This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
JavaScript: var functionName = function() {} vs function functionName() {}
are they the same? I've always wondered
No, they're not the same, although they do both result in a function you can call via the symbol foo. One is a function declaration, the other is a function expression. They are evaluated at different times, have different effects on the scope in which they're defined, and are legal in different places.
Quoting my answer to this other question here (edited a bit for relevance), in case the other question were ever removed for some reason (and to save people following the link):
JavaScript has two different but related things: Function declarations, and function expressions. There are marked differences between them:
This is a function declaration:
function foo() {
// ...
}
Function declarations are evaluated upon entry into the enclosing scope, before any step-by-step code is executed. The function's name (foo) is added to the enclosing scope (technically, the variable object for the execution context the function is defined in).
This is a function expression (specifically, an anonymous one, like your quoted code):
var foo = function() {
// ...
};
Function expressions are evaluated as part of the step-by-step code, at the point where they appear (just like any other expression). That one creates a function with no name, which it assigns to the foo variable.
Function expressions can also be named rather than anonymous. A named one looks like this:
var x = function foo() { // Valid, but don't do it; see details below
// ...
};
A named function expression should be valid, according to the spec. It should create a function with the name foo, but not put foo in the enclosing scope, and then assign that function to the x variable (all of this happening when the expression is encountered in the step-by-step code). When I say it shouldn't put foo in the enclosing scope, I mean exactly that:
var x = function foo() {
alert(typeof foo); // alerts "function" (in compliant implementations)
};
alert(typeof foo); // alerts "undefined" (in compliant implementations)
Note how that's different from the way function declarations work (where the function's name is added to the enclosing scope).
Named function expressions work on compliant implementations, but there used to be several bugs in implementations in the wild, most especially Internet Explorer 8 and earlier (and some early versions of Safari). IE8 processes a named function expresssion twice: First as a function declaration (upon entry into the execution context), and then later as a function expression, generating two distinct functions in the process. (Really.)
More here: Double take and here: Named function expressions demystified
NOTE: The below was written in 2011. In 2015, function declarations in control blocks were added to the language as part of ECMAScript 2015. Their semantics vary depending on whether you're in strict or loose mode, and in loose mode if the environment is a web browser. And of course, on whether the environment you're using has correct support for the ES2015 definition for them. (To my surprise, as of this writing in July 2017, Babel doesn't correctly transpile them, either.) Consequently, you can only reliably use function declarations within control-flow structures in specific situations, so it's still probably best, for now, to use function expressions instead.
And finally, another difference between them is where they're legal. A function expression can appear anywhere an expression can appear (which is virtually anywhere). A function declaration can only appear at the top level of its enclosing scope, outside of any control-flow statements. So for instance, this is valid:
function bar(x) {
var foo;
if (x) {
foo = function() { // Function expression...
// Do X
};
}
else {
foo = function() { // ...and therefore legal
// Do Y
};
}
foo();
}
...but this is not, and does not do what it looks like it does on most implementations:
function bar(x) {
if (x) {
function foo() { // Function declaration -- INVALID
// Do X
}
}
else {
function foo() { // INVALID
// Do Y
}
}
foo();
}
And it makes perfect sense: Since the foo function declarations are evaluated upon entry into the bar function, before any step-by-step code is executed, the interpreter has no idea which foo to evaluate. This isn't a problem for expressions since they're done during the control-flow.
Since the syntax is invalid, implementations are free to do what they want. I've never met one that did what I would have expected, which is to throw a syntax error and fail. Instead, nearly all of them just ignore the control flow statements and do what they should do if there are two foo function declarations at the top level (which is use the second one; that's in the spec). So only the second foo is used. Firefox's SpiderMonkey is the standout, it seems to (effectively) convert them into expressions, and so which it uses depends on the value of x. Live example.
I got an excellent explanation on this while asking very similar question: Two functions with the same name in JavaScript - how can this work?
