I'm trying to use the Haversine Distance Formula (as found here: http://www.movable-type.co.uk/scripts/latlong.html) but I can't get it to work, please see the following code
function test() {
var lat2 = 42.741;
var lon2 = -71.3161;
var lat1 = 42.806911;
var lon1 = -71.290611;
var R = 6371; // km
//has a problem with the .toRad() method below.
var dLat = (lat2-lat1).toRad();
var dLon = (lon2-lon1).toRad();
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) *
Math.sin(dLon/2) * Math.sin(dLon/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
alert(d);
}
And the error is:
Uncaught TypeError: Object -0.06591099999999983 has no method 'toRad'
Which I understand to be because it needs to do the following:
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
But when I put this below the function, it still comes back with the same error message. How do I make it use the helper method? Or is there an alternative way to code this to get it to work? Thanks!
This code is working:
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
var lat2 = 42.741;
var lon2 = -71.3161;
var lat1 = 42.806911;
var lon1 = -71.290611;
var R = 6371; // km
//has a problem with the .toRad() method below.
var x1 = lat2-lat1;
var dLat = x1.toRad();
var x2 = lon2-lon1;
var dLon = x2.toRad();
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) *
Math.sin(dLon/2) * Math.sin(dLon/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
alert(d);
Notice how I defined x1 and x2.
Play with it at: https://tinker.io/3f794
Here's a refactored function based on 3 of the other answers!
Please note that the coords arguments are [longitude, latitude].
function haversineDistance(coords1, coords2, isMiles) {
function toRad(x) {
return x * Math.PI / 180;
}
var lon1 = coords1[0];
var lat1 = coords1[1];
var lon2 = coords2[0];
var lat2 = coords2[1];
var R = 6371; // km
var x1 = lat2 - lat1;
var dLat = toRad(x1);
var x2 = lon2 - lon1;
var dLon = toRad(x2)
var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(toRad(lat1)) * Math.cos(toRad(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = R * c;
if(isMiles) d /= 1.60934;
return d;
}
ES6 JavaScript/NodeJS refactored version:
/**
* Calculates the haversine distance between point A, and B.
* #param {number[]} latlngA [lat, lng] point A
* #param {number[]} latlngB [lat, lng] point B
* #param {boolean} isMiles If we are using miles, else km.
*/
const haversineDistance = ([lat1, lon1], [lat2, lon2], isMiles = false) => {
const toRadian = angle => (Math.PI / 180) * angle;
const distance = (a, b) => (Math.PI / 180) * (a - b);
const RADIUS_OF_EARTH_IN_KM = 6371;
const dLat = distance(lat2, lat1);
const dLon = distance(lon2, lon1);
lat1 = toRadian(lat1);
lat2 = toRadian(lat2);
// Haversine Formula
const a =
Math.pow(Math.sin(dLat / 2), 2) +
Math.pow(Math.sin(dLon / 2), 2) * Math.cos(lat1) * Math.cos(lat2);
const c = 2 * Math.asin(Math.sqrt(a));
let finalDistance = RADIUS_OF_EARTH_IN_KM * c;
if (isMiles) {
finalDistance /= 1.60934;
}
return finalDistance;
};
See codepen for tests against accepted answer: https://codepen.io/harrymt/pen/dyYvLpJ?editors=1011
Why not try the straight forward solution? Instead of extending Number prototype, just define toRad as a regular function:
function toRad(x) {
return x * Math.PI / 180;
}
and then call toRad everywhere:
var dLat = toRad(lat2-lat1);
Extending the Number prototype does not always work as expected. For example calling 123.toRad() does not work. I think that if you do var x1 = lat2 - lat1; x1.toRad(); works better than doing (lat2-lat1).toRad()
when I put this below the function
You only need to put it above the point where you call test(). Where the test function itself is declared does not matter.
You need to extend the Number prototype, before calling those extensions in a function.
So just ensure
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
is called before your function is called.
