I have a html 5 canvas using the 2d context. I am able to get up to 120 frames per second, but the rendering can be jagged, where the animation just jumps. I would like to know any ideas what may be causing it, especially with such a high (but pointless) frame rate? What are known ways or smoothing out animation as well?
The only thing that does come to mind, is the actual drawing is not being accounted for. So while the updating and drawing functions can be run quickly, the painting onto the canvas is stacked later. Which would then imply that I am not geting a true frames per second.
Although, I can get 120 frames per seconds that really means nothing. Because I am using setTimeout, I have not guarantees that the time will be constant, thus, when it does jagger, that is because the frame rate, for a moment, has dropped significantly.
However, there is an alternative in the works, that I managed to found. I'm a bit surprised how hard this was to find.
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
https://developer.mozilla.org/en/DOM/window.mozRequestAnimationFrame
http://dev.chromium.org/developers/design-documents/requestanimationframe-implementation
From what I can understand, the function allows the browser to optimise for animations. In theory, this should give a more consistent frame rate, which should give smoother animations.
It is also quite interesting to compare how Chrome, Safari, Opera and Firefox draw. I mainly test on Chrome 14 dev and Mozilla Aurora 6.0a, and they way draw look very different. Chrome seems to be able to draw directly. Firefox seems to be piping the pixels, as if it's sending them one by one to be drawn.
Which leads me to Opera
http://www.scribd.com/doc/58835981/122/Double-Buffering-with-Canvas
http://www.felinesoft.com/blog/index.php/2010/09/accelerated-game-programming-with-html5-and-canvas/
turns out Webkit-based browsers and Gecko-based browsers use double buffers internally, that is, it collects all the drawing functions together and then draws them on the return of the function thread. If you have a main loop function, like update, it won't draw until that has returned. Opera, just draws them as the drawing functions are called, but it's not hard to implement double buffering. This is, supposably, another method of smoothing out the animation.
There is also another experimental feature that may help as well
http://badassjs.com/post/4064873160/webgl-2d-an-implementation-of-the-2d-canvas-context-in
Related
Background
While working on a complex full-screen 2D animation utilizing multiple <canvas> layers I found out a problem with Safari. The rendering performance drops sharply after the canvas gets bigger than exactly 3840x3840. I ran multiple tests (benchmark I wrote: https://codepen.io/kiler129/full/Exbgrqp) and obtained this peculiar graph:
(click for a readable full-size copy)
Data analysis
Steady 60 FPS/realtime is kept until 3840x3840, then it drops to unusable 2-25 FPS
There's a correlation between larger fill % (100% vs 20%) of the canvas and FPS, as well as larger number of draw calls per frame (d/f) and FPS -> nothing unusual here, it's pretty linear
Buffered canvases (drawing to off-screen & then copying) are way less performant for simple operations
Brave, and any other Chromium-based browsers, keep steady 60 FPS basically forever (even with screen-scaled 10000x10000 plane)
2018 iPad running Safari behaves identically to 2021 MBP with M1 Max, just a little bit slower overall
The 3840px is exactly 4K. While I have a 4K monitor disconnecting it and rebooting doesn't change the steep drop point (MBP has a 3456x2234 screen). Even assuming that the 4K resolution is cached somewhere this doesn't explain the same drop on the iPad which has nothing to do with 4K screens.
I also checked what actually takes time in Safari and it seems that the rendering to the screen and not the actual drawing on canvas is the culprit. That will explain why using buffering gives such bad results. The times for drawing are actually slower on Chromium-based browsers, yet the times are hardly correlated to anything:
Why such a large canvas?!
To avoid X-Y problem situation, I'm answering this ahead of time. I stumbled upon this issue in a real-world tests and then prepared the benchmark trying to eliminate all variables from the real-world application. 3840px is perfectly reasonable when used on HiDPI/"retina" displays; with x2 scaling it gives 1920px screen real estate which is quite normal. While the benchmark clips the viewport the real code doesn't (it doesn't seem to make a measurable difference).
Bug?
