing the value. At a certain point, the number gets too big and it wraps around. This is not very portable. I can get it to work for JavaScript, but you have to import the npm module long. If you do, it looks like this:
function bufferHashCode(buffer) {
const Long = require('long');
var hashCode = new Long(1);
for (var value of buff.values()) { hashCode = hashCode.multiply(31).add(value) }
return hashCode
}
bufferHashCode(new Buffer([1,2,3]));
// hashCode = Long { low: 30817, high: 0, unsigned: false }
And you do get the same results when the data wraps around, sort of, though I'm not sure why. In Scala:
java.util.Arrays.hashCode(Array[Byte](1,2,3,4,5,6,7,8,9,10))
// res30: Int = -975991962
Note that the result is an Int. In JavaScript:
bufferHashCode(new Buffer([1,2,3,4,5,6,7,8,9,10]);
// hashCode = Long { low: -975991962, high: 197407, unsigned: false }
So I have to take the low bytes and ignore the high, but otherwise I get the same results.
This functionality is already available in Java standard library, look at the Arrays.hashCode() method.
Because your binary data are Array[Byte], here is how you can verify it works:
println(java.util.Arrays.hashCode(Array[Byte](1,2,3))) // prints 30817
println(java.util.Arrays.hashCode(Array[Byte](1,2,3))) // prints 30817
println(java.util.Arrays.hashCode(Array[Byte](2,2,3))) // prints 31778
Update: It is not true that the Java implementation boxes the bytes. Of course, there is conversion to int, but there's no way around that. This is the Java implementation:
public static int hashCode(byte a[]) {
if (a == null) return 0;
int result = 1;
for (byte element : a) result = 31 * result + element;
return result;
}
Update 2
If what you need is a JavaScript implementation that gives the same results as a Scala/Java implementation, than you can extend the algorithm by, e.g., taking only the rightmost 31 bits:
def hashCode(a: Array[Byte]): Int = {
if (a == null) {
0
} else {
var hash = 1
var i: Int = 0
while (i < a.length) {
hash = 31 * hash + a(i)
hash = hash & Int.MaxValue // taking only the rightmost 31 bits
i += 1
}
hash
}
}
and JavaScript:
var hashCode = function(arr) {
if (arr == null) return 0;
var hash = 1;
for (var i = 0; i < arr.length; i++) {
hash = hash * 31 + arr[i]
hash = hash % 0x80000000 // taking only the rightmost 31 bits in integer representation
}
return hash;
}
Why do the two implementations produce the same results? In Java, integer overflow behaves as if the addition was performed without loss of precision and then bits higher than 32 got thrown away and & Int.MaxValue throws away the 32nd bit. In JavaScript, there is no loss of precision for integers up to 253 which is a limit the expression 31 * hash + a(i) never exceeds. % 0x80000000 then behaves as taking the rightmost 31 bits. The case without overflows is obvious.
This is the meat of algorithm used in the Java library:
int result 1;
for (byte element : a) result = 31 * result + element;
You comment:
this algorithm isn't very portable
Incorrect. If we are talking about Java, then provided that we all agree on the type of the result, then the algorithm is 100% portable.
Yes the computation overflows, but it overflows exactly the same way on all valid implementations of the Java language. A Java int is specified to be 32 bits signed two's complement, and the behavior of the operators when overflow occurs is well-defined ... and the same for all implementations. (The same goes for long ... though the size is different, obviously.)
I'm not an expert, but my understanding is that Scala's numeric types have the same properties as Java. Javascript is different, being based on IEE 754 double precision floating point. However, with case you should be able to code the Java algorithm portably in Javascript. (I think #Mifeet's version is wrong ...)
How do I generate cryptographically secure random numbers in javascript?
There's been discussion at WHATWG on adding this to the window.crypto object. You can read the discussion and check out the proposed API and webkit bug (22049).