Another variant to reduce redundancy and also compatible with Google LatLng objects:
function haversine_distance(coords1, coords2) {
function toRad(x) {
return x * Math.PI / 180;
}
var dLat = toRad(coords2.latitude - coords1.latitude);
var dLon = toRad(coords2.longitude - coords1.longitude)
var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(toRad(coords1.latitude)) *
Math.cos(toRad(coords2.latitude)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
return 12742 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
}
Here's another refactored answer in JavaScript:
getHaversineDistance = (firstLocation, secondLocation) => {
const earthRadius = 6371; // km
const diffLat = (secondLocation.lat-firstLocation.lat) * Math.PI / 180;
const diffLng = (secondLocation.lng-firstLocation.lng) * Math.PI / 180;
const arc = Math.cos(
firstLocation.lat * Math.PI / 180) * Math.cos(secondLocation.lat * Math.PI / 180)
* Math.sin(diffLng/2) * Math.sin(diffLng/2)
+ Math.sin(diffLat/2) * Math.sin(diffLat/2);
const line = 2 * Math.atan2(Math.sqrt(arc), Math.sqrt(1-arc));
const distance = earthRadius * line;
return distance;
}
const philly = { lat: 39.9526, lng: -75.1652 }
const nyc = { lat: 40.7128, lng: -74.0060 }
const losAngeles = { lat: 34.0522, lng: -118.2437 }
console.log(getHaversineDistance(philly, nyc)) //129.61277152662188
console.log(getHaversineDistance(philly, losAngeles)) //3843.4534005980404
This is a java implemetation of talkol's solution above. His or her solution worked very well for us. I'm not trying to answer the question, since the original question was for javascript. I'm just sharing our java implementation of the given javascript solution in case others find it of use.
// this was a pojo class we used internally...
public class GisPostalCode {
private String country;
private String postalCode;
private double latitude;
private double longitude;
// getters/setters, etc.
}
public static double distanceBetweenCoordinatesInMiles2(GisPostalCode c1, GisPostalCode c2) {
double lat2 = c2.getLatitude();
double lon2 = c2.getLongitude();
double lat1 = c1.getLatitude();
double lon1 = c1.getLongitude();
double R = 6371; // km
double x1 = lat2 - lat1;
double dLat = x1 * Math.PI / 180;
double x2 = lon2 - lon1;
double dLon = x2 * Math.PI / 180;
double a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(lat1*Math.PI/180) * Math.cos(lat2*Math.PI/180) *
Math.sin(dLon/2) * Math.sin(dLon/2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
double d = R * c;
// convert to miles
return d / 1.60934;
}
i tried this
function distance(lat1,lon1,lat2,lon2)
{
var R = 6371; // km (change this constant to get miles)
var dLat = (lat2-lat1) * Math.PI / 180;
var dLon = (lon2-lon1) * Math.PI / 180;
var a = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(lat1 * Math.PI / 180 ) * Math.cos(lat2 * Math.PI / 180 ) * Math.sin(dLon/2) * Math.sin(dLon/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
if (d>1) return Math.round(d)+"km";
else if (d<=1) return Math.round(d*1000)+"m";
return d;
}
distance(21.1702401,72.83106070000008,22.3038945,70.80215989999999);
using above function i m getting this output : 245km
result coming for Straight Distance :245km
but i need Driving mode ditance of that location and its output should be 448km
From value is : Surat, Gujarat, India
to value is :Rajkot, Gujarat, India
so pls help me to solve this..
Thanks
Driving directions cannot be "simply" calculated. You need to know the roads, how long they are, where you can turn off and lots more.
It is too complicated to do in a single function with no underlying data.
I would suggest you look into Google maps API or find if TomTom/Apple/Garmin have APIs for their map data.
I'm currently using the function below and it doesn't work properly. According to Google Maps, the distance between these coordinates (from 59.3293371,13.4877472 to 59.3225525,13.4619422) are 2.2 kilometres while the function returns 1.6 kilometres. How can I make this function return the correct distance?
function getDistanceFromLatLonInKm(lat1, lon1, lat2, lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}
jsFiddle: http://jsfiddle.net/edgren/gAHJB/
What you're using is called the haversine formula, which calculates the distance between two points on a sphere as the crow flies. The Google Maps link you provided shows the distance as 2.2 km because it's not a straight line.