Related
I am reading about Function Declarations vs. Function Expressions, and I cannot figure out the meaning of following statement:
Function Declarations occur as standalone constructs and cannot be
nested within non-function blocks.
Someone please to explain with an exemple what does the author means, precisely by: "...cannot be nested within non-function blocks".
Link is: https://javascriptweblog.wordpress.com/2010/07/06/function-declarations-vs-function-expressions/
I dont know the author meant it was physically impossible or more of it shouldn't be done. From my understanding what the author was saying is that this:
var y = true;
if (y) {
function example() {
alert('hi');
return true;
}
}
Here the function is declared inside a conditional statement, which is fine since x is true, but if it were false that function would never be declared and when we do want to the call the example function nothing will happen because it was never declared. So it should be
function example() {
"use strict";
return true;
}
var y = true;
if (y) {
example();
}
In the above code we still call the example function if the condition is met, however since example is defined outside the condition statement we can use it regardless of the conditional statement. This Post has more information about it. Hopefully this is what you meant
Taken at face value, the statement:
Function Declarations occur as standalone constructs and cannot be nested within non-function blocks.
is wrong. It's possible to put function declarations inside blocks, as examples in the article show. The reason that it's warned against is that the behaviour differs in different browsers. In most browsers (not certain versions of IE and Firefox), such functions are declared regardless of whether execution enters the block or not, e.g.:
if (false) {
function foo(){}
}
foo is declared and available within the outer scope. This is exactly the same with variable declarations:
if (false) {
var x = 3;
}
In the above, x is declared regardless of whether the block is executed or not. The assignment of the value, however, only occurs if the block is entered.
Back to functions. The reason function declarations in blocks is warned against is that firstly, it infers that the function is only created if the block is entered, which is incorrect for most browsers but not all. Secondly, and more importantly, it's because different browsers have different behaviour.
Some interesting reading:
Richard Cornford: FunctionExpressions and memory consumption
Kangax: Function statements
What are the precise semantics of block-level functions in ES6?
Also note that function statements are warned against in ES5 strict mode and may be introduced in some future version of ECMAScript.
Finally, this behaviour is addressed directly in ECMA-262 ed 6 in Appendix B 3.3.3 and Appendix B 3.4.
I think it means you cannot define functions arbitrarily in the code, see below.
if true {
function funName(){};
}
funName will not be a function in this case, it will cause an error.
Consider the humble if statement:
function whatever() {
// ...
if (something === somethingElse) {
function aFunction() {
// ...
}
// more code ...
}
aFunction(5, 6, 7);
Now, that code is weird. The function is declared inside the if block. But function declarations are hoisted! So what does that mean?
More weird: what if there's a different declaration for "aFunction" in the else clause?
A fundamental aspect of the weirdness from code like that is that function declarations are treated as if they occur at the top of the scope (that is, they're "hoisted"). For that reason, a function declaration inside some other sort of block is just inherently ambiguous and strange.
Note that function instantiation via function expressions are not weird, because those happen as part of running code, like object initialization expressions.
This question already has answers here:
Explain the encapsulated anonymous function syntax
(10 answers)
Closed 7 years ago.
I'm reading up on JavaScript IIFE and so far the understand concept, but I am wondering about the outside parenthesis. Specifically, why are they required? For example,
(function() {var msg='I love JavaScript'; console.log(msg);}());
works great, but
function() {var msg='I love JavaScript'; console.log(msg);}();
generates a syntax error. Why? There are lots of discussions on IIFE, but I'm not seeing a clear explanation about why the parentheses are required.
There are two ways to create functions in JavaScript (well, 3, but let's ignore new Function()). You can either write a function declaration or write a function expression.
A function declaration in itself is a statement and statements by themselves don't return values (let's also ignore how the debugging console or Node.js REPL print return values of statements). A function expression however is a proper expression and expressions in JavaScript returns values that can be immediately used.
