I am getting confused over which way I should be creating an object in javascript. It seems there are at least two ways. One is to use object literal notation while the other uses construction functions. Is there an advantage of one over the other?
If you don't have behaviour associated with an object (i.e. if the object is just a container for data/state), I would use an object literal.
var data = {
foo: 42,
bar: 43
};
Apply the KISS principle. If you don't need anything beyond a simple container of data, go with a simple literal.
If you want to add behaviour to your object, you can go with a constructor and add methods to the object during construction or give your class a prototype.
function MyData(foo, bar) {
this.foo = foo;
this.bar = bar;
this.verify = function () {
return this.foo === this.bar;
};
}
// or:
MyData.prototype.verify = function () {
return this.foo === this.bar;
};
A class like this also acts like a schema for your data object: You now have some sort of contract (through the constructor) what properties the object initializes/contains. A free literal is just an amorphous blob of data.
You might as well have an external verify function that acts on a plain old data object:
var data = {
foo: 42,
bar: 43
};
function verify(data) {
return data.foo === data.bar;
}
However, this is not favorable with regards to encapsulation: Ideally, all the data + behaviour associated with an entity should live together.
It essentially boils down to if you need multiple instances of your object or not; object defined with a constructor lets you have multiple instances of that object. Object literals are basically singletons with variables/methods that are all public.
// define the objects:
var objLit = {
x: 0,
y: 0,
z: 0,
add: function () {
return this.x + this.y + this.z;
}
};
var ObjCon = function(_x, _y, _z) {
var x = _x; // private
var y = _y; // private
this.z = _z; // public
this.add = function () {
return x + y + this.z; // note x, y doesn't need this.
};
};
// use the objects:
objLit.x = 3;
objLit.y = 2;
objLit.z = 1;
console.log(objLit.add());
var objConIntance = new ObjCon(5,4,3); // instantiate an objCon
console.log(objConIntance.add());
console.log((new ObjCon(7,8,9)).add()); // another instance of objCon
console.log(objConIntance.add()); // same result, not affected by previous line
Another way to create objects in a uniform way is to use a function that returns an object:
function makeObject() {
var that = {
thisIsPublic: "a public variable"
thisIsAlsoPublic: function () {
alert(that.thisIsPublic);
}
};
var secret = "this is a private variable"
function secretFunction() { // private method
secret += "!"; // can manipulate private variables
that.thisIsPublic = "foo";
}
that.publicMethod = function () {
secret += "?"; // this method can also mess with private variables
}
that.anotherPublicVariable = "baz";
return that; // this is the object we've constructed
}
makeObject.static = "This can be used to add a static varaible/method";
var bar = makeObject();
bar.publicMethod(); // ok
alert(bar.thisIsPublic); // ok
bar.secretFunction(); // error!
bar.secret // error!
Since functions in JavaScript are closures we can use private variables and methods and avoid new.
From http://javascript.crockford.com/private.html on private variables in JavaScript.
The code below shows three methods of creating an object, Object Literal syntax, a Function Constructor and Object.create(). Object literal syntax simply creates and object on the fly and as such its __prototype__ is the Object object and it will have access to all the properties and methods of Object. Strictly from a design pattern perspective a simple Object literal should be used to store a single instance of data.
The function constructor has a special property named .prototype. This property will become the __prototype__ of any objects created by the function constructor. All properties and methods added to the .prototype property of a function constructor will be available to all objects it creates. A constructor should be used if you require multiple instances of the data or require behavior from your object. Note the function constructor is also best used when you want to simulate a private/public development pattern. Remember to put all shared methods on the .prototype so they wont be created in each object instance.
Creating objects with Object.create() utilizes an object literal as a __prototype__ for the objects created by this method. All properties and methods added to the object literal will be available to all objects created from it through true prototypal inheritance. This is my preferred method.
//Object Example
//Simple Object Literal
var mySimpleObj = {
prop1 : "value",
prop2 : "value"
}
// Function Constructor
function PersonObjConstr() {
var privateProp = "this is private";
this.firstname = "John";
this.lastname = "Doe";
}
PersonObjConstr.prototype.greetFullName = function() {
return "PersonObjConstr says: Hello " + this.firstname +
" " + this.lastname;
};
// Object Literal
var personObjLit = {
firstname : "John",
lastname: "Doe",
greetFullName : function() {
return "personObjLit says: Hello " + this.firstname +
", " + this.lastname;
}
}
var newVar = mySimpleObj.prop1;
var newName = new PersonObjConstr();
var newName2 = Object.create(personObjLit);
It depends on what you want to do. If you want to use (semi-)private variables or functions in you object, a constructor function is the way to do it. If your object only contains properties and methods, an object literal is fine.
function SomeConstructor(){
var x = 5;
this.multiply5 = function(i){
return x*i;
}
}
var myObj = new SomeConstructor;
var SomeLiteral = {
multiply5: function(i){ return i*5; }
}
Now the method multiply5 in myObj and SomeLiteral do exactly the same thing. The only difference is that myObj uses a private variable. The latter may be usefull in some cases. Most of the times an Object literal is sufficient and a nice and clean way to create a JS-object.
Do you want single instance of the object for the page -- Literal.
Do you want to just transfer data like DTO objects simple GET SET :- Literal
Do you want to create real objects with method behaviors , multiple instances - Constructor function , Follow OOP principles , inheritance :- Constructor functions.
Below is the youtube video which explains in detail what is literal , what are constructor functions and how they differ from each other.
https://www.youtube.com/watch?v=dVoAq2D3n44
As mentioned in https://www.w3schools.com/js/js_object_definition.asp
Using an object literal, you both define and create , one object in one
statement.
Also
Object literal only create a single object. Sometimes we like to have
an object type that can be used to create many objects of one type.
Go with object literal, it's more consise and expands better with the introduction of initial values.
The Object() constructor function is a bit slower and more verbose. As
such, the recommended way to create new objects in JavaScript is to
use literal notation
Udacity Object-Oriented JavaScript
Actually, methinks, we can have private methods in object literals. Consider code below:
var myObject = {
publicMethod: function () {
privateMethod1();
privateMethod2();
function privateMethod1(){
console.log('i am privateMethod1');
}
function privateMethod2(){
console.log('i am privateMethod2');
}
}
}
Matter of taste, but I prefer to use object literals where it is possible.
Here is a benchmark that shows the access time for accessing properties on literals, constructors and classes. It might take a while but it shows almost every way to access properties. To me this benchmark shows literal properties access time overall are slightly slower than class and constructor properties access time. The worst performing times are from getters and setters on an object literal. Unlike getters and setters on classes and constructors which seem to be even faster than most other access times.
Benchmark: https://www.measurethat.net/Benchmarks/Show/12245/0/the-grand-dictionary-property-accessor-schema
// Object Literal and Object constructor
function MyData(foo, bar) {
this.foo = foo;
this.bar = bar;
}
MyData.prototype.verify = function () {
return this.foo === this.bar;
};
//add property using prototype
var MD = new MyData;//true.
var MD = new MyData();//true.
MD.verify// return only the function structure.
MD.verify(); //return the verify value and in this case return true coz both value is null.
var MD1 = new MyData(1,2); // intialized the value at the starting.
MD1.verify// return only the function structure.
MD1.verify(); // return false coz both value are not same.
MD1.verify(3,3);// return false coz this will not check this value intialized at the top
MyData.prototype.verify = function (foo,bar) {
return this.foo === this.bar;
};
var MD1 = new MyData(1,2);
MD1.verify();
MD1.verify(3,3);// return false coz this keyword used with foo and bar that will check parent data
Related
So far I saw three ways for creating an object in JavaScript. Which way is best for creating an object and why?
I also saw that in all of these examples the keyword var is not used before a property — why? Is it not necessary to declare var before the name of a property as it mentioned that properties are variables?
In the second and third way, the name of the object is in upper-case whereas in the first way the name of the object is in lower-case. What case should we use for an object name?