Wolfram Alpha is a great resource for doing geographic calculations, and also shows a distance of 1.652 km between these two points.
If you're looking for straight-line distance (as the crow files), your function is working correctly. If what you want is driving distance (or biking distance or public transportation distance or walking distance), you'll have to use a mapping API (Google or Bing being the most popular) to get the appropriate route, which will include the distance.
Incidentally, the Google Maps API provides a packaged method for spherical distance, in its google.maps.geometry.spherical namespace (look for computeDistanceBetween). It's probably better than rolling your own (for starters, it uses a more precise value for the Earth's radius).
For the picky among us, when I say "straight-line distance", I'm referring to a "straight line on a sphere", which is actually a curved line (i.e. the great-circle distance), of course.
I have written a similar equation before - tested it and also got 1.6 km.
Your google maps was showing the DRIVING distance.
Your function is calculating as the crow flies (straight line distance).
alert(calcCrow(59.3293371,13.4877472,59.3225525,13.4619422).toFixed(1));
//This function takes in latitude and longitude of two location and returns the distance between them as the crow flies (in km)
function calcCrow(lat1, lon1, lat2, lon2)
{
var R = 6371; // km
var dLat = toRad(lat2-lat1);
var dLon = toRad(lon2-lon1);
var lat1 = toRad(lat1);
var lat2 = toRad(lat2);
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
return d;
}
// Converts numeric degrees to radians
function toRad(Value)
{
return Value * Math.PI / 180;
}
Derek's solution worked fine for me, and I've just simply converted it to PHP, hope it helps somebody out there !
function calcCrow($lat1, $lon1, $lat2, $lon2){
$R = 6371; // km
$dLat = toRad($lat2-$lat1);
$dLon = toRad($lon2-$lon1);
$lat1 = toRad($lat1);
$lat2 = toRad($lat2);
$a = sin($dLat/2) * sin($dLat/2) +sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2);
$c = 2 * atan2(sqrt($a), sqrt(1-$a));
$d = $R * $c;
return $d;
}
// Converts numeric degrees to radians
function toRad($Value)
{
return $Value * pi() / 180;
}
Using Haversine formula, source of the code:
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
//::: :::
//::: This routine calculates the distance between two points (given the :::
//::: latitude/longitude of those points). It is being used to calculate :::
//::: the distance between two locations using GeoDataSource (TM) prodducts :::
//::: :::
//::: Definitions: :::
//::: South latitudes are negative, east longitudes are positive :::
//::: :::
//::: Passed to function: :::
//::: lat1, lon1 = Latitude and Longitude of point 1 (in decimal degrees) :::
//::: lat2, lon2 = Latitude and Longitude of point 2 (in decimal degrees) :::
//::: unit = the unit you desire for results :::
//::: where: 'M' is statute miles (default) :::
//::: 'K' is kilometers :::
//::: 'N' is nautical miles :::
//::: :::
//::: Worldwide cities and other features databases with latitude longitude :::
//::: are available at https://www.geodatasource.com :::
//::: :::
//::: For enquiries, please contact sales#geodatasource.com :::
//::: :::
//::: Official Web site: https://www.geodatasource.com :::
//::: :::
//::: GeoDataSource.com (C) All Rights Reserved 2018 :::
//::: :::
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
function distance(lat1, lon1, lat2, lon2, unit) {
if ((lat1 == lat2) && (lon1 == lon2)) {
return 0;
}
else {
var radlat1 = Math.PI * lat1/180;
var radlat2 = Math.PI * lat2/180;
var theta = lon1-lon2;
var radtheta = Math.PI * theta/180;
var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
if (dist > 1) {
dist = 1;
}
dist = Math.acos(dist);
dist = dist * 180/Math.PI;
dist = dist * 60 * 1.1515;
if (unit=="K") { dist = dist * 1.609344 }
if (unit=="N") { dist = dist * 0.8684 }
return dist;
}
}
The sample code is licensed under LGPLv3.