Just tested the following code in Chrome to get a random byte:
(function(){
var buf = new Uint8Array(1);
window.crypto.getRandomValues(buf);
alert(buf[0]);
})();
In order, I think your best bets are:
window.crypto.getRandomValues or window.msCrypto.getRandomValues
The sjcl library's randomWords function (http://crypto.stanford.edu/sjcl/)
The isaac library's random number generator (which is seeded by Math.random, so not really cryptographically secure) (https://github.com/rubycon/isaac.js)
window.crypto.getRandomValues has been implemented in Chrome for a while now, and relatively recently in Firefox as well. Unfortunately, Internet Explorer 10 and before do not implement the function. IE 11 has window.msCrypto, which accomplishes the same thing. sjcl has a great random number generator seeded from mouse movements, but there's always a chance that either the mouse won't have moved sufficiently to seed the generator, or that the user is on a mobile device where there is no mouse movement whatsoever. Thus, I recommend having a fallback case where you can still get a non-secure random number if there is no choice. Here's how I've handled this:
function GetRandomWords (wordCount) {
var randomWords;
// First we're going to try to use a built-in CSPRNG
if (window.crypto && window.crypto.getRandomValues) {
randomWords = new Int32Array(wordCount);
window.crypto.getRandomValues(randomWords);
}
// Because of course IE calls it msCrypto instead of being standard
else if (window.msCrypto && window.msCrypto.getRandomValues) {
randomWords = new Int32Array(wordCount);
window.msCrypto.getRandomValues(randomWords);
}
// So, no built-in functionality - bummer. If the user has wiggled the mouse enough,
// sjcl might help us out here
else if (sjcl.random.isReady()) {
randomWords = sjcl.random.randomWords(wordCount);
}
// Last resort - we'll use isaac.js to get a random number. It's seeded from Math.random(),
// so this isn't ideal, but it'll still greatly increase the space of guesses a hacker would
// have to make to crack the password.
else {
randomWords = [];
for (var i = 0; i < wordCount; i++) {
randomWords.push(isaac.rand());
}
}
return randomWords;
};
You'll need to include sjcl.js and isaac.js for that implementation, and be sure to start the sjcl entropy collector as soon as your page is loaded:
sjcl.random.startCollectors();
sjcl is dual-licensed BSD and GPL, while isaac.js is MIT, so it's perfectly safe to use either of those in any project. As mentioned in another answer, clipperz is another option, however for whatever bizarre reason, it is licensed under the AGPL. I have yet to see anyone who seems to understand what implications that has for a JavaScript library, but I'd universally avoid it.
One way to improve the code I've posted might be to store the state of the isaac random number generator in localStorage, so it isn't reseeded every time the page is loaded. Isaac will generate a random sequence, but for cryptography purposes, the seed is all-important. Seeding with Math.random is bad, but at least a little less bad if it isn't necessarily on every page load.
You can for instance use mouse movement as seed for random numbers, read out time and mouse position whenever the onmousemove event happens, feed that data to a whitening function and you will have some first class random at hand. Though do make sure that user has moved the mouse sufficiently before you use the data.
Edit: I have myself played a bit with the concept by making a password generator, I wouldn't guarantee that my whitening function is flawless, but being constantly reseeded I'm pretty sure that it's plenty for the job: ebusiness.hopto.org/generator.htm
Edit2: It now sort of works with smartphones, but only by disabling touch functionality while the entropy is gathered. Android won't work properly any other way.
Use window.crypto.getRandomValues, like this:
var random_num = new Uint8Array(2048 / 8); // 2048 = number length in bits
window.crypto.getRandomValues(random_num);
This is supported in all modern browsers and uses the operating system's random generator (e.g. /dev/urandom). If you need IE11 compatibility, you have to use their prefixed implementation viavar crypto = window.crypto || window.msCrypto; crypto.getRandomValues(..) though.
Note that the window.crypto API can also generate keys outright, which may be the better option.
Crypto-strong
to get cryptographic strong number from range [0, 1) (similar to Math.random()) use crypto:
let random = ()=> crypto.getRandomValues(new Uint32Array(1))[0]/2**32;
console.log( random() );
You might want to try
http://sourceforge.net/projects/clipperzlib/
It has an implementation of Fortuna which is a cryptographically secure random number generator. (Take a look at src/js/Clipperz/Crypto/PRNG.js). It appears to use the mouse as a source of randomness as well.