First way:
function person(fname, lname, age, eyecolor){
this.firstname = fname;
this.lastname = lname;
this.age = age;
this.eyecolor = eyecolor;
}
myFather = new person("John", "Doe", 50, "blue");
document.write(myFather.firstname + " is " + myFather.age + " years old.");
Second way:
var Robot = {
metal: "Titanium",
killAllHumans: function(){
alert("Exterminate!");
}
};
Robot.killAllHumans();
Third way — JavaScript objects using array syntax:
var NewObject = {};
NewObject['property1'] = value;
NewObject['property2'] = value;
NewObject['method'] = function(){ /* function code here */ }
There is no best way, it depends on your use case.
Use way 1 if you want to create several similar objects. In your example, Person (you should start the name with a capital letter) is called the constructor function. This is similar to classes in other OO languages.
Use way 2 if you only need one object of a kind (like a singleton). If you want this object to inherit from another one, then you have to use a constructor function though.
Use way 3 if you want to initialize properties of the object depending on other properties of it or if you have dynamic property names.
Update: As requested examples for the third way.
Dependent properties:
The following does not work as this does not refer to book. There is no way to initialize a property with values of other properties in a object literal:
var book = {
price: somePrice * discount,
pages: 500,
pricePerPage: this.price / this.pages
};
instead, you could do:
var book = {
price: somePrice * discount,
pages: 500
};
book.pricePerPage = book.price / book.pages;
// or book['pricePerPage'] = book.price / book.pages;
Dynamic property names:
If the property name is stored in some variable or created through some expression, then you have to use bracket notation:
var name = 'propertyName';
// the property will be `name`, not `propertyName`
var obj = {
name: 42
};
// same here
obj.name = 42;
// this works, it will set `propertyName`
obj[name] = 42;
There is various way to define a function. It is totally based upon your requirement. Below are the few styles :-
Object Constructor
Literal constructor
Function Based
Protoype Based
Function and Prototype Based
Singleton Based
Examples:
Object constructor
var person = new Object();
person.name = "Anand",
person.getName = function(){
return this.name ;
};
Literal constructor
var person = {
name : "Anand",
getName : function (){
return this.name
}
}
function Constructor
function Person(name){
this.name = name
this.getName = function(){
return this.name
}
}
Prototype
function Person(){};
Person.prototype.name = "Anand";
Function/Prototype combination
function Person(name){
this.name = name;
}
Person.prototype.getName = function(){
return this.name
}
Singleton
var person = new function(){
this.name = "Anand"
}
You can try it on console, if you have any confusion.
There is no "best way" to create an object. Each way has benefits depending on your use case.
The constructor pattern (a function paired with the new operator to invoke it) provides the possibility of using prototypal inheritance, whereas the other ways don't. So if you want prototypal inheritance, then a constructor function is a fine way to go.
However, if you want prototypal inheritance, you may as well use Object.create, which makes the inheritance more obvious.
Creating an object literal (ex: var obj = {foo: "bar"};) works great if you happen to have all the properties you wish to set on hand at creation time.
For setting properties later, the NewObject.property1 syntax is generally preferable to NewObject['property1'] if you know the property name. But the latter is useful when you don't actually have the property's name ahead of time (ex: NewObject[someStringVar]).
Hope this helps!
I guess it depends on what you want. For simple objects, I guess you could use the second methods. When your objects grow larger and you're planning on using similar objects, I guess the first method would be better. That way you can also extend it using prototypes.
Example:
function Circle(radius) {
this.radius = radius;
}
Circle.prototype.getCircumference = function() {
return Math.PI * 2 * this.radius;
};
Circle.prototype.getArea = function() {
return Math.PI * this.radius * this.radius;
}
I am not a big fan of the third method, but it's really useful for dynamically editing properties, for example var foo='bar'; var bar = someObject[foo];.
There are a many ways to create your objects in JavaScript.
Using a constructer function to create an object or object literal notation is using alot in JavaScript. Also creating an instance of Object and then adding properties and methods to it, there are three common ways to do create objects in JavaScript.
Constructer functions
There are built-in constructer functions that we all may use them time to time, like Date(), Number(), Boolean() etc, all constructer functions start with Capital letter, in the meantime we can create custom constructor function in JavaScript like this:
function Box (Width, Height, fill) {
this.width = Width; // The width of the box
this.height = Height; // The height of the box
this.fill = true; // Is it filled or not?
}
and you can invoke it, simply using new(), to create a new instance of the constructor, create something like below and call the constructor function with filled parameters:
var newBox = new Box(8, 12, true);
Object literals
Using object literals are very used case creating object in JavaScript, this an example of creating a simple object, you can assign anything to your object properties as long as they are defined:
var person = {
name: "Alireza",
surname: "Dezfoolian"
nose: 1,
feet: 2,
hands: 2,
cash: null
};
Prototyping
After creating an Object, you can prototype more members to that, for example adding colour to our Box, we can do this:
Box.prototype.colour = 'red';
While many people here say there is no best way for object creation, there is a rationale as to why there are so many ways to create objects in JavaScript, as of 2019, and this has to do with the progress of JavaScript over the different iterations of EcmaScript releases dating back to 1997.
Prior to ECMAScript 5, there were only two ways of creating objects: the constructor function or the literal notation ( a better alternative to new Object()). With the constructor function notation you create an object that can be instantiated into multiple instances (with the new keyword), while the literal notation delivers a single object, like a singleton.
// constructor function
function Person() {};
// literal notation
var Person = {};
Regardless of the method you use, JavaScript objects are simply properties of key value pairs:
// Method 1: dot notation
obj.firstName = 'Bob';
// Method 2: bracket notation. With bracket notation, you can use invalid characters for a javascript identifier.
obj['lastName'] = 'Smith';
// Method 3: Object.defineProperty
Object.defineProperty(obj, 'firstName', {
value: 'Bob',
writable: true,
configurable: true,
enumerable: false
})
// Method 4: Object.defineProperties
Object.defineProperties(obj, {
firstName: {
value: 'Bob',
writable: true
},
lastName: {
value: 'Smith',
writable: false
}
});
In early versions of JavaScript, the only real way to mimic class-based inheritance was to use constructor functions. the constructor function is a special function that is invoked with the 'new' keyword. By convention, the function identifier is capitalized, albiet it is not required. Inside of the constructor, we refer to the 'this' keyword to add properties to the object that the constructor function is implicitly creating. The constructor function implicitly returns the new object with the populated properties back to the calling function implicitly, unless you explicitly use the return keyword and return something else.
function Person(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
this.sayName = function(){
return "My name is " + this.firstName + " " + this.lastName;
}
}
var bob = new Person("Bob", "Smith");
bob instanceOf Person // true
There is a problem with the sayName method. Typically, in Object-Oriented Class-based programming languages, you use classes as factories to create objects. Each object will have its own instance variables, but it will have a pointer to the methods defined in the class blueprint. Unfortunately, when using JavaScript's constructor function, every time it is called, it will define a new sayName property on the newly created object. So each object will have its own unique sayName property. This will consume more memory resources.
In addition to increased memory resources, defining methods inside of the constructor function eliminates the possibility of inheritance. Again, the method will be defined as a property on the newly created object and no other object, so inheritance cannot work like. Hence, JavaScript provides the prototype chain as a form of inheritance, making JavaScript a prototypal language.
If you have a parent and a parent shares many properties of a child, then the child should inherit those properties. Prior to ES5, it was accomplished as follows:
function Parent(eyeColor, hairColor) {
this.eyeColor = eyeColor;
this.hairColor = hairColor;
}
Parent.prototype.getEyeColor = function() {
console.log('has ' + this.eyeColor);
}
Parent.prototype.getHairColor = function() {
console.log('has ' + this.hairColor);
}
function Child(firstName, lastName) {
Parent.call(this, arguments[2], arguments[3]);
this.firstName = firstName;
this.lastName = lastName;
}
Child.prototype = Parent.prototype;
var child = new Child('Bob', 'Smith', 'blue', 'blonde');
child.getEyeColor(); // has blue eyes
child.getHairColor(); // has blonde hair
The way we utilized the prototype chain above has a quirk. Since the prototype is a live link, by changing the property of one object in the prototype chain, you'd be changing same property of another object as well. Obviously, changing a child's inherited method should not change the parent's method. Object.create resolved this issue by using a polyfill. Thus, with Object.create, you can safely modify a child's property in the prototype chain without affecting the parent's same property in the prototype chain.