Adding this for Node.JS users. You can use the haversine-distance module to do this so you won't need to handle the calculations on your own. See the npm page for more information.
To install:
npm install --save haversine-distance
You can use the module as follows:
var haversine = require("haversine-distance");
//First point in your haversine calculation
var point1 = { lat: 6.1754, lng: 106.8272 }
//Second point in your haversine calculation
var point2 = { lat: 6.1352, lng: 106.8133 }
var haversine_m = haversine(point1, point2); //Results in meters (default)
var haversine_km = haversine_m /1000; //Results in kilometers
console.log("distance (in meters): " + haversine_m + "m");
console.log("distance (in kilometers): " + haversine_km + "km");
I implemeneted this algorithm in typescript and ES6
export type Coordinate = {
lat: number;
lon: number;
};
get the distance between two points:
function getDistanceBetweenTwoPoints(cord1: Coordinate, cord2: Coordinate) {
if (cord1.lat == cord2.lat && cord1.lon == cord2.lon) {
return 0;
}
const radlat1 = (Math.PI * cord1.lat) / 180;
const radlat2 = (Math.PI * cord2.lat) / 180;
const theta = cord1.lon - cord2.lon;
const radtheta = (Math.PI * theta) / 180;
let dist =
Math.sin(radlat1) * Math.sin(radlat2) +
Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
if (dist > 1) {
dist = 1;
}
dist = Math.acos(dist);
dist = (dist * 180) / Math.PI;
dist = dist * 60 * 1.1515;
dist = dist * 1.609344; //convert miles to km
return dist;
}
get the distance between an array of coordinates
export function getTotalDistance(coordinates: Coordinate[]) {
coordinates = coordinates.filter((cord) => {
if (cord.lat && cord.lon) {
return true;
}
});
let totalDistance = 0;
if (!coordinates) {
return 0;
}
if (coordinates.length < 2) {
return 0;
}
for (let i = 0; i < coordinates.length - 2; i++) {
if (
!coordinates[i].lon ||
!coordinates[i].lat ||
!coordinates[i + 1].lon ||
!coordinates[i + 1].lat
) {
totalDistance = totalDistance;
}
totalDistance =
totalDistance +
getDistanceBetweenTwoPoints(coordinates[i], coordinates[i + 1]);
}
return totalDistance.toFixed(2);
}
Calculate the Distance between Two Points in javascript
function distance(lat1, lon1, lat2, lon2, unit) {
var radlat1 = Math.PI * lat1/180
var radlat2 = Math.PI * lat2/180
var theta = lon1-lon2
var radtheta = Math.PI * theta/180
var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
dist = Math.acos(dist)
dist = dist * 180/Math.PI
dist = dist * 60 * 1.1515
if (unit=="K") { dist = dist * 1.609344 }
if (unit=="N") { dist = dist * 0.8684 }
return dist
}
For more details refer this: Reference Link
Try this. It is in VB.net and you need to convert it to Javascript. This function accepts parameters in decimal minutes.