Now, you may have seen people saying that the following is a function expression:
var x = function () {};
It may be tempting to conclude that the syntax:
function () {};
is what makes it an expression. But that's wrong. The syntax above is what makes it an anonymous function. And anonymous functions can either be a declaration or an expression. What makes it an expression is this syntax:
var x = ...
That is, everything to the right of an = sign is an expression. Expressions make it easier to write math formulas in programming languages. So in general everywhere that math is expected to be processed is an expression.
Some of the forms of expressions in JavaScript include:
everything to the right of an = operator
things in braces () that are not function call braces
everything to the right of a math operator (+,-,*,/)
all the arguments to the ternary operator .. ? .. : ..
When you write:
function () {}
it is a declaration and does not return a value (the declared function). Therefore trying to call the non-result is an error.
But when you write:
(function () {})
it is an expression and returns a value (the declared function) which may be used immediately (for example, may be called or may be assigned).
Note the rules for what counts as expressions above. From that it follows that braces are not the only things that you can use to construct an IIFE. Below are valid ways for constructing IIFEs (because we write function expressions):
tmp=function(){}()
+function(){}()
-function(){}()
0/function(){}()
0*function(){}()
0?0:function(){}()
(function(){}())
(function(){})()
You may actually see one of the above non-standard forms (particularly the + version) in third-party libraries, because they want to save one byte. But I strongly advise you to only use the brace forms (either are fine), because they are widely recognized as IIFEs by other programmers.
The version of IIFE that is wrapped in parenthesis works, because this marks the declaration of the internal function declaration as an expression.
http://benalman.com/news/2010/11/immediately-invoked-function-expression/
For more detailed explanation please see:
Advanced JavaScript: Why is this function wrapped in parentheses?
HINT:
The invocation operator (()) only works with expressions, not declarations.
This will be a long-winded answer, but will give you the necessary background. In JavaScript there are two ways functions can be defined:
A function definition (the classical kind)
function foo() {
//why do we always use
}
and then the more obscure type, a function expression
var bar = function() {
//foo and bar
};
In essence the same thing is going on at execution. A function object is created, memory is allocated, and an identifier is bound to the function. The difference is in the syntax. The former is itself a statement which declares a new function, the latter is an expression.
The function expression gives us the ability to insert a function any place where a normal expression would be expected. This lends its way to anonymous functions and callbacks. Take for instance
setTimeout(500, function() {
//for examples
});
Here, the anonymous function will execute whenever setTimeout says so. If we want to execute a function expression immediately, however, we need to ensure the syntax is recognizable as an expression, otherwise we have ambiguity as to whether of not we mean a function expression or statement.
var fourteen = function sumOfSquares() {
var value = 0;
for (var i = 0; i < 4; i++)
value += i * i;
return value;
}();
Here sumOfSquares is immediately invoked because it can be recognized as an expression. fourteen becomes 14 and sumOfSquares is garbage-collected. In your example, the grouping operator () coerces its content into an expression, therefore the function is an expression and can be called immediately as such.
One important thing to note about the difference between my first foo and bar example though is hoisting. If you don't know what that it is, a quick Google search or two should tell you, but the quick and dirty definition is that hoisting is JavaScript's behavior to bring declarations (variables and functions) to the top of a scope. These declarations usually only hoist the identifier but not its initialized value, so the entire scope will be able to see the variable/function before it is assigned a value.
With function definitions this is not the case, here the entire declaration is hoisted and will be visible throughout the containing scope.
console.log("lose your " + function() {
fiz(); //will execute fiz
buzz(); //throws TypeError
function fiz() {
console.log("lose your scoping,");
}
var buzz = function() {
console.log("and win forever");
};
return "sanity";
}()); //prints "lose your scoping, lose your sanity"
In a comment on another thread I started, someone said this:
#adlwalrus yes. try this: var foo = function bar(){}; console.log(foo); But be aware that bar is only function name (what does it mean I'm not sure exactly myself) and not a reference to it, so you can't call it by doing bar(). And assigning (even named function) is not the same as declaring a function. Hoisting (bumping to top of the scope) only works for declarations, assignment will stay in place. – valentinas 6 hours ago
What purpose does a function name serve if you can't call it with bar()?