ECMAScript 5 introduced Object.create to solve the aforementioned bug in the constructor function for object creation. The Object.create() method CREATES a new object, using an existing object as the prototype of the newly created object. Since a new object is created, you no longer have the issue where modifying the child property in the prototype chain will modify the parent's reference to that property in the chain.
var bobSmith = {
firstName: "Bob",
lastName: "Smith",
sayName: function(){
return "My name is " + this.firstName + " " + this.lastName;
}
}
var janeSmith = Object.create(bobSmith, {
firstName : { value: "Jane" }
})
console.log(bobSmith.sayName()); // My name is Bob Smith
console.log(janeSmith.sayName()); // My name is Jane Smith
janeSmith.__proto__ == bobSmith; // true
janeSmith instanceof bobSmith; // Uncaught TypeError: Right-hand side of 'instanceof' is not callable. Error occurs because bobSmith is not a constructor function.
Prior to ES6, here was a common creational pattern to utilize function constructors and Object.create:
const View = function(element){
this.element = element;
}
View.prototype = {
getElement: function(){
this.element
}
}
const SubView = function(element){
View.call(this, element);
}
SubView.prototype = Object.create(View.prototype);
Now Object.create coupled with constructor functions have been widely used for object creation and inheritance in JavaScript. However, ES6 introduced the concept of classes, which are primarily syntactical sugar over JavaScript's existing prototype-based inheritance. The class syntax does not introduce a new object-oriented inheritance model to JavaScript. Thus, JavaScript remains a prototypal language.
ES6 classes make inheritance much easier. We no longer have to manually copy the parent class's prototype functions and reset the child class's constructor.
// create parent class
class Person {
constructor (name) {
this.name = name;
}
}
// create child class and extend our parent class
class Boy extends Person {
constructor (name, color) {
// invoke our parent constructor function passing in any required parameters
super(name);
this.favoriteColor = color;
}
}
const boy = new Boy('bob', 'blue')
boy.favoriteColor; // blue
All in all, these 5 different strategies of Object Creation in JavaScript coincided the evolution of the EcmaScript standard.
Of course there is a best way.Objects in javascript have enumerable and nonenumerable properties.
var empty = {};
console.log(empty.toString);
// . function toString(){...}
console.log(empty.toString());
// . [object Object]
In the example above you can see that an empty object actually has properties.
Ok first let's see which is the best way:
var new_object = Object.create(null)
new_object.name = 'Roland'
new_object.last_name = 'Doda'
//etc
console.log("toString" in new_object) //=> false
In the example above the log will output false.
Now let's see why the other object creation ways are incorrect.
//Object constructor
var object = new Object();
console.log("toString" in object); //=> true
//Literal constructor
var person = {
name : "Anand",
getName : function (){
return this.name
}
}
console.log("toString" in person); //=> true
//function Constructor
function Person(name){
this.name = name
this.getName = function(){
return this.name
}
}
var person = new Person ('landi')
console.log("toString" in person); //=> true
//Prototype
function Person(){};
Person.prototype.name = "Anand";
console.log("toString" in person); //=> true
//Function/Prototype combination
function Person2(name){
this.name = name;
}
Person2.prototype.getName = function(){
return this.name
}
var person2 = new Person2('Roland')
console.log("toString" in person2) //=> true
As you can see above,all examples log true.Which means if you have a case that you have a for in loop to see if the object has a property will lead you to wrong results probably.
Note that the best way it is not easy.You have to define all properties of object line by line.The other ways are more easier and will have less code to create an object but you have to be aware in some cases.
I always use the "other ways" by the way and one solution to above warning if you don't use the best way is:
for (var property in new_object) {
if (new_object.hasOwnProperty(property)) {
// ... this is an own property
}
}
Majorly there are 3 ways of creating Objects-
Simplest one is using object literals.
const myObject = {}
Though this method is the simplest but has a disadvantage i.e if your object has behaviour(functions in it),then in future if you want to make any changes to it you would have to change it in all the objects.
So in that case it is better to use Factory or Constructor Functions.(anyone that you like)
Factory Functions are those functions that return an object.e.g-
function factoryFunc(exampleValue){
return{
exampleProperty: exampleValue
}
}
Constructor Functions are those functions that assign properties to objects using "this" keyword.e.g-
function constructorFunc(exampleValue){
this.exampleProperty= exampleValue;
}
const myObj= new constructorFunc(1);
How do I add properties to a constructor function in JavaScript? For example. If I have the following function.
function Hotel(name)
{
this.name = name;
};
var hotel1 = new Hotel('Park');
can I add a "local" variable that can be used locally within the class as if it were private with the same notation using the keyword "this". Of course it would not be private since objects created will be able to use it correct?
Can I do something like this. Do I use the this keyword or do I use the var keyword
which one is it? I have example 2 on the function constructor on the bottom
1. var numRooms = 40;
2. this.numRooms = 40;
3. numRooms : 40,
function Hotel(name)
{
this.name = name;
this.numRooms = 40;
};
I know that if I want a function within the object constructor I need to use the this word. Will that work as well for normal variables as I have asked above.
function Hotel(name)
{
this.name = name;
this.numRooms = 40;
this.addNumRoomsPlusFive = function()
{
return this.numRooms + 5;
}
};
You can simple add a private variable to your constructor:
function Hotel(name) {
var private = 'private';
this.name = name;
};
But if you will use your Hotel function without a new operator, all properties and functions which was attached to this will become global.
function Hotel(name) {
var private = 'private';
this.name = name;
};
var hotel = Hotel('test');
console.log(name); // test
It is good idea to return an object in constructor function:
function Hotel(name) {
var
private_var = 'private',
private_func = function() {
// your code
};
retur {
name: 'name',
public_func: private_func
}
};
var hotel = Hotel('test');
console.log(name); // undefined
So if you will use Hotel constructor without new operator no global variable will be created. This is possible only if the return value is an object. Otherwise, if you try to return anything that is not an object, the constructor will proceed with its usual behaviour and return this.
can I add a "local" variable that can be used locally within the class as if it were private with the same notation using the keyword "this".
Yes we can:
// API implementation in the library
function Hotel(name) {
// only our library code knows about the actual value
const numRooms = 'privateNoRoomsVar';
this.name = name;
this[numRooms] = 40;
this.addNumRoomsPlusFive = function() {
return this[numRooms] + 5;
}
};
// from the library user's perspective
const hotel = new Hotel('Transylvania');
console.log('rooms+5 =', hotel.addNumRoomsPlusFive());
console.log('hotel.numRooms =', hotel.numRooms); // undefined
// also, users don't have access to 'numRooms' variable so they can't use hotel[numRooms].
If a user looks at the source code and finds out the value privateNoRoomsVar, then they can misuse the API.
For that we need to use symobls:
// API implementation in the library
function Hotel(name) {
// no one can duplicate a symbol so the variable is really private
const numRooms = Symbol();
this.name = name;
this[numRooms] = 40;
this.addNumRoomsPlusFive = function() {
return this[numRooms] + 5;
}
};
// from the library user's perspective
const hotel = new Hotel('Transylvania');
console.log('rooms+5 =', hotel.addNumRoomsPlusFive());
console.log('hotel.numRooms =', hotel.numRooms); // undefined
// there is no way users will get access to the symbol object so the variable remains private.
Private class features, #privateField, are supported by all the browsers so we don’t have to worry about this anymore.