Private Function calculateDistance(ByVal long1 As String, ByVal lat1 As String, ByVal long2 As String, ByVal lat2 As String) As Double
long1 = Double.Parse(long1)
lat1 = Double.Parse(lat1)
long2 = Double.Parse(long2)
lat2 = Double.Parse(lat2)
'conversion to radian
lat1 = (lat1 * 2.0 * Math.PI) / 60.0 / 360.0
long1 = (long1 * 2.0 * Math.PI) / 60.0 / 360.0
lat2 = (lat2 * 2.0 * Math.PI) / 60.0 / 360.0
long2 = (long2 * 2.0 * Math.PI) / 60.0 / 360.0
' use to different earth axis length
Dim a As Double = 6378137.0 ' Earth Major Axis (WGS84)
Dim b As Double = 6356752.3142 ' Minor Axis
Dim f As Double = (a - b) / a ' "Flattening"
Dim e As Double = 2.0 * f - f * f ' "Eccentricity"
Dim beta As Double = (a / Math.Sqrt(1.0 - e * Math.Sin(lat1) * Math.Sin(lat1)))
Dim cos As Double = Math.Cos(lat1)
Dim x As Double = beta * cos * Math.Cos(long1)
Dim y As Double = beta * cos * Math.Sin(long1)
Dim z As Double = beta * (1 - e) * Math.Sin(lat1)
beta = (a / Math.Sqrt(1.0 - e * Math.Sin(lat2) * Math.Sin(lat2)))
cos = Math.Cos(lat2)
x -= (beta * cos * Math.Cos(long2))
y -= (beta * cos * Math.Sin(long2))
z -= (beta * (1 - e) * Math.Sin(lat2))
Return Math.Sqrt((x * x) + (y * y) + (z * z))
End Function
Edit
The converted function in javascript
function calculateDistance(lat1, long1, lat2, long2)
{
//radians
lat1 = (lat1 * 2.0 * Math.PI) / 60.0 / 360.0;
long1 = (long1 * 2.0 * Math.PI) / 60.0 / 360.0;
lat2 = (lat2 * 2.0 * Math.PI) / 60.0 / 360.0;
long2 = (long2 * 2.0 * Math.PI) / 60.0 / 360.0;
// use to different earth axis length
var a = 6378137.0; // Earth Major Axis (WGS84)
var b = 6356752.3142; // Minor Axis
var f = (a-b) / a; // "Flattening"
var e = 2.0*f - f*f; // "Eccentricity"
var beta = (a / Math.sqrt( 1.0 - e * Math.sin( lat1 ) * Math.sin( lat1 )));
var cos = Math.cos( lat1 );
var x = beta * cos * Math.cos( long1 );
var y = beta * cos * Math.sin( long1 );
var z = beta * ( 1 - e ) * Math.sin( lat1 );
beta = ( a / Math.sqrt( 1.0 - e * Math.sin( lat2 ) * Math.sin( lat2 )));
cos = Math.cos( lat2 );
x -= (beta * cos * Math.cos( long2 ));
y -= (beta * cos * Math.sin( long2 ));
z -= (beta * (1 - e) * Math.sin( lat2 ));
return (Math.sqrt( (x*x) + (y*y) + (z*z) )/1000);
}
I have written the function to find distance between two coordinates. It will return distance in meter.
function findDistance() {
var R = 6371e3; // R is earth’s radius
var lat1 = 23.18489670753479; // starting point lat
var lat2 = 32.726601; // ending point lat
var lon1 = 72.62524545192719; // starting point lon
var lon2 = 74.857025; // ending point lon
var lat1radians = toRadians(lat1);
var lat2radians = toRadians(lat2);
var latRadians = toRadians(lat2-lat1);
var lonRadians = toRadians(lon2-lon1);
var a = Math.sin(latRadians/2) * Math.sin(latRadians/2) +
Math.cos(lat1radians) * Math.cos(lat2radians) *
Math.sin(lonRadians/2) * Math.sin(lonRadians/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
console.log(d)
}
function toRadians(val){
var PI = 3.1415926535;
return val / 180.0 * PI;
}
Visit this address.
https://www.movable-type.co.uk/scripts/latlong.html
You can use this code:
JavaScript:
const R = 6371e3; // metres
const φ1 = lat1 * Math.PI/180; // φ, λ in radians
const φ2 = lat2 * Math.PI/180;
const Δφ = (lat2-lat1) * Math.PI/180;
const Δλ = (lon2-lon1) * Math.PI/180;
const a = Math.sin(Δφ/2) * Math.sin(Δφ/2) +
Math.cos(φ1) * Math.cos(φ2) *
Math.sin(Δλ/2) * Math.sin(Δλ/2);
const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
const d = R * c; // in metres
Great-circle distance - From chord length
Here's an elegant solution applying the strategy design pattern; I hope it's readable enough.