For the function to call itself.
var x = function y(val){
if (val){
console.log(val);
y(val-1);
}
};
x(5);
> 3
> 2
> 1
y(3);
> ReferenceError: y is not defined
You're referring to a named function expression. The spec requires that the name of such functions only be available within the scope of the new function. Spec quote:
The Identifier in a FunctionExpression can be referenced from inside
the FunctionExpression's FunctionBody to allow the function to call
itself recursively. However, unlike in a FunctionDeclaration, the
Identifier in a FunctionExpression cannot be referenced from and does
not affect the scope enclosing the FunctionExpression.
On the other hand, the result of that expression is a reference to the new function, which can be saved and referenced anywhere.
Lots of details here:
http://kangax.github.com/nfe/#named-expr
I'd read the whole thing.
As for benefits, another is that it makes them easier to identify in a debugger.
There are two ways to create a function in JavaScript, a "function declaration" and a "function expression." I believe it was Doug Crockford who explained it best when he pointed out that unless "function" is the very first set of characters on a given line, you're performing a function expression (not a declaration).
Function declarations are finicky creatures. You'll recognize them when you see them. They look like this:
function foo() { /* ... */ }
They're always given a name (it's requited) and the name is locally scoped to the lexical context under which the function is declared. So if you perform a function declaration in the global context, then the function can be referenced via it's name globally. If you do it within a function, the function's name can be referenced only within that function and any functions declared within that function.
I think the most important aspect of this method of declaring a function (one that is rarely commented on) is that the function initialization gets hoisted to the top of the current lexical context. Therefore, you should never, ever use a function declaration within a conditional, such as this:
//DON'T DO THIS!
if (x) {
function foo() { return 1; }
} else {
function foo() { return 2; }
}
foo(); //will always be 2, regardless of the value of x.
A function expression is slightly different. Often, they're directly assigned to a variable, like so:
var foo = function() { /* ... */ };
This is nearly identical to the function declaration above except that the initialization is not hoisted. So you can do the following:
var foo;
if (x) {
foo = function() { return 1; };
} else {
foo = function() { return 2; };
}
foo(); //will be 1 or 2, depending on the truthy-ness of x.
So, back to the original question. Function expressions can also have a name, though it's not required and it's not scoped to the context in which the function is declared (as with function declarations). Instead, it gets scoped to the function's own lexical context. This is very useful in some cases. My personal favorite is this pattern:
(function foo() {
//Do something.
setTimeout(foo, 1000);
}());
foo; //undefined
Because of the parenthesis before the word "function", this is a function expression and the name is scoped internally only. But that's okay, because we only need to call it internally (via setTimeout()). The result is that the function will execute once immediately, then will re-execute every second or so after it's finishes execution. This is safer than using setInterval() because it will wait until it's done executing before rescheduling itself, preventing overlaps that could cause missed executions and/or "domination" of the JavaScript thread.
Essentially, the use of a named function expression is limited, but when you need it, it's very powerful.
When you're assigning a function to a variable, does it make any difference at all if you use a named instead of an anonymous function. The following generates an error that "foo() is not defined".
var fn = function foo(){...};
foo();
Can anyone clear up what's going on here?
You're creating a named function expression.
Except in IE, the name is only visible inside the function.
In your example, the variable fn is accessible in the current scope, but foo is only accessible in the functions scope. For example:
var bar = function foo() {
document.write("Internally, Foo is " + typeof foo + "<br/>");
document.write("Internally, Bar is " + typeof bar + "<br/>");
};
document.write("Foo is " + typeof foo + "<br/>");
document.write("Bar is " + typeof bar + "<br/>");
bar();
Will produce:
Foo is undefined
Bar is function
Internally, Foo is function
Internally, Bar is function
http://jsfiddle.net/robert/TEnjb/
Because it (foo) is not defined ;-)
In this context, function is a function-expression ("FunctionExpression") and not a function-statement ("FunctionDeclaration") -- there are two different productions in the grammar. Only the function-statement form [magically] assigns (and hoists the assignment) of the function name to the appropriate variable. Even functions created with a function-expression can have a name, it just happens to be optional, but there is no implicit assignment as with the other form.