// API implementation in the library
class Hotel {
// private field
#numRooms = 40;
constructor(name) {
this.name = name;
}
addNumRoomsPlusFive() {
return this.#numRooms + 5;
}
};
// from the library user's perspective
const hotel = new Hotel('Transylvania');
console.log('rooms+5 =', hotel.addNumRoomsPlusFive());
console.log('hotel.numRooms =', hotel.numRooms); // undefined
//console.log('hotel.numRooms =', hotel.#numRooms); // throws error
Javascript historically creates objects from prototypes of other objects. It was a result of EMCA2015, that you have a distinct syntax of a class that specifies an object. As an aside, if you mouse over the table in that link it gives dates of when the feature was implemented.
A javascript object created by the new operator is more or less a combination of an associative array ( what you make with let avar={}; ) that can access the function level scopes it is defined in. The keys of the array are its properties. According to its creator, Javascript was created to be an easy to use program language without a hierarchy of types. One of the ways it accomplished this is by more or less considering its mapping type to be equivalent to the prototypical Object which object oriented programming languages describe.
Adding properties in 2022
function AProtoype(arg1, arg2, arg3){
//this defines a property
this.pa=arg1;
/* unicorns in this section */
let x = 1;
/*
a getter which has the same syntax as a property
but returns x from the scope which it references and
not the object.
*/
get getx() => x;
}
let object = new AProtoype(2,3,4);
Is equivalent to the following code for the purposes of data access but not inheritance and typing. The new operator also sets variables on an object that are used for these purposes.
function NewObject(arg1, arg2, arg3){
let prototype = {};
/*dragons in this section, as you are not using the this keyword to accomplish things*/
prototype.pa = arg1;
Object.defineProperty(prototype, "getx", {get:()=>x});
return prototype;
}
//If you do this instead of using the new operator it is an anti-pattern.
//And like all anti-patterns: "But it works!"
let object = NewObject(2,3,4);
The relevant property defining methods where in some sense supported as early as 2010, 2011. I do not have a contemporary source to that time to confirm if you could pull off what I'm doing though, and you'd only want to if all else failed and it needed to run on Internet Explorer 9. In the event all else is failing, you may want to read the documentation for Object.create, which is also of interest because more or less provides an api to make new objects.
Now, for a fun time and horror, you can also define a function that returns this, and get an object back with an equivalent binding of that function. The horror comes when it is an object in global scope, and you rename a property of that object; as Javascript will resolve the name collision by happily writing on whatever it finds if it can. You can then use this to re-implement the prototype pattern that javascripts new operator is built off of conceptually, for the sake of science.
When you use a "constructor function" in Javascript, any properties defined on the instance using the this keyword become public. This is unavoidable, because Javascript objects have no concept of private properties - if it exists, it can be accessed directly as object.property.
For example, if you tried to do as in the following snippet, mimicking a typical getter/setter pattern with a private variable in Java or C# (note that even if this worked, this is not idiomatic Javascript):
function MyObject(privateVar) {
this.privateVar = privateVar;
}
MyObject.prototype.getVar = function() {
return this.privateVar;
};
MyObject.prototype.setVar = function(newVal) {
this.privateVar = newVal;
};
then while you can indeed use the getter and setter to do as you expect, you can also just access and set the private variable directly! Demonstration:
function MyObject(privateVar) {
this.privateVar = privateVar;
}
MyObject.prototype.getVar = function() {
return this.privateVar;
};
MyObject.prototype.setVar = function(newVal) {
this.privateVar = newVal;
};
var obj = new MyObject(1);
// using public getter/setter
console.log(obj.getVar()); // 1
obj.setVar(2);
console.log(obj.getVar()); // 2
// using private variable directly - not intended to work
console.log(obj.privateVar); // 2
obj.privateVar = 3;
console.log(obj.getVar()); // 3 (using public API to get it to show that the direct update to the private variable also affects the intended public methods)
There is though a way to mimic the effect of private variables. They're not actually object properties - because, as I have just demonstrated, such are intrinsically public - but the same can be mimicked by:
not using a "constructor function" at all, but a regular function that happens to return an object. This is all a constructor function really does, anyway - the difference in JS is only syntactic, that you do not need to use the new keyword when you call the function. (Although you still can, if you really prefer - any function that returns an object can be called with new and behave in the same way as without it, although performance will likely suffer a little as the function would then construct a brand new object and throw it away. See MDN for a justification of these statements, particularly step 4.)
inside this function, using a regular variable as the private variable. This variable will be completely inaccessible from outside by the simple rules of scope, but you can still have the returned object retain access to it by the "magic" of closures.
Here is the above getter/setter example translated to this procedure, as well as demonstrations of it working. (I hasten to add again though, that this wouldn't be considered idiomatic code in Javascript.)
function makeObjectWithPrivateVar(privateVar) {
function getPrivateVar() {
return privateVar;
}
function setPrivateVar(newVal) {
privateVar = newVal;
}
return { getPrivateVar, setPrivateVar };
}
var obj = makeObjectWithPrivateVar(1);
// getter
console.log(obj.getPrivateVar()); // 1
// setter
obj.setPrivateVar(2);
// getter again to observe the change
console.log(obj.getPrivateVar()); // 2
// but how could we access the private var directly??
// answer, we can't
console.log(obj.privateVar); // undefined
console.log(privateVar); // ReferenceError, privateVar is not in scope!
Note finally though that it's rare in modern Javascript to use the function-based constructors in this style, since the class keyword makes it easier to mimic traditional class-based languages like Java if you really want to. And in particular, more recent browsers support private properties directly (you just have to prefix the property name with a #), so the initial code snippet translated into a class and using this feature, will work fine:
class MyObject {
#privateVar
constructor(privateVar) {
this.#privateVar = privateVar;
}
getVar() {
return this.#privateVar;
}
setVar(newVal) {
this.#privateVar = newVal;
}
}
var obj = new MyObject(1);
// using public getter/setter
console.log(obj.getVar()); // 1
obj.setVar(2);
console.log(obj.getVar()); // 2
// using private variable directly - now doesn't work
console.log(obj.privateVar); // undefined, it doesn't exist
// console.log(obj.#privateVar); // error as it's explicitly private, uncomment to see error message
Usually it's performed using closures:
var Hotel = (function() {
var numrooms=40; // some kind of private static variable
return function(name) { // constructor
this.numrooms = numrooms;
this.name = name;
};
}());
var instance = new Hotel("myname");
Javascript 1.9.3 / ECMAScript 5 introduces Object.create, which Douglas Crockford amongst others has been advocating for a long time. How do I replace new in the code below with Object.create?
var UserA = function(nameParam) {
this.id = MY_GLOBAL.nextId();
this.name = nameParam;
}
UserA.prototype.sayHello = function() {
console.log('Hello '+ this.name);
}
var bob = new UserA('bob');
bob.sayHello();
(Assume MY_GLOBAL.nextId exists).
The best I can come up with is:
var userB = {
init: function(nameParam) {
this.id = MY_GLOBAL.nextId();
this.name = nameParam;
},
sayHello: function() {
console.log('Hello '+ this.name);
}
};
var bob = Object.create(userB);
bob.init('Bob');
bob.sayHello();
There doesn't seem to be any advantage, so I think I'm not getting it. I'm probably being too neo-classical. How should I use Object.create to create user 'bob'?
With only one level of inheritance, your example may not let you see the real benefits of Object.create.
This methods allows you to easily implement differential inheritance, where objects can directly inherit from other objects.
On your userB example, I don't think that your init method should be public or even exist, if you call again this method on an existing object instance, the id and name properties will change.
Object.create lets you initialize object properties using its second argument, e.g.:
var userB = {
sayHello: function() {
console.log('Hello '+ this.name);
}
};
var bob = Object.create(userB, {
'id' : {
value: MY_GLOBAL.nextId(),
enumerable:true // writable:false, configurable(deletable):false by default
},
'name': {
value: 'Bob',
enumerable: true
}
});
As you can see, the properties can be initialized on the second argument of Object.create, with an object literal using a syntax similar to the used by the Object.defineProperties and Object.defineProperty methods.
It lets you set the property attributes (enumerable, writable, or configurable), which can be really useful.
There is really no advantage in using Object.create(...) over new object.