First of all, you need a source of entropy. For example, movement of the mouse, password, or any other. But all of these sources are very far from random, and guarantee you 20 bits of entropy, rarely more. The next step that you need to take is to use the mechanism like "Password-Based KDF" it will make computationally difficult to distinguish data from random.
Many years ago, you had to implement your own random number generator and seed it with entropy collected by mouse movement and timing information. This was the Phlogiston Era of JavaScript cryptography. These days we have window.crypto to work with.
If you need a random integer, random-number-csprng is a great choice. It securely generates a series of random bytes and then converts it into an unbiased random integer.
const randomInt = require("random-number-csprng");
(async function() {
let random = randomInt(10, 30);
console.log(`Your random number: ${random}`);
})();
If you need a random floating point number, you'll need to do a little more work. Generally, though, secure randomness is an integer problem, not a floating point problem.
I know i'm late to the party, but if you don't want to deal with the math of getting a cryptographically secure random value, i recommend using rando.js. it's a super small 2kb library that'll give you a decimal, pick something from an array, or whatever else you want- all cryptographically secure.
It's on npm too.
Here's a sample I copied from the GitHub, but it does more than this if you want to go there and read about it more.
console.log(rando()); //a floating-point number between 0 and 1 (could be exactly 0, but never exactly 1)
console.log(rando(5)); //an integer between 0 and 5 (could be 0 or 5)
console.log(rando(5, 10)); //a random integer between 5 and 10 (could be 5 or 10)
console.log(rando(5, "float")); //a floating-point number between 0 and 5 (could be exactly 0, but never exactly 5)
console.log(rando(5, 10, "float")); //a floating-point number between 5 and 10 (could be exactly 5, but never exactly 10)
console.log(rando(true, false)); //either true or false
console.log(rando(["a", "b"])); //{index:..., value:...} object representing a value of the provided array OR false if array is empty
console.log(rando({a: 1, b: 2})); //{key:..., value:...} object representing a property of the provided object OR false if object has no properties
console.log(rando("Gee willikers!")); //a character from the provided string OR false if the string is empty. Reoccurring characters will naturally form a more likely return value
console.log(rando(null)); //ANY invalid arguments return false
<script src="https://randojs.com/2.0.0.js"></script>
If you need large amounts, here's what I would do:
// Max value of random number length
const randLen = 16384
var randomId = randLen
var randomArray = new Uint32Array(randLen)
function random32() {
if (randomId === randLen) {
randomId = 0
return crypto.getRandomValues(randomArray)[randomId++] * 2.3283064365386963e-10
}
return randomArray[randomId++] * 2.3283064365386963e-10
}
function random64() {
if (randomId === randLen || randomId === randLen - 1) {
randomId = 0
crypto.getRandomValues(randomArray)
}
return randomArray[randomId++] * 2.3283064365386963e-10 + randomArray[randomId++] * 5.421010862427522e-20
}
console.log(random32())
console.log(random64())
I need to generate a random big (around 4096 bit) prime number in JavaScript and I'm already using forge. Forge has to have some kind of generator for such tasks as it implements RSA which also relies on random prime numbers. However I haven't found something in the documentation of forge when you just want to get a random prime number (something like var myRandomPrime = forge.random.getPrime(4096); would have been great).
So what would be the best approach to get such a prime (with or without forge) in JavaScript?
Update 06/11/2014: Now, with forge version 0.6.6 you can use this:
var bits = 1024;
forge.prime.generateProbablePrime(bits, function(err, num) {
console.log('random prime', num.toString(16));
});
Finding large primes in JavaScript is difficult -- it's slow and you don't want to block the main thread. It requires some fairly customized code to do right and the code in forge is specialized for RSA key generation. There's no API call to simply produce a large random prime.