Is there anything I can do here, or this is a some sort of a limitation/bug of the WebKit/Safari? While testing the Safari doesn't crash but window becomes very unresponsive until the rendering is stopped.
The only solution I see is detecting FPS drop and disabling retina scaling on Safari.
I'm creating a flock simulation using html5 canvas and I'm trying to squeeze every bit of performance out of javascript. I've noticed a "weird" performance boost/blow depending on when/where I add boids to the system.
If I fill the boids array with 400 objects first and then start the animation (using requestAnimationFrame) I get a very decent 40-50fps in Chrome and Safari, and around 30fps in Firefox.
However if the boids array gets filled with objects (400 of them again) during the animation (for example by dragging on the screen), than no matter the browser the performance always drops to about 15-20fps.
In both cases I use boids.push( new Boid() ); to fill the boids array. In the first case I do it from within a for loop and in the second I do it from the mouseDown event handler.
Any idea why the performance of the first would be so much better?
You can find both of the examples here:
Version A and Version B
If your reuestAnimationFrame callback execution takes longer than ~10ms fps drops and you will janks. So the first method probably meets that budget or sometimes slightly takes more since you are not getting ~60fps; but the second method definitely exceed the ~10ms on that frame and the browser have to skip 2-3 frames to complete the execution of that callback therefor you get ~20fps;
Check out this article on google web fundamentals Rendering Performance
How can I control the rendering loop frame rate in KineticJS? The docs for Kinetic.Animation show a frame rate being passed to the render callback, and Kinetic.Tween seems to have no frame rate logic, but I don't see anyway to force, say, a 30fps when 60fps is possible.
Loads of context for the curious follows, but the question is that simple. If anyone reads on, other advice is welcome. If you already know the answer, don't waste your time reading on!
I'm developing a music app that combines some DOM-based GUI controls (current iteration using jQuery Mobile) and Canvas-based GUI controls (using KineticJS). The latter involve some animation. Because the animated elements are triggered by music playback, I'm using Kinetic.Tween to avoid the complexity of remembering how long a given note has been playing (which Kinetic.Animation would require doing).
This approach works great at 60fps in Chrome (on a fast machine) but is just slow enough on iOS 6.1 Safari (iPad 2) that manipulating controls while animations are happening gets a little janky. I'm not using WebGL (unless KineticJS or Chrome does this by default for canvas?), and that's not an option when I package for native UIWebView.
As I'm getting beyond prototype into wanting to make more committed tech decisions, I see the following options, in order of perceived goodness:
Figure out how to cap the frame rate. Because my animations heavily use alpha fades but do not involve motion, I believe I could get away with 20-30fps and look fine. Could also scale this up on faster devices.
Don't respond immediately to touch inputs, but add them to a queue which I poll at a constant interval and only use the freshest for things like touchmove. This has no impact on my non-interactive animated elements, but tackles the problem from the other direction, trying to reduce the load of user interaction. This would require making Kinetic controls static and manually tracking touch coordinates (not terrible effort if it actually helped).
Rewrite DOM-based GUI to canvas-based (KineticJS); rewrite WebAudio-based engine to HTML5 audio; leverage CocoonJS or Ejecta for GPU-acceleration. This means having to hand-code stuff like file choosers and nav menus and such (bad). Losing WebAudio is pretty serious as it eliminates features like DSP effects and very fine-grained, low-latency timing (which is working just fine on an iPad 2).
Rewrite the app to separate DOM based GUI and WebAudio from Canvas-based elements, leverage CocoonJS. I'm not sure if/how well this works out, but the fact that CocoonJS passes JavaScript code as strings between the 2 components makes me very skittish about how solid this idea is. It's probably doable, but best case I'm very tied to CocoonJS moving forwards. I don't like architecting this way, but maybe it's not as bad as it sounds?
Make animations less juicy. This is least good not because of its design impact but because, as it is, I'm only animating ~20 simple shapes at any time in my central view component, however they include transparency and span an area ~1000x300. Other components like sliders are similarly bare-bones. In other words, it's not very juicy right now.