TwoPointsDistanceCalculatorStrategy.js:
module.exports = () =>
class TwoPointsDistanceCalculatorStrategy {
constructor() {}
calculateDistance({ point1Coordinates, point2Coordinates }) {}
};
GreatCircleTwoPointsDistanceCalculatorStrategy.js:
module.exports = ({ TwoPointsDistanceCalculatorStrategy }) =>
class GreatCircleTwoPointsDistanceCalculatorStrategy extends TwoPointsDistanceCalculatorStrategy {
constructor() {
super();
}
/**
* Following the algorithm documented here:
* https://en.wikipedia.org/wiki/Great-circle_distance#Computational_formulas
*
* #param {object} inputs
* #param {array} inputs.point1Coordinates
* #param {array} inputs.point2Coordinates
*
* #returns {decimal} distance in kelometers
*/
calculateDistance({ point1Coordinates, point2Coordinates }) {
const convertDegreesToRadians = require('../convert-degrees-to-radians');
const EARTH_RADIUS = 6371; // in kelometers
const [lat1 = 0, lon1 = 0] = point1Coordinates;
const [lat2 = 0, lon2 = 0] = point2Coordinates;
const radianLat1 = convertDegreesToRadians({ degrees: lat1 });
const radianLon1 = convertDegreesToRadians({ degrees: lon1 });
const radianLat2 = convertDegreesToRadians({ degrees: lat2 });
const radianLon2 = convertDegreesToRadians({ degrees: lon2 });
const centralAngle = _computeCentralAngle({
lat1: radianLat1, lon1: radianLon1,
lat2: radianLat2, lon2: radianLon2,
});
const distance = EARTH_RADIUS * centralAngle;
return distance;
}
};
/**
*
* #param {object} inputs
* #param {decimal} inputs.lat1
* #param {decimal} inputs.lon1
* #param {decimal} inputs.lat2
* #param {decimal} inputs.lon2
*
* #returns {decimal} centralAngle
*/
function _computeCentralAngle({ lat1, lon1, lat2, lon2 }) {
const chordLength = _computeChordLength({ lat1, lon1, lat2, lon2 });
const centralAngle = 2 * Math.asin(chordLength / 2);
return centralAngle;
}
/**
*
* #param {object} inputs
* #param {decimal} inputs.lat1
* #param {decimal} inputs.lon1
* #param {decimal} inputs.lat2
* #param {decimal} inputs.lon2
*
* #returns {decimal} chordLength
*/
function _computeChordLength({ lat1, lon1, lat2, lon2 }) {
const { sin, cos, pow, sqrt } = Math;
const ΔX = cos(lat2) * cos(lon2) - cos(lat1) * cos(lon1);
const ΔY = cos(lat2) * sin(lon2) - cos(lat1) * sin(lon1);
const ΔZ = sin(lat2) - sin(lat1);
const ΔXSquare = pow(ΔX, 2);
const ΔYSquare = pow(ΔY, 2);
const ΔZSquare = pow(ΔZ, 2);
const chordLength = sqrt(ΔXSquare + ΔYSquare + ΔZSquare);
return chordLength;
}
convert-degrees-to-radians.js:
module.exports = function convertDegreesToRadians({ degrees }) {
return degrees * Math.PI / 180;
};
This's following the Great-circle distance - From chord length, documented here.
You could use a module too:
Install:
$ npm install geolib
Usage:
import { getDistance } from 'geolib'
const distance = getDistance(
{ latitude: 51.5103, longitude: 7.49347 },
{ latitude: "51° 31' N", longitude: "7° 28' E" }
)
console.log(distance)
Documentation: https://www.npmjs.com/package/geolib
The answer from google
https://cloud.google.com/blog/products/maps-platform/how-calculate-distances-map-maps-javascript-api
And the check from three part.