[Edit: Apparently this is more quirky then I imagined. In any case, the above cases hold for a properly conforming browser. For instance Gecko has the "function statement extension, which is non-conforming, and IE/JScript exhibits different behavior, which is also non-conforming. Both of these are incorrect implementations according to the grammar specification.]
Consider the following, which should hopefully show why a ([more] conforming implementation) will sanely throw an exception:
// `function` is just an expression here -- there is no good reason for it to
// cause an implicit side-effect. And, according to the specification, it will not.
(function foo () {}).name // "foo", at least in FF
foo // undefined
On a side note: Any function production which is not a top-level statement or a statement directly inside a function block is a function-expression. The behavior of the following is quirky across browsers:
foo() // works in IE (this should never work)
if (true) {
// this is an INVALID GRAMMAR production, although it is accepted in browsers,
// with different operational semantics
function foo () {
}
}
foo() // works in FF and IE (this should never work)
Happy coding.
A little trip to the ECMAScript specification to talk about the grammar. The "rules" can be equally found there, although I find Ed. 5 to be written in the most confusing manner possible. (It misses for forest for all the trees...)
Grammar for FunctionExpression:
// There is a silly long expression tree to get here.
// Look it up if you want :)
FunctionExpression : function Identifier [optional] ( FormalParameterListopt ) { FunctionBody }
Grammar for FunctionDeclaration (what I refer to as a function-statement above), and associated "chain":
FunctionBody : SourceElements [optional]
Program : SourceElements [optional]
SourceElements : SourceElement
SourceElements SourceElement
SourceElement : Statement
FunctionDeclaration
FunctionDeclaration : function Identifier ( FormalParameterListopt ) { FunctionBody }
Note that there is no grammar rule for the "INVALID GRAMMAR" noted. The only way to get to a FunctionDeclaration is through a SourceElement which is only valid inside a FunctionBody or Program (which does not include other blocks like if). "Normal expressions", as a FunctionExpression are restricted, as per below:
An ExpressionStatement cannot start with an opening curly brace because that might make it ambiguous with a Block. Also, an ExpressionStatement cannot start with the function keyword because that might make it ambiguous with a FunctionDeclaration.
...and an apt note from the spec:
Several widely used implementations of ECMAScript are known to support the use of FunctionDeclaration as a Statement. However there are significant and irreconcilable variations among the implementations in the semantics applied to such FunctionDeclarations. Because of these irreconcilable difference, the use of a FunctionDeclaration as a Statement results in code that is not reliably portable among implementations.
Technically, fn is a function pointer pointing to "foo", but you don't really see this in Javascript. You should really just write:
function foo() {
/* ... */
}
foo();
As others have pointed out, your assignment makes the foo function "live" only in the scope of fn, so when fn goes out of scope, the function object could in principle be cleaned up. If you have a really compelling reason to do that then use the function pointer, but otherwise you can just keep the function global.
On some versions of IE this will work, but only because they are non-conforming.
var fn // declares a variable named fn
= function // initializes fn
foo // declares a name foo that is only visible within the function body.
(){
... // foo is visible here.
};
foo(); // foo is not defined here (except on IE 6 and earlier)
fn(); // works just fine.
Note also that although it's often said that:
function foo() {
};
is just syntactic sugar for:
var foo = function() {
};
it's actually not quite true.
In the former case the named function is immediately available when the script is parsed regardless of the order of definitions in the file.
In the latter, the anonymous function body is parsed immediately, but its assignment to a locally scoped variable doesn't happen until that line of code is executed. This means that you can't call foo() in any code executed before then.