There are some extra operations that the RSA code in forge runs that you don't need if you're just looking for a single prime number. That being said, the slowest part of the process is in actually finding the primes, not in those extra operations. However, the RSA code also generates two primes (when you only need one) and they aren't the same bitsize you're looking for. So if you're using the forge API you'd have to pass a bitsize of 8196 (I believe ... that's off the top of my head, so it may be inaccurate) to get a 4096-bit prime.
One way to find a large random prime is as follows:
Generate a random number that has the desired number of bits (ensure the MSB is set).
Align the number on a 30k+1 boundary as all primes have this property.
Run a primality test (the slow part) on your number; if it passes, you're done, if not, add to the number to get to the next 30k+1 boundary and repeat. A "quick" primality test is to check against low primes and then use Miller-Rabin (see the Handbook of Applied Cryptography 4.24).
Step #3 can run for a long time -- and that's usually pretty undesirable with JavaScript (w/node or in the browser). To mitigate this, you can attempt to limit the amount time spent doing primality tests to some acceptable period of time (N milliseconds) or you can use Web Workers to background the process. Of course, both of these approaches complicate the code.
Here's some code for generating a 4096-bit random prime that shouldn't block the main thread:
var forge = require('node-forge');
var BigInteger = forge.jsbn.BigInteger;
// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
var THIRTY = new BigInteger(null);
THIRTY.fromInt(30);
// generate random BigInteger
var num = generateRandom(4096);
// find prime nearest to random number
findPrime(num, function(num) {
console.log('random', num.toString(16));
});
function generateRandom(bits) {
var rng = {
// x is an array to fill with bytes
nextBytes: function(x) {
var b = forge.random.getBytes(x.length);
for(var i = 0; i < x.length; ++i) {
x[i] = b.charCodeAt(i);
}
}
};
var num = new BigInteger(bits, rng);
// force MSB set
var bits1 = bits - 1;
if(!num.testBit(bits1)) {
var op_or = function(x,y) {return x|y;};
num.bitwiseTo(BigInteger.ONE.shiftLeft(bits1), op_or, num);
}
// align number on 30k+1 boundary
num.dAddOffset(31 - num.mod(THIRTY).byteValue(), 0);
return num;
}
function findPrime(num, callback) {
/* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
number we are given is always aligned at 30k + 1. Each time the number is
determined not to be prime we add to get to the next 'i', eg: if the number
was at 30k + 1 we add 6. */
var deltaIdx = 0;
// find prime nearest to 'num' for 100ms
var start = Date.now();
while(Date.now() - start < 100) {
// do primality test (only 2 iterations assumes at
// least 1251 bits for num)
if(num.isProbablePrime(2)) {
return callback(num);
}
// get next potential prime
num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
}
// keep trying (setImmediate would be better here)
setTimeout(function() {
findPrime(num, callback);
});
}
Various tweaks can be made to adjust it for your needs, like setting the amount of time (which is just an estimate) to run the primality tester before bailing to try again on the next scheduled tick. You'd probably want some kind of UI feedback each time it bails. If you're using node or a browser that supports setImmediate you can use that instead of setTimeout as well to avoid clamping to speed things up. But, note that it's going to take a while to generate a 4096-bit random prime in JavaScript (at least at the time of this writing).
Forge also has a Web Worker implementation for generating RSA keys that is intended to speed up the process by letting multiple threads run the primality test using different inputs. You can look at the forge source (prime.worker.js for instance) to see that in action, but it's a project in itself to get working properly. IMO, though, it's the best way to speed things up.
Anyway, hopefully the above code will help you. I'd run it with a smaller bitsize to test it.
It does more work then you specifically require but you can always use forge to generate a key pair and extract one of the primes from that.
//generate a key pair of required size
var keyPair = forge.pki.rsa.generateKeyPair(4096);
//at this point we have 2 primes p and q in the privateKey
var p = keyPair.privateKey.p;
var q = keyPair.privateKey.q;
The type of p and q are BigInteger they have a p.toByteArray() method to access their representations as a byte array.