Overcome severe allergy to Objective-C; forget about the browser, Android, and that other mobile OS. Have a fast app that performs natively and has shiny Apple-approved widgets. My biggest problem with this approach is not wanting to be stuck in Objective-C reality for years, skillset-wise. I just don't like it.
Buy an iPad 3 or later. Since I already am pretending Android doesn't exist (I don't have any devices to test), why not pretend no one still has iPad 2? I think this is passing the buck -- if I can get acceptable performance on iPad 2, I will feel confident about the app's performance as I add more features.
I may be overlooking options or otherwise naive about how to tackle this. Some would say what I'm trying to build is just silly. But it's working pretty well just not ready for prime time on the iPad 2.
Yes, you can control the Kinetic.Animation framerate
The Kinetic.Animation sends in a frame object which has a frame.time property.
That .time is a running timer that you can use to throttle your animation speed.
Here's an example that throttles the Kinetic.Animation: http://jsfiddle.net/m1erickson/Hn3cC/
var lastTime;
var frameDelay=1000;
var loop = new Kinetic.Animation(function(frame) {
var time = frame.time
if(!lastTime){lastTime=time;}
var elapsed = time-lastTime;
if(elapsed>=frameDelay){
// frameDelay has expired, so animate stuff now
// set lastTime for the next loop
lastTime=time;
}
}, layer);
loop.start();
Working from #markE's suggestions, I tried a few things and found a solution. It's ultimately not rocket science, but sharing what I figured out:
First, tried the hack of doubling Tween durations and targets, using a timer to stop them at 50%. This kinda sorta worked but was hard to get to look good and was pretty error prone in coding bogus targets like negative opacity or height or whatnot.
Second, having read the source to Tween and looked at docs again for Animation, decided I could locally use Animation instances instead of Tween instances, and allow the closure scope to hang onto the relevant note properties. Eventually got this working smoothly and finally realized a big Duh! which is that throttling the frame rate of several independently animating things does not in any way throttle the overall frame rate.
Lastly, decided to give my component a render() method that calls itself in a loop with requestAnimationFrame, exits immediately if called before my clamp time, and inside render() I update all objects in the Kinetic canvas and call layer.drawScene(). Because there is now only one animation, this drops frame rate to whatever I need and the app is fast on iPad 2 (looks exactly the same to my eyes too).
So Kinetic is still helping for its higher level canvas API, and so far my other control widgets are still easy code using Kinetic to handle user input and dragging, now performing much better as the big beast component is not eating up the CPU.
The short answer to my original question is that no, you can't lock the overall frame rate for very complex animations, but as Mark said, you can for anything that fits in a single Animation instance.
Note that I could have still used Animation without giving it a layer or explicitly calling any draw() methods, but since I'd still have to write all the logic to determine individual element's current visual state, there was no gain to doing this. What would be very useful would be if Tween could accept a parameter to not automatically render. This would simplify code like mine, as I could shorthand the animation on individual objects but still choose when to actually do the heavy lifting of rendering everything. Seeing how much this whole exercise gained in performance on the iPad 2, might be worth adding this option to the framework.
I've seen a couple of questions asking about this, but they're all over three years old and usually end by saying theres not much of a way around it yet, so im wondering if anything's changed.
I'm currently working on a game that draws onto a canvas using an interval that happens 60 times a second. It works great on my iphone and PC, which has a faily decent graphics card, but I'm now trying it on a Thinkcentre with intel i3 graphics, and I notice some huge screen tearing:
http://s21.postimg.org/h6c42hic7/tear.jpg - it's a little harder to notice as a still.
I was just wondering if there's any way to reduce that, or to easily enable vertical sync. If there isnt, is there somethingthat I could do in my windows 8 app port of the game?
Are you using requestAnimationFrame (RAF)? RAF will v-sync but setTimeout/setInterval will not.
http://msdn.microsoft.com/library/windows/apps/hh920765
Also, since 30fps is adequate for your users to see smooth motion, how about splitting your 60fps into 2 alternating parts:
"calculate/update" during one frame (no drawing)
and then do all the drawing in the next frame.