https://www.distancefromto.net/
static distance({ x: x1, y: y1 }, { x: x2, y: y2 }) {
function toRadians(value) {
return value * Math.PI / 180
}
var R = 6371.0710
var rlat1 = toRadians(x1) // Convert degrees to radians
var rlat2 = toRadians(x2) // Convert degrees to radians
var difflat = rlat2 - rlat1 // Radian difference (latitudes)
var difflon = toRadians(y2 - y1) // Radian difference (longitudes)
return 2 * R * Math.asin(Math.sqrt(Math.sin(difflat / 2) * Math.sin(difflat / 2) + Math.cos(rlat1) * Math.cos(rlat2) * Math.sin(difflon / 2) * Math.sin(difflon / 2)))
}
As said before, your function is calculating a straight line distance to the destination point. If you want the driving distance/route, you can use Google Maps Distance Matrix Service:
getDrivingDistanceBetweenTwoLatLong(origin, destination) {
return new Observable(subscriber => {
let service = new google.maps.DistanceMatrixService();
service.getDistanceMatrix(
{
origins: [new google.maps.LatLng(origin.lat, origin.long)],
destinations: [new google.maps.LatLng(destination.lat, destination.long)],
travelMode: 'DRIVING'
}, (response, status) => {
if (status !== google.maps.DistanceMatrixStatus.OK) {
console.log('Error:', status);
subscriber.error({error: status, status: status});
} else {
console.log(response);
try {
let valueInMeters = response.rows[0].elements[0].distance.value;
let valueInKms = valueInMeters / 1000;
subscriber.next(valueInKms);
subscriber.complete();
}
catch(error) {
subscriber.error({error: error, status: status});
}
}
});
});
}
I try to make the code a little bit understandable by naming the variables,
I hope this can help
function getDistanceFromLatLonInKm(point1, point2) {
const [lat1, lon1] = point1;
const [lat2, lon2] = point2;
const earthRadius = 6371;
const dLat = convertDegToRad(lat2 - lat1);
const dLon = convertDegToRad(lon2 - lon1);
const squarehalfChordLength =
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(convertDegToRad(lat1)) * Math.cos(convertDegToRad(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
const angularDistance = 2 * Math.atan2(Math.sqrt(squarehalfChordLength), Math.sqrt(1 - squarehalfChordLength));
const distance = earthRadius * angularDistance;
return distance;
}
Can someone help me fill in the blanks with native JavaScript?
function getHeading(lat1, lon1, lat2, lon2) {
// Do cool things with math here
return heading; // Should be a number between 0 and 360
}
I've been messing around with this for a long time and can't seem to get my code to work right.
There is a very good JavaScript implementation by Chris Veness at Calculate distance, bearing and more between Latitude/Longitude points under the Bearings heading.
You may prefer augmenting Google's LatLng prototype with a getHeading method, as follows (using the v3 API):
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
Number.prototype.toDeg = function() {
return this * 180 / Math.PI;
}
google.maps.LatLng.prototype.getHeading = function(point) {
var lat1 = this.lat().toRad(), lat2 = point.lat().toRad();
var dLon = (point.lng() - this.lng()).toRad();
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1) * Math.sin(lat2) -
Math.sin(lat1) * Math.cos(lat2) * Math.cos(dLon);
var brng = Math.atan2(y, x);
return ((brng.toDeg() + 360) % 360);
}
Which then can be used like this:
var pointA = new google.maps.LatLng(40.70, -74.00);
var pointB = new google.maps.LatLng(40.70, -75.00);
pointA.getHeading(pointB); // Returns 270 degrees
Otherwise if you prefer a global function instead of augmenting Google's LatLng, you can do it as follows:
function getHeading(lat1, lon1, lat2, lon2) {
var lat1 = lat1 * Math.PI / 180;
var lat2 = lat2 * Math.PI / 180;
var dLon = (lon2 - lon1) * Math.PI / 180;
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1) * Math.sin(lat2) -
Math.sin(lat1) * Math.cos(lat2) * Math.cos(dLon);
var brng = Math.atan2(y, x);
return (((brng * 180 / Math.PI) + 360) % 360);
}
Usage:
getHeading(40.70, -74.00, 40.70, -75.00); // Returns 270 degrees