Those advocating this method generally state rather ambiguous advantages: "scalability", or "more natural to JavaScript" etc.
However, I have yet to see a concrete example that shows that Object.create has any advantages over using new. On the contrary there are known problems with it. Sam Elsamman describes what happens when there are nested objects and Object.create(...) is used:
var Animal = {
traits: {},
}
var lion = Object.create(Animal);
lion.traits.legs = 4;
var bird = Object.create(Animal);
bird.traits.legs = 2;
alert(lion.traits.legs) // shows 2!!!
This occurs because Object.create(...) advocates a practice where data is used to create new objects; here the Animal datum becomes part of the prototype of lion and bird, and causes problems as it is shared. When using new the prototypal inheritance is explicit:
function Animal() {
this.traits = {};
}
function Lion() { }
Lion.prototype = new Animal();
function Bird() { }
Bird.prototype = new Animal();
var lion = new Lion();
lion.traits.legs = 4;
var bird = new Bird();
bird.traits.legs = 2;
alert(lion.traits.legs) // now shows 4
Regarding, the optional property attributes that are passed into Object.create(...), these can be added using Object.defineProperties(...).
Object.create is not yet standard on several browsers, for example IE8, Opera v11.5, Konq 4.3 do not have it. You can use Douglas Crockford's version of Object.create for those browsers but this doesn't include the second 'initialisation object' parameter used in CMS's answer.
For cross browser code one way to get object initialisation in the meantime is to customise Crockford's Object.create. Here is one method:-
Object.build = function(o) {
var initArgs = Array.prototype.slice.call(arguments,1)
function F() {
if((typeof o.init === 'function') && initArgs.length) {
o.init.apply(this,initArgs)
}
}
F.prototype = o
return new F()
}
This maintains Crockford prototypal inheritance, and also checks for any init method in the object, then runs it with your parameter(s), like say new man('John','Smith'). Your code then becomes:-
MY_GLOBAL = {i: 1, nextId: function(){return this.i++}} // For example
var userB = {
init: function(nameParam) {
this.id = MY_GLOBAL.nextId();
this.name = nameParam;
},
sayHello: function() {
console.log('Hello '+ this.name);
}
};
var bob = Object.build(userB, 'Bob'); // Different from your code
bob.sayHello();
So bob inherits the sayHello method and now has own properties id=1 and name='Bob'. These properties are both writable and enumerable of course. This is also a much simpler way to initialise than for ECMA Object.create especially if you aren't concerned about the writable, enumerable and configurable attributes.
For initialisation without an init method the following Crockford mod could be used:-
Object.gen = function(o) {
var makeArgs = arguments
function F() {
var prop, i=1, arg, val
for(prop in o) {
if(!o.hasOwnProperty(prop)) continue
val = o[prop]
arg = makeArgs[i++]
if(typeof arg === 'undefined') break
this[prop] = arg
}
}
F.prototype = o
return new F()
}
This fills the userB own properties, in the order they are defined, using the Object.gen parameters from left to right after the userB parameter. It uses the for(prop in o) loop so, by ECMA standards, the order of property enumeration cannot be guaranteed the same as the order of property definition. However, several code examples tested on (4) major browsers show they are the same, provided the hasOwnProperty filter is used, and sometimes even if not.
MY_GLOBAL = {i: 1, nextId: function(){return this.i++}}; // For example
var userB = {
name: null,
id: null,
sayHello: function() {
console.log('Hello '+ this.name);
}
}
var bob = Object.gen(userB, 'Bob', MY_GLOBAL.nextId());
Somewhat simpler I would say than Object.build since userB does not need an init method. Also userB is not specifically a constructor but looks like a normal singleton object. So with this method you can construct and initialise from normal plain objects.
TL;DR:
new Computer() will invoke the constructor function Computer(){} for one time, while Object.create(Computer.prototype) won't.
All the advantages are based on this point.
Sidenote about performance: Constructor invoking like new Computer() is heavily optimized by the engine, so it may be even faster than Object.create.
You could make the init method return this, and then chain the calls together, like this:
var userB = {
init: function(nameParam) {
this.id = MY_GLOBAL.nextId();
this.name = nameParam;
return this;
},
sayHello: function() {
console.log('Hello '+ this.name);
}
};
var bob = Object.create(userB).init('Bob');
Another possible usage of Object.create is to clone immutable objects in a cheap and effective way.
var anObj = {
a: "test",
b: "jest"
};
var bObj = Object.create(anObj);
bObj.b = "gone"; // replace an existing (by masking prototype)
bObj.c = "brand"; // add a new to demonstrate it is actually a new obj
// now bObj is {a: test, b: gone, c: brand}
Notes: The above snippet creates a clone of an source object (aka not a reference, as in cObj = aObj). It benefits over the copy-properties method (see 1), in that it does not copy object member properties. Rather it creates another -destination- object with it's prototype set on the source object. Moreover when properties are modified on the dest object, they are created "on the fly", masking the prototype's (src's) properties.This constitutes a fast an effective way of cloning immutable objects.
The caveat here is that this applies to source objects that should not be modified after creation (immutable). If the source object is modified after creation, all the clone's unmasked properties will be modified, too.
Fiddle here(http://jsfiddle.net/y5b5q/1/) (needs Object.create capable browser).
I think the main point in question - is to understand difference between new and Object.create approaches. Accordingly to this answer and to this video new keyword does next things:
Creates new object.
Links new object to constructor function (prototype).
Makes this variable point to the new object.
Executes constructor function using the new object and implicit perform return this;
Assigns constructor function name to new object's property constructor.
Object.create performs only 1st and 2nd steps!!!
In code example provided in question it isn't big deal, but in next example it is:
var onlineUsers = [];
function SiteMember(name) {
this.name = name;
onlineUsers.push(name);
}
SiteMember.prototype.getName = function() {
return this.name;
}
function Guest(name) {
SiteMember.call(this, name);
}
Guest.prototype = new SiteMember();
var g = new Guest('James');
console.log(onlineUsers);
As side effect result will be:
[ undefined, 'James' ]
because of Guest.prototype = new SiteMember();
But we don't need to execute parent constructor method, we need only make method getName to be available in Guest.
Hence we have to use Object.create.
If replace Guest.prototype = new SiteMember();
to Guest.prototype = Object.create(SiteMember.prototype); result be:
[ 'James' ]
Sometimes you cannot create an object with NEW but are still able to invoke the CREATE method.
For example: if you want to define a Custom Element it must derive from HTMLElement.
proto = new HTMLElement //fail :(
proto = Object.create( HTMLElement.prototype ) //OK :)
document.registerElement( "custom-element", { prototype: proto } )
The advantage is that Object.create is typically slower than new on most browsers
In this jsperf example, in a Chromium, browser new is 30 times as fast as Object.create(obj) although both are pretty fast. This is all pretty strange because new does more things (like invoking a constructor) where Object.create should be just creating a new Object with the passed in object as a prototype (secret link in Crockford-speak)
Perhaps the browsers have not caught up in making Object.create more efficient (perhaps they are basing it on new under the covers ... even in native code)
Summary:
Object.create() is a Javascript function which takes 2 arguments and returns a new object.
The first argument is an object which will be the prototype of the newly created object
The second argument is an object which will be the properties of the newly created object
Example:
const proto = {
talk : () => console.log('hi')
}
const props = {
age: {
writable: true,
configurable: true,
value: 26
}
}
let Person = Object.create(proto, props)
console.log(Person.age);
Person.talk();
Practical applications:
The main advantage of creating an object in this manner is that the prototype can be explicitly defined. When using an object literal, or the new keyword you have no control over this (however, you can overwrite them of course).
If we want to have a prototype The new keyword invokes a constructor function. With Object.create() there is no need for invoking or even declaring a constructor function.
It can Basically be a helpful tool when you want create objects in a very dynamic manner. We can make an object factory function which creates objects with different prototypes depending on the arguments received.
You have to make a custom Object.create() function. One that addresses Crockfords concerns and also calls your init function.