And, get to know Chrome's Timeline tool. This great little tool lets you analyze your code to discover where your code is taking the most time. Then refactor that part of your code for high performance.
[ Addition: More useful details about requestAnimationFrame ]
Canvas does not paint directly to the display screen. Instead, canvas "renders" to a temporary offscreen buffer. “Rendering” means the process of executing canvas commands to draw on the offscreen buffer. This offscreen buffer will be quickly drawn to the actual display screen when the next screen refresh occurs.
Tearing occurs when the offscreen rendering process is only partially complete when the offscreen buffer is drawn on the actual display screen during refresh.
setInterval does not attempt to coordinate rendering with screen refresh. So, using setInterval to control animation frames will occasionally produce tearing .
requestAnimationFrame (RAF) attempts to fix tearing by generating frames only between screen refreshes (a process called vertical synching). The typical display refreshes about 60 times per second (that’s every 16 milliseconds).
With requestAnimationFrame (RAF):
If the current frame is not fully rendered before the next refresh,
RAF will delay the painting of the current frame until the next screen refresh.
This delay reduces tearing.
So for you, RAF will likely help your tearing problem, but it also introduces another problem.
You must decide how to handle your physics processing:
Keep it in a separate process—like setInterval.
Move it into requestAnimationFrame.
Move it into web-workers (the work is done on a background thread separate from the UI thread).
Keep physics in a separate setInterval.
This is a bit like riding 2 trains with 1 leg on each—very difficult! You must be sure that all aspects of the physics are always in a valid state because you never know when RAF will read the physics to do rendering. You will probably have to create a “buffer” of your physics variables so they always are in a valid state.
Move physics into RAF:
If you can both calculate physics and render within the 16ms between refreshes, this solution is ideal. If not, your frame may be delayed until the next refresh cycle. This results in 30fps which is not terrible since the eye still perceives lucid motion at 30fps. Worst case is that the delay sometimes occurs and sometimes not—then your animation may appear jerky. So the key here is to spread the calculations as evenly as possible between refresh cycles.
Move physics into web workers
Javascript is single-threaded. Both the UI and calculations must run on this single thread. But you can use web workers which run physics on a separate thread. This frees up the UI thread to concentrate on rendering and painting. But you must coordinate the background physics with the foreground UI.
Good luck with your game :)
I'm investigating the possibility of producing a game using only HTML's canvas as the display media. To take an example task I need to do, I need to construct the game environment from a number of isometric tiles. Of course, working in 2D means they by necessity come in rectangular packages so there's a large overlap between tiles.
I'm old enough that the natural solution to this problem is to call BitBltMasked. Oh wait, no, an HTML canvas doesn't have something as simple and as pleasing as BitBlt. It seems that the only way to dump pixel data in to a canvas is either with drawImage() which has no useful drawing modes that ignore the alpha channel or to use ImageData objects that have the image data in an array.. to which every. access. is. bounds. checked. and. therefore. dog. slow.
OK, that's more of a rant than a question (things the W3C like tend to provoke that from me), but what I really want to know is how to draw fast to a canvas? I'm finding it very difficult to ditch the feeling that doing 100s of drawImages() a second where every draw respects the alpha channel is inherently sinful and likely to make my application perform like arse in many browsers. On the other hand, the only way to implement BitBlt proper relies heavily on a browser using a hotspot-like execution technique to make it run fast.
Is there any way to draw fast across every possible implementation, or do I just have to forget about performance?
This is a really interesting problem, and there's a few interesting things you can do to solve it.
First, you should know that drawImage can accept a Canvas, not just an image. The "sub-Canvas"es don't even need to be in the DOM. This means that you can do some compositing on one canvas, then draw it to another. This opens a whole world of optimization opportunities, especially in the context of isometric tiles.
Let's say you have an area that's 50 tiles long by 50 tiles wide (I'll say meters for the sake of my own sanity). You might divide the area into 10x10m chunks. Each chunk is represented by its own Canvas. To draw the full scene, you'd simply draw each of the chunks' Canvas objects to the main canvas that's shown to the user. If only four chunks (a 20x20m area), you would only perform four drawImage operations.