Depending on the scope and how you define the function it can be a Function Declaration, Function Expression, or Function Statement. These three function types are treated and loaded differently. Among them, only function declarations require a name. So two other types can be defined without a name. These three types are also different in they way they are assigned to a variable with the function name.
Function Declaration : is defined in the top scope and is not used in another expression/statement (e.g., it is not assigned to a variable)
function foo(){}
The function object is assigned to the variable foo in the global scope.
Function Expression : is defined in another expression/statement.
var bar = function foo(){}
The function object is assigned to the variable foo but in the inner scope (i.e., the scope inside the function)
Function Statement : they are allowed to be anywhere where plain Statements are allowed.
if (true) {
function foo(){ }
}
The function object is assigned to the variable foo in the outer scope (i.e., the scope contains the function definition).
For more information look at this address: http://kangax.github.com/nfe/
I asked this question a while back and was happy with the accepted answer. I just now realized, however, that the following technique:
var testaroo = 0;
(function executeOnLoad() {
if (testaroo++ < 5) {
setTimeout(executeOnLoad, 25);
return;
}
alert(testaroo); // alerts "6"
})();
returns the result I expect. If T.J.Crowder's answer from my first question is correct, then shouldn't this technique not work?
A very good question. :-)
The difference:
The difference between this and your detachEvent situation is that here, you don't care that the function reference inside and outside "the function" is the same, just that the code be the same. In the detachEvent situation, it mattered that you see the same function reference inside and outside "the function" because that's how detachEvent works, by detaching the specific function you give it.
Two functions?
Yes. CMS pointed out that IE (JScript) creates two functions when it sees a named function expression like the one in your code. (We'll come back to this.) The interesting thing is that you're calling both of them. Yes, really. :-) The initial call calls the function returned by the expression, and then all of the calls using the name call the the other one.
Modifying your code slightly can make this a bit clearer:
var testaroo = 0;
var f = function executeOnLoad() {
if (testaroo++ < 5) {
setTimeout(executeOnLoad, 25);
return;
}
alert(testaroo); // alerts "6"
};
f();
The f(); at the end calls the function that was returned by the function expression, but interestingly, that function is only called once. All the other times, when it's called via the executeOnLoad reference, it's the other function that gets called. But since the two functions both close over the same data (which includes the testaroo variable) and they have the same code, the effect is very like there being just one function. We can demonstrate there are two, though, much the way CMS did:
var testaroo = 0;
var f = function executeOnLoad() {
if (testaroo++ < 5) {
setTimeout(executeOnLoad, 0);
return;
}
alert(testaroo); // alerts "6"
// Alerts "Same function? false"
alert("Same function? " + (f === executeOnLoad));
};
f();
This isn't just some artifact of the names, either, there really are two functions being created by JScript.
What's going on?
Basically, the people implementing JScript apparently decided to process named function expressions both as function declarations and as function expressions, creating two function objects in the process (one from the "declaration," one from the "expression") and almost certainly doing so at different times. This is completely wrong, but it's what they did. Surprisingly, even the new JScript in IE8 continues this behavior.
That's why your code sees (and uses) two different functions. It's also the reason for the name "leak" that CMS mentioned. Shifting to a slightly modified copy of his example:
function outer() {
var myFunc = function inner() {};
alert(typeof inner); // "undefined" on most browsers, "function" on IE
if (typeof inner !== "undefined") { // avoid TypeError on other browsers
// IE actually creates two function objects: Two proofs:
alert(inner === myFunc); // false!
inner.foo = "foo";
alert(inner.foo); // "foo"
alert(myFunc.foo); // undefined
}
}
As he mentioned, inner is defined on IE (JScript) but not on other browsers. Why not? To the casual observer, aside from the two functions thing, JScript's behavior with regard to the function name seems correct. After all, only functions introduce new scope in Javascript, right? And the inner function is clearly defined in outer. But the spec actually went to pains to say no, that symbol is not defined in outer (even going so far as to delve into details about how implementations avoid it without breaking other rules). It's covered in Section 13 (in both the 3rd and 5th edition specs). Here's the relevant high-level quote:
The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBody to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a FunctionExpression cannot be referenced from and does not affect the scope enclosing the FunctionExpression.