This will work:
var userBPrototype = {
init: function(nameParam) {
this.name = nameParam;
},
sayHello: function() {
console.log('Hello '+ this.name);
}
};
function UserB(name) {
function F() {};
F.prototype = userBPrototype;
var f = new F;
f.init(name);
return f;
}
var bob = UserB('bob');
bob.sayHello();
Here UserB is like Object.create, but adjusted for our needs.
If you want, you can also call:
var bob = new UserB('bob');
While Douglas Crockford used to be a zealous advocate of Object.create() and he is basically the reason why this construct actually is in javascript, he no longer has this opinion.
He stopped using Object.create, because he stopped using this keyword altogether as it causes too much trouble. For example, if you are not careful it can easily point to the global object, which can have really bad consequences. And he claims that without using this Object.create does not make sense anymore.
You can check this video from 2014 where he talks at Nordic.js:
https://www.youtube.com/watch?v=PSGEjv3Tqo0
new and Object.create serve different purposes. new is intended to create a new instance of an object type. Object.create is intended to simply create a new object and set its prototype. Why is this useful? To implement inheritance without accessing the __proto__ property. An object instance's prototype referred to as [[Prototype]] is an internal property of the virtual machine and is not intended to be directly accessed. The only reason it is actually possible to directly access [[Prototype]] as the __proto__ property is because it has always been a de-facto standard of every major virtual machine's implementation of ECMAScript, and at this point removing it would break a lot of existing code.
In response to the answer above by 7ochem, objects should absolutely never have their prototype set to the result of a new statement, not only because there's no point calling the same prototype constructor multiple times but also because two instances of the same class can end up with different behavior if one's prototype is modified after being created. Both examples are simply bad code as a result of misunderstanding and breaking the intended behavior of the prototype inheritance chain.
Instead of accessing __proto__, an instance's prototype should be written to when an it is created with Object.create or afterward with Object.setPrototypeOf, and read with Object.getPrototypeOf or Object.isPrototypeOf.
Also, as the Mozilla documentation of Object.setPrototypeOf points out, it is a bad idea to modify the prototype of an object after it is created for performance reasons, in addition to the fact that modifying an object's prototype after it is created can cause undefined behavior if a given piece of code that accesses it can be executed before OR after the prototype is modified, unless that code is very careful to check the current prototype or not access any property that differs between the two.
Given
const X = function (v) { this.v = v };
X.prototype.whatAmI = 'X';
X.prototype.getWhatIAm = () => this.whatAmI;
X.prototype.getV = () => this.v;
the following VM pseudo-code is equivalent to the statement const x0 = new X(1);:
const x0 = {};
x0.[[Prototype]] = X.prototype;
X.prototype.constructor.call(x0, 1);
Note although the constructor can return any value, the new statement always ignores its return value and returns a reference to the newly created object.
And the following pseudo-code is equivalent to the statement const x1 = Object.create(X.prototype);:
const x0 = {};
x0.[[Prototype]] = X.prototype;
As you can see, the only difference between the two is that Object.create does not execute the constructor, which can actually return any value but simply returns the new object reference this if not otherwise specified.
Now, if we wanted to create a subclass Y with the following definition:
const Y = function(u) { this.u = u; }
Y.prototype.whatAmI = 'Y';
Y.prototype.getU = () => this.u;
Then we can make it inherit from X like this by writing to __proto__:
Y.prototype.__proto__ = X.prototype;
While the same thing could be accomplished without ever writing to __proto__ with:
Y.prototype = Object.create(X.prototype);
Y.prototype.constructor = Y;
In the latter case, it is necessary to set the constructor property of the prototype so that the correct constructor is called by the new Y statement, otherwise new Y will call the function X. If the programmer does want new Y to call X, it would be more properly done in Y's constructor with X.call(this, u)
new Operator
This is used to create object from a constructor function
The new keywords also executes the constructor function
function Car() {
console.log(this) // this points to myCar
this.name = "Honda";
}
var myCar = new Car()
console.log(myCar) // Car {name: "Honda", constructor: Object}
console.log(myCar.name) // Honda
console.log(myCar instanceof Car) // true
console.log(myCar.constructor) // function Car() {}
console.log(myCar.constructor === Car) // true
console.log(typeof myCar) // object
Object.create
You can also use Object.create to create a new object
But, it does not execute the constructor function
Object.create is used to create an object from another object
const Car = {
name: "Honda"
}
var myCar = Object.create(Car)
console.log(myCar) // Object {}
console.log(myCar.name) // Honda
console.log(myCar instanceof Car) // ERROR
console.log(myCar.constructor) // Anonymous function object
console.log(myCar.constructor === Car) // false
console.log(typeof myCar) // object
I prefer a closure approach.
I still use new.
I don't use Object.create.
I don't use this.
I still use new as I like the declarative nature of it.
Consider this for simple inheritance.
window.Quad = (function() {
function Quad() {
const wheels = 4;
const drivingWheels = 2;
let motorSize = 0;
function setMotorSize(_) {
motorSize = _;
}
function getMotorSize() {
return motorSize;
}
function getWheelCount() {
return wheels;
}
function getDrivingWheelCount() {
return drivingWheels;
}
return Object.freeze({
getWheelCount,
getDrivingWheelCount,
getMotorSize,
setMotorSize
});
}
return Object.freeze(Quad);
})();
window.Car4wd = (function() {
function Car4wd() {
const quad = new Quad();
const spareWheels = 1;
const extraDrivingWheels = 2;
function getSpareWheelCount() {
return spareWheels;
}
function getDrivingWheelCount() {
return quad.getDrivingWheelCount() + extraDrivingWheels;
}
return Object.freeze(Object.assign({}, quad, {
getSpareWheelCount,
getDrivingWheelCount
}));
}
return Object.freeze(Car4wd);
})();
let myQuad = new Quad();
let myCar = new Car4wd();
console.log(myQuad.getWheelCount()); // 4
console.log(myQuad.getDrivingWheelCount()); // 2
console.log(myCar.getWheelCount()); // 4
console.log(myCar.getDrivingWheelCount()); // 4 - The overridden method is called
console.log(myCar.getSpareWheelCount()); // 1
Feedback encouraged.
So far I saw three ways for creating an object in JavaScript. Which way is best for creating an object and why?
I also saw that in all of these examples the keyword var is not used before a property — why? Is it not necessary to declare var before the name of a property as it mentioned that properties are variables?
In the second and third way, the name of the object is in upper-case whereas in the first way the name of the object is in lower-case. What case should we use for an object name?
First way:
function person(fname, lname, age, eyecolor){
this.firstname = fname;
this.lastname = lname;
this.age = age;
this.eyecolor = eyecolor;
}
myFather = new person("John", "Doe", 50, "blue");
document.write(myFather.firstname + " is " + myFather.age + " years old.");
Second way:
var Robot = {
metal: "Titanium",
killAllHumans: function(){
alert("Exterminate!");
}
};
Robot.killAllHumans();
Third way — JavaScript objects using array syntax:
var NewObject = {};
NewObject['property1'] = value;
NewObject['property2'] = value;
NewObject['method'] = function(){ /* function code here */ }
There is no best way, it depends on your use case.
Use way 1 if you want to create several similar objects. In your example, Person (you should start the name with a capital letter) is called the constructor function. This is similar to classes in other OO languages.
Use way 2 if you only need one object of a kind (like a singleton). If you want this object to inherit from another one, then you have to use a constructor function though.
Use way 3 if you want to initialize properties of the object depending on other properties of it or if you have dynamic property names.
Update: As requested examples for the third way.