Of course, each of those individual chunks will need to render its own Canvas. On game ticks where nothing happens in the chunk, you simply don't do anything: the Canvas will remain unchanged and will be drawn as you'd expect. When something does change, you can do one of a few things depending on your game:
If your tiles extend into the third dimension (i.e.: you have a Z-axis), you can draw each "layer" of the chunk into its own Canvas and only update the layers that need to be updated. For example, if each chunk contains ten layers of depth, you'd have ten Canvas objects. If something on layer 6 was updated, you would only need to re-paint layer 6's Canvas (probably one drawImage per square meter, which would be 100), then perform one drawImage operation per layer in the chunk (ten) to re-draw the chunk's Canvas. Decreasing or increasing the chunk size may increase or decrease performance depending on the number of update you make to the environment in your game. Further optimizations can be made to eliminate drawImage calls for obscured tiles and the like.
If you don't have a third dimension, you can simply perform one drawImage per square meter of a chunk. If two chunks are updated, that's only 200 drawImage calls per tick (plus one call per chunk visible on the screen). If your game involves very few updates, decreasing the chunk size will decrease the number of calls even further.
You can perform updates to the chunks in their own game loop. If you're using requestAnimationFrame (as you should be), you only need to paint the chunk Canvas objects to the screen. Independently, you can perform game logic in a setTimeout loop or the like. Then, each chunk could be updated in its own tick between frames without affecting performance. This can also be done in a web worker using getImageData and putImageData to send the rendered chunk back to the main thread whenever it needs to be updated, though making this work seamlessly will take a good deal of effort.
The other option that you have is to use a library like pixi.js to render the scene using WebGL. Even for 2D, it will increase performance by decreasing the amount of work that the CPU needs to do and shifting that over to the GPU. I'd highly recommend checking it out.
I know that GameJS has blit operations, and I certainly assume any other html5 game libraries do as well (gameQuery, LimeJS, etc etc). I don't know if these packages have addressed the specific array-bounds-checking concern that you had, but in practice their samples seem to work plenty fast on all platforms.
You should not make assumptions about what speedups make sense. For example, the GameJS developer reports that he was going to implement dirty rectangle tracking but it turned out that modern browsers do this automatically---link.
For this reason and others, I suggest to get something working before thinking about the speed. Also, make use of drawing libraries, as the authors have presumably spent some time optimizing performance.
I have no personal knowledge about this, but you can look into the appMobi "direct canvas" HTML element which is allegedly a much faster version of normal canvas, link. I'm confused about whether this works in all browsers or just webkit browsers or just appMobi's own special browser.
Again, you should not make assumptions about what speedups make sense without a very deep knowledge of web browser internal processes. That webpage about "direct canvas" mentions a bunch of things that slow down canvas-drawing: "Reflowing text, mapping hot spots, creating indexes for reference links, on and on." Alpha-blending and array-bounds-checking are not mentioned as prominent causes of slowness!
Unfortunately, there's no way around the alpha composition overhead. Clipping may be one solution, but I doubt there would be much, if any, performance gain. Not to mention how complicated such a route would be to implement on irregular shapes.
When you have to draw the entire display, you're going to have to deal with the performance hit. Although afterwards, you have a whole screen's worth of pre-calculated alpha imagery and you can draw this image data at an offset in one drawImage call. Then, you would only have to individually draw the new tiles that are scrolled into view.
But still, the browser is having to redraw each pixel at a different location in the canvas. Which is quite expensive. It would be nice if there was a method for just scrolling pixels, but no luck there either.
One idea that comes to mind is that you could implement multiple canvases, translating each individual canvas instead of redrawing the pixels. This would allow the browser to decide how to redraw those pixels, in a more native way, at least in theory anyway. Then you could render the newly visible tiles on a new, or used/cached, canvas element. Positioning it to match up with the last screen render.
But that's just my two blits... I mean bits... duh, I mean cents :]