Why did they go to this trouble? I don't know, but I suspect it relates to the fact that function declarations are evaluated before any statement code (step-by-step code) is executed, whereas function expressions — like all expressions — are evaluated as part of the statement code, when they're reached in the control flow. Consider:
function foo() {
bar();
function bar() {
alert("Hi!");
}
}
When the control flow enters function foo, one of the first things that happens is that the bar function is instantiated and bound to the symbol bar; only then does the interpreter start processing the statements in foo's function body. That's why the call to bar at the top works.
But here:
function foo() {
var f;
f = function() {
alert("Hi!");
};
f();
}
The function expression is evaluated when it's reached (well, probably; we can't be sure some implementations don't do it earlier). One good reason the expression isn't (or shouldn't be) evaluated earlier is:
function foo() {
var f;
if (some_condition) {
f = function() {
alert("Hi (1)!");
};
}
else {
f = function() {
alert("Hi! (2)");
};
}
f();
}
...doing it earlier leads to ambiguity and/or wasted effort. Which leads to the question of what should happen here:
function foo() {
var f;
bar();
if (some_condition) {
f = function bar() {
alert("Hi (1)!");
};
}
else {
f = function bar() {
alert("Hi! (2)");
};
}
f();
}
Which bar gets called at the beginning? The way the specification authors chose to address that situation was to say that bar is not defined in foo at all, hence side-stepping the issue entirely. (It's not the only way they could have addressed it, but it seems to be the way they chose to do so.)
So how does IE (JScript) process that? The bar called at the beginning alerts "Hi (2)!". This, combined with the fact we know two function objects are created based on our other tests, is the clearest indication that JScript processes named function expressions as function declarations and function expressions, because that's exactly what is supposed to happen here:
function outer() {
bar();
function bar() {
alert("Hi (1)!");
}
function bar() {
alert("Hi (2)!");
}
}
There we have two function declarations with the same name. Syntax error? You'd think so, but it isn't. The specification clearly allows it, and says that the second declaration in source code order "wins." From Section 10.1.3 of the 3rd edition spec:
For each FunctionDeclaration in the code, in source text order, create a property of the variable object whose name is the Identifier in the FunctionDeclaration...If the variable object already has a property with this name, replace its value and attributes...
(The "variable object" is how symbols get resolved; that's a whole 'nother topic.) It's just as unambiguous in the 5th edition (Section 10.5), but, um, a lot less quotable.
So it's just IE, then?
Just to be clear, IE isn't the only browser that has (or had) unusual handling of NFEs, although they're getting pretty lonely (a pretty big Safari issue has been fixed, for instance). It's just that JScript has a really big quirk in this regard. But come to that, I think it actually is the only current major implementation with any really big issue — be interested to know of any others, if anyone knows of them.
Where we stand
Given all of the above, for the moment, I stay away from NFEs because I (like most people) have to support JScript. After all, it's easy enough to use a function declaration and then refer to it later (or indeed, earlier) with a variable:
function foo() { }
var f = foo;
...and that works reliably across browsers, avoiding issues like your detachEvent problem. Other reasonable people solve the problem differently, just accepting that two functions will get created and trying to minimize the impact, but I don't like that answer at all because of exactly what happened to you with detachEvent.
Well, it will work, the problem with JScript (IE), is that the identifier of the function expression (executeOnLoad) will leak to its enclosing scope, and actually creating two function objects..
(function () {
var myFunc = function foo () {};
alert(typeof foo); // "undefined" on all browsers, "function" on IE
if (typeof foo !== "undefined") { // avoid TypeError on other browsers
alert( foo === myFunc ); // false!, IE actually creates two function objects
}
})();