If you decide to implement your own method, you may want to read Close to Uniform Prime Number Generation With Fewer Random Bits which has discussion and algorithms for faster generation of well-distributed large n-bit primes. The FIPS 186-4 publication also has a lot of information including algorithms for Shawe-Taylor proven prime construction.
dlongley's answer uses the "PRIMEINC" method, which is efficient but not a good distribution (this may or may not matter to you, and either way he's given a nice framework to use). Note that FIPS recommends a lot of M-R tests (this can be mitigated if your library includes a Lucas or BPSW test).
Re: proven primes, my experience using GMP is that up to at least 8192 bits, both Shawe-Taylor and Maurer's FastPrime are slower than using Fouque and Tibouchi algorithm A1 combined with BPSW + additional M-R tests. Your mileage may vary, and of course the proven prime methods get a proven prime as a result.
How do I generate cryptographically secure random numbers in javascript?
There's been discussion at WHATWG on adding this to the window.crypto object. You can read the discussion and check out the proposed API and webkit bug (22049).
Just tested the following code in Chrome to get a random byte:
(function(){
var buf = new Uint8Array(1);
window.crypto.getRandomValues(buf);
alert(buf[0]);
})();
In order, I think your best bets are:
window.crypto.getRandomValues or window.msCrypto.getRandomValues
The sjcl library's randomWords function (http://crypto.stanford.edu/sjcl/)
The isaac library's random number generator (which is seeded by Math.random, so not really cryptographically secure) (https://github.com/rubycon/isaac.js)
window.crypto.getRandomValues has been implemented in Chrome for a while now, and relatively recently in Firefox as well. Unfortunately, Internet Explorer 10 and before do not implement the function. IE 11 has window.msCrypto, which accomplishes the same thing. sjcl has a great random number generator seeded from mouse movements, but there's always a chance that either the mouse won't have moved sufficiently to seed the generator, or that the user is on a mobile device where there is no mouse movement whatsoever. Thus, I recommend having a fallback case where you can still get a non-secure random number if there is no choice. Here's how I've handled this:
function GetRandomWords (wordCount) {
var randomWords;
// First we're going to try to use a built-in CSPRNG
if (window.crypto && window.crypto.getRandomValues) {
randomWords = new Int32Array(wordCount);
window.crypto.getRandomValues(randomWords);
}
// Because of course IE calls it msCrypto instead of being standard
else if (window.msCrypto && window.msCrypto.getRandomValues) {
randomWords = new Int32Array(wordCount);
window.msCrypto.getRandomValues(randomWords);
}
// So, no built-in functionality - bummer. If the user has wiggled the mouse enough,
// sjcl might help us out here
else if (sjcl.random.isReady()) {
randomWords = sjcl.random.randomWords(wordCount);
}
// Last resort - we'll use isaac.js to get a random number. It's seeded from Math.random(),
// so this isn't ideal, but it'll still greatly increase the space of guesses a hacker would
// have to make to crack the password.
else {
randomWords = [];
for (var i = 0; i < wordCount; i++) {
randomWords.push(isaac.rand());
}
}
return randomWords;
};
You'll need to include sjcl.js and isaac.js for that implementation, and be sure to start the sjcl entropy collector as soon as your page is loaded:
sjcl.random.startCollectors();
sjcl is dual-licensed BSD and GPL, while isaac.js is MIT, so it's perfectly safe to use either of those in any project. As mentioned in another answer, clipperz is another option, however for whatever bizarre reason, it is licensed under the AGPL. I have yet to see anyone who seems to understand what implications that has for a JavaScript library, but I'd universally avoid it.
One way to improve the code I've posted might be to store the state of the isaac random number generator in localStorage, so it isn't reseeded every time the page is loaded. Isaac will generate a random sequence, but for cryptography purposes, the seed is all-important. Seeding with Math.random is bad, but at least a little less bad if it isn't necessarily on every page load.
You can for instance use mouse movement as seed for random numbers, read out time and mouse position whenever the onmousemove event happens, feed that data to a whitening function and you will have some first class random at hand. Though do make sure that user has moved the mouse sufficiently before you use the data.