Dependent properties:
The following does not work as this does not refer to book. There is no way to initialize a property with values of other properties in a object literal:
var book = {
price: somePrice * discount,
pages: 500,
pricePerPage: this.price / this.pages
};
instead, you could do:
var book = {
price: somePrice * discount,
pages: 500
};
book.pricePerPage = book.price / book.pages;
// or book['pricePerPage'] = book.price / book.pages;
Dynamic property names:
If the property name is stored in some variable or created through some expression, then you have to use bracket notation:
var name = 'propertyName';
// the property will be `name`, not `propertyName`
var obj = {
name: 42
};
// same here
obj.name = 42;
// this works, it will set `propertyName`
obj[name] = 42;
There is various way to define a function. It is totally based upon your requirement. Below are the few styles :-
Object Constructor
Literal constructor
Function Based
Protoype Based
Function and Prototype Based
Singleton Based
Examples:
Object constructor
var person = new Object();
person.name = "Anand",
person.getName = function(){
return this.name ;
};
Literal constructor
var person = {
name : "Anand",
getName : function (){
return this.name
}
}
function Constructor
function Person(name){
this.name = name
this.getName = function(){
return this.name
}
}
Prototype
function Person(){};
Person.prototype.name = "Anand";
Function/Prototype combination
function Person(name){
this.name = name;
}
Person.prototype.getName = function(){
return this.name
}
Singleton
var person = new function(){
this.name = "Anand"
}
You can try it on console, if you have any confusion.
There is no "best way" to create an object. Each way has benefits depending on your use case.
The constructor pattern (a function paired with the new operator to invoke it) provides the possibility of using prototypal inheritance, whereas the other ways don't. So if you want prototypal inheritance, then a constructor function is a fine way to go.
However, if you want prototypal inheritance, you may as well use Object.create, which makes the inheritance more obvious.
Creating an object literal (ex: var obj = {foo: "bar"};) works great if you happen to have all the properties you wish to set on hand at creation time.
For setting properties later, the NewObject.property1 syntax is generally preferable to NewObject['property1'] if you know the property name. But the latter is useful when you don't actually have the property's name ahead of time (ex: NewObject[someStringVar]).
Hope this helps!
I guess it depends on what you want. For simple objects, I guess you could use the second methods. When your objects grow larger and you're planning on using similar objects, I guess the first method would be better. That way you can also extend it using prototypes.
Example:
function Circle(radius) {
this.radius = radius;
}
Circle.prototype.getCircumference = function() {
return Math.PI * 2 * this.radius;
};
Circle.prototype.getArea = function() {
return Math.PI * this.radius * this.radius;
}
I am not a big fan of the third method, but it's really useful for dynamically editing properties, for example var foo='bar'; var bar = someObject[foo];.
There are a many ways to create your objects in JavaScript.
Using a constructer function to create an object or object literal notation is using alot in JavaScript. Also creating an instance of Object and then adding properties and methods to it, there are three common ways to do create objects in JavaScript.
Constructer functions
There are built-in constructer functions that we all may use them time to time, like Date(), Number(), Boolean() etc, all constructer functions start with Capital letter, in the meantime we can create custom constructor function in JavaScript like this:
function Box (Width, Height, fill) {
this.width = Width; // The width of the box
this.height = Height; // The height of the box
this.fill = true; // Is it filled or not?
}
and you can invoke it, simply using new(), to create a new instance of the constructor, create something like below and call the constructor function with filled parameters:
var newBox = new Box(8, 12, true);
Object literals
Using object literals are very used case creating object in JavaScript, this an example of creating a simple object, you can assign anything to your object properties as long as they are defined:
var person = {
name: "Alireza",
surname: "Dezfoolian"
nose: 1,
feet: 2,
hands: 2,
cash: null
};
Prototyping
After creating an Object, you can prototype more members to that, for example adding colour to our Box, we can do this:
Box.prototype.colour = 'red';
While many people here say there is no best way for object creation, there is a rationale as to why there are so many ways to create objects in JavaScript, as of 2019, and this has to do with the progress of JavaScript over the different iterations of EcmaScript releases dating back to 1997.
Prior to ECMAScript 5, there were only two ways of creating objects: the constructor function or the literal notation ( a better alternative to new Object()). With the constructor function notation you create an object that can be instantiated into multiple instances (with the new keyword), while the literal notation delivers a single object, like a singleton.
// constructor function
function Person() {};
// literal notation
var Person = {};
Regardless of the method you use, JavaScript objects are simply properties of key value pairs:
// Method 1: dot notation
obj.firstName = 'Bob';
// Method 2: bracket notation. With bracket notation, you can use invalid characters for a javascript identifier.
obj['lastName'] = 'Smith';
// Method 3: Object.defineProperty
Object.defineProperty(obj, 'firstName', {
value: 'Bob',
writable: true,
configurable: true,
enumerable: false
})
// Method 4: Object.defineProperties
Object.defineProperties(obj, {
firstName: {
value: 'Bob',
writable: true
},
lastName: {
value: 'Smith',
writable: false
}
});
In early versions of JavaScript, the only real way to mimic class-based inheritance was to use constructor functions. the constructor function is a special function that is invoked with the 'new' keyword. By convention, the function identifier is capitalized, albiet it is not required. Inside of the constructor, we refer to the 'this' keyword to add properties to the object that the constructor function is implicitly creating. The constructor function implicitly returns the new object with the populated properties back to the calling function implicitly, unless you explicitly use the return keyword and return something else.
function Person(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
this.sayName = function(){
return "My name is " + this.firstName + " " + this.lastName;
}
}
var bob = new Person("Bob", "Smith");
bob instanceOf Person // true
There is a problem with the sayName method. Typically, in Object-Oriented Class-based programming languages, you use classes as factories to create objects. Each object will have its own instance variables, but it will have a pointer to the methods defined in the class blueprint. Unfortunately, when using JavaScript's constructor function, every time it is called, it will define a new sayName property on the newly created object. So each object will have its own unique sayName property. This will consume more memory resources.
In addition to increased memory resources, defining methods inside of the constructor function eliminates the possibility of inheritance. Again, the method will be defined as a property on the newly created object and no other object, so inheritance cannot work like. Hence, JavaScript provides the prototype chain as a form of inheritance, making JavaScript a prototypal language.
If you have a parent and a parent shares many properties of a child, then the child should inherit those properties. Prior to ES5, it was accomplished as follows:
function Parent(eyeColor, hairColor) {
this.eyeColor = eyeColor;
this.hairColor = hairColor;
}
Parent.prototype.getEyeColor = function() {
console.log('has ' + this.eyeColor);
}
Parent.prototype.getHairColor = function() {
console.log('has ' + this.hairColor);
}
function Child(firstName, lastName) {
Parent.call(this, arguments[2], arguments[3]);
this.firstName = firstName;
this.lastName = lastName;
}
Child.prototype = Parent.prototype;
var child = new Child('Bob', 'Smith', 'blue', 'blonde');
child.getEyeColor(); // has blue eyes
child.getHairColor(); // has blonde hair
The way we utilized the prototype chain above has a quirk. Since the prototype is a live link, by changing the property of one object in the prototype chain, you'd be changing same property of another object as well. Obviously, changing a child's inherited method should not change the parent's method. Object.create resolved this issue by using a polyfill. Thus, with Object.create, you can safely modify a child's property in the prototype chain without affecting the parent's same property in the prototype chain.
ECMAScript 5 introduced Object.create to solve the aforementioned bug in the constructor function for object creation. The Object.create() method CREATES a new object, using an existing object as the prototype of the newly created object. Since a new object is created, you no longer have the issue where modifying the child property in the prototype chain will modify the parent's reference to that property in the chain.
var bobSmith = {
firstName: "Bob",
lastName: "Smith",
sayName: function(){
return "My name is " + this.firstName + " " + this.lastName;
}
}
var janeSmith = Object.create(bobSmith, {
firstName : { value: "Jane" }
})
console.log(bobSmith.sayName()); // My name is Bob Smith
console.log(janeSmith.sayName()); // My name is Jane Smith
janeSmith.__proto__ == bobSmith; // true
janeSmith instanceof bobSmith; // Uncaught TypeError: Right-hand side of 'instanceof' is not callable. Error occurs because bobSmith is not a constructor function.