Edit: I have myself played a bit with the concept by making a password generator, I wouldn't guarantee that my whitening function is flawless, but being constantly reseeded I'm pretty sure that it's plenty for the job: ebusiness.hopto.org/generator.htm
Edit2: It now sort of works with smartphones, but only by disabling touch functionality while the entropy is gathered. Android won't work properly any other way.
Use window.crypto.getRandomValues, like this:
var random_num = new Uint8Array(2048 / 8); // 2048 = number length in bits
window.crypto.getRandomValues(random_num);
This is supported in all modern browsers and uses the operating system's random generator (e.g. /dev/urandom). If you need IE11 compatibility, you have to use their prefixed implementation viavar crypto = window.crypto || window.msCrypto; crypto.getRandomValues(..) though.
Note that the window.crypto API can also generate keys outright, which may be the better option.
Crypto-strong
to get cryptographic strong number from range [0, 1) (similar to Math.random()) use crypto:
let random = ()=> crypto.getRandomValues(new Uint32Array(1))[0]/2**32;
console.log( random() );
You might want to try
http://sourceforge.net/projects/clipperzlib/
It has an implementation of Fortuna which is a cryptographically secure random number generator. (Take a look at src/js/Clipperz/Crypto/PRNG.js). It appears to use the mouse as a source of randomness as well.
First of all, you need a source of entropy. For example, movement of the mouse, password, or any other. But all of these sources are very far from random, and guarantee you 20 bits of entropy, rarely more. The next step that you need to take is to use the mechanism like "Password-Based KDF" it will make computationally difficult to distinguish data from random.
Many years ago, you had to implement your own random number generator and seed it with entropy collected by mouse movement and timing information. This was the Phlogiston Era of JavaScript cryptography. These days we have window.crypto to work with.
If you need a random integer, random-number-csprng is a great choice. It securely generates a series of random bytes and then converts it into an unbiased random integer.
const randomInt = require("random-number-csprng");
(async function() {
let random = randomInt(10, 30);
console.log(`Your random number: ${random}`);
})();
If you need a random floating point number, you'll need to do a little more work. Generally, though, secure randomness is an integer problem, not a floating point problem.
I know i'm late to the party, but if you don't want to deal with the math of getting a cryptographically secure random value, i recommend using rando.js. it's a super small 2kb library that'll give you a decimal, pick something from an array, or whatever else you want- all cryptographically secure.
It's on npm too.
Here's a sample I copied from the GitHub, but it does more than this if you want to go there and read about it more.
console.log(rando()); //a floating-point number between 0 and 1 (could be exactly 0, but never exactly 1)
console.log(rando(5)); //an integer between 0 and 5 (could be 0 or 5)
console.log(rando(5, 10)); //a random integer between 5 and 10 (could be 5 or 10)
console.log(rando(5, "float")); //a floating-point number between 0 and 5 (could be exactly 0, but never exactly 5)
console.log(rando(5, 10, "float")); //a floating-point number between 5 and 10 (could be exactly 5, but never exactly 10)
console.log(rando(true, false)); //either true or false
console.log(rando(["a", "b"])); //{index:..., value:...} object representing a value of the provided array OR false if array is empty
console.log(rando({a: 1, b: 2})); //{key:..., value:...} object representing a property of the provided object OR false if object has no properties
console.log(rando("Gee willikers!")); //a character from the provided string OR false if the string is empty. Reoccurring characters will naturally form a more likely return value
console.log(rando(null)); //ANY invalid arguments return false
<script src="https://randojs.com/2.0.0.js"></script>
If you need large amounts, here's what I would do:
// Max value of random number length
const randLen = 16384
var randomId = randLen
var randomArray = new Uint32Array(randLen)
function random32() {
if (randomId === randLen) {
randomId = 0
return crypto.getRandomValues(randomArray)[randomId++] * 2.3283064365386963e-10
}
return randomArray[randomId++] * 2.3283064365386963e-10
}
function random64() {
if (randomId === randLen || randomId === randLen - 1) {
randomId = 0
crypto.getRandomValues(randomArray)
}
return randomArray[randomId++] * 2.3283064365386963e-10 + randomArray[randomId++] * 5.421010862427522e-20
}
console.log(random32())
console.log(random64())