Prior to ES6, here was a common creational pattern to utilize function constructors and Object.create:
const View = function(element){
this.element = element;
}
View.prototype = {
getElement: function(){
this.element
}
}
const SubView = function(element){
View.call(this, element);
}
SubView.prototype = Object.create(View.prototype);
Now Object.create coupled with constructor functions have been widely used for object creation and inheritance in JavaScript. However, ES6 introduced the concept of classes, which are primarily syntactical sugar over JavaScript's existing prototype-based inheritance. The class syntax does not introduce a new object-oriented inheritance model to JavaScript. Thus, JavaScript remains a prototypal language.
ES6 classes make inheritance much easier. We no longer have to manually copy the parent class's prototype functions and reset the child class's constructor.
// create parent class
class Person {
constructor (name) {
this.name = name;
}
}
// create child class and extend our parent class
class Boy extends Person {
constructor (name, color) {
// invoke our parent constructor function passing in any required parameters
super(name);
this.favoriteColor = color;
}
}
const boy = new Boy('bob', 'blue')
boy.favoriteColor; // blue
All in all, these 5 different strategies of Object Creation in JavaScript coincided the evolution of the EcmaScript standard.
Of course there is a best way.Objects in javascript have enumerable and nonenumerable properties.
var empty = {};
console.log(empty.toString);
// . function toString(){...}
console.log(empty.toString());
// . [object Object]
In the example above you can see that an empty object actually has properties.
Ok first let's see which is the best way:
var new_object = Object.create(null)
new_object.name = 'Roland'
new_object.last_name = 'Doda'
//etc
console.log("toString" in new_object) //=> false
In the example above the log will output false.
Now let's see why the other object creation ways are incorrect.
//Object constructor
var object = new Object();
console.log("toString" in object); //=> true
//Literal constructor
var person = {
name : "Anand",
getName : function (){
return this.name
}
}
console.log("toString" in person); //=> true
//function Constructor
function Person(name){
this.name = name
this.getName = function(){
return this.name
}
}
var person = new Person ('landi')
console.log("toString" in person); //=> true
//Prototype
function Person(){};
Person.prototype.name = "Anand";
console.log("toString" in person); //=> true
//Function/Prototype combination
function Person2(name){
this.name = name;
}
Person2.prototype.getName = function(){
return this.name
}
var person2 = new Person2('Roland')
console.log("toString" in person2) //=> true
As you can see above,all examples log true.Which means if you have a case that you have a for in loop to see if the object has a property will lead you to wrong results probably.
Note that the best way it is not easy.You have to define all properties of object line by line.The other ways are more easier and will have less code to create an object but you have to be aware in some cases.
I always use the "other ways" by the way and one solution to above warning if you don't use the best way is:
for (var property in new_object) {
if (new_object.hasOwnProperty(property)) {
// ... this is an own property
}
}
Majorly there are 3 ways of creating Objects-
Simplest one is using object literals.
const myObject = {}
Though this method is the simplest but has a disadvantage i.e if your object has behaviour(functions in it),then in future if you want to make any changes to it you would have to change it in all the objects.
So in that case it is better to use Factory or Constructor Functions.(anyone that you like)
Factory Functions are those functions that return an object.e.g-
function factoryFunc(exampleValue){
return{
exampleProperty: exampleValue
}
}
Constructor Functions are those functions that assign properties to objects using "this" keyword.e.g-
function constructorFunc(exampleValue){
this.exampleProperty= exampleValue;
}
const myObj= new constructorFunc(1);
I was just wondering about the difference between the following declaration of JavaScript objects. Specifically, the difference between thing object literal and thing1 object from thing class.
Code:
var thing = {
sanity:0,
init:function(){
//code
},
send:function(){
//code
}
}
function thing(){
this.sanity = 0;
this.init = function(){
//code
};
this.send = function(){
//code
};
}
thing1 = new thing();
Static Objects / Object Literals
Static objects, or object literals, don't require instantiation with the new operator and also behave like singletons. Consider the following example:
Code:
var staticObject1 = {
a: 123,
b: 456
};
var staticObject2 = staticObject1;
console.log(staticObject1, staticObject2);
staticObject2.b = "hats";
console.log(staticObject1, staticObject2);
Output:
Object a=123 b=456 Object a=123 b=456
Object a=123 b=hats Object a=123 b=hats
Notice that changing staticObject2.b also affected staticObject1.b. However, this may not always be the desired effect. Many libraries, such as Dojo, offer an object cloning method that can alleviate this situation if you want to make a copy of a static object. Continuing the previous example, consider the following:
Code:
var staticObject3 = dojo.clone(staticObject1); // See the doc in the link above
staticObject1.a = "pants";
console.log(staticObject1, staticObject2, staticObject3);
Output:
Object a=pants b=hats Object a=pants b=hats Object a=123 b=hats
Notice that the values of the members of staticObject1 and staticObject2 are the same, whereas staticObject3 is not affected by changes to these other objects.
Static objects are also useful for creating project or library namespaces, rather than filling up the global scope, and promotes compatibility like no one's business.
This is useful when creating libraries that require portability or interoperability. This can be seen in popular libraries such as Dojo, YUI and ExtJs, where all or most methods are called as dojo.examplMethod(), YUI().exampleMethod(), or Ext.exampleMethod() respectively.
Static objects can also be considered loosely analogous to struct's in C/C++.
Class Constructors / Instantiated Objects
Classes in JavaScript are based on prototypal inheritance, which is a far more complex subject and can be read about here, here and here.
As opposed to static objects, this method of object creation gives the unique opportunity for private scope object members and methods because of JavaScript's closuer property. Consider the following example of private class members:
Code:
var SomeObject = function() {
var privateMember = "I am a private member";
this.publicMember = "I am a public member";
this.publicMethod = function() {
console.log(privateMember, this.publicMember);
};
};
var o = new SomeObject();
console.log(typeof o.privateMember, typeof o.publicMember);
o.publicMethod();
Output:
undefined string
I am a private member I am a public member
Notice that typeof o.privateMember is "undefined" and not accessible outside of the object, but is from within.
Private methods can also be made, but are not as straight forward yet are still simple to implement. The issue lies in that the value of this inside of the private method defaults to window and one of two techniques must be applied to ensure that this refers to the object that we are working within, in this case, the instance of SomeObject. Consider the following example:
Code:
var SomeObject = function() {
var privateMember = "I am a private member";
var privateMethod = function() {
console.log(this.publicMember);
};
this.publicMember = "I am a public member";
this.publicMethod = function() {
console.log(privateMember, this.publicMember);
};
this.privateMethodWrapper = function() {
privateMethod.call(this);
}
};
var o = new SomeObject();
console.log(typeof o.privateMethod, typeof o.publicMethod, typeof o.privateMethodWrapper);
o.privateMethodWrapper();
Output:
undefined function function
I am a public member
Notice that withing privateMethodWrapper(), privatemethod was executed using call and passing in this for the function's context. This is all fine; however, the following technique is preferable (in my opinion) as it simplifies the calling scope and produces identical results. The previous example can be changed to the following:
Code:
var SomeObject = function() {
var self = this;
var privateMember = "I am a private member";
var privateMethod = function() {
console.log(self.publicMember);
};
this.publicMember = "I am a public member";
this.publicMethod = function() {
console.log(privateMember, this.publicMember);
};
this.privateMethodWrapper = function() {
privateMethod();
}
};
var o = new SomeObject();
console.log(typeof o.privateMethod, typeof o.publicMethod, typeof o.privateMethodWrapper);
o.privateMethodWrapper();
Output:
undefined function function
I am a public member
This answer was the basis for a post on my blog, where I give additional examples. Hope that helps ;)
Case 2 is referencing javascript class constructors. A glaring difference is that the variable is not yet an object, so you cannot internally reference thing1.sanity. You would have to initialize the class by creating an instance of said class prior to calling any internal members:
var myConstructor = function() {
this.sanity = 0;
}
// wont work
alert(myConstructor.sanity);
// works
var thing1 = new myConstructor();
alert(thing1.sanity);
Here is an article going further in-depth than my quick example:
Class Constructors vs. Object Literals
The difference is that the thing1 object is associated with the thing1 class, and will inherit (not literally) the thing1 prototype.
For example, you can later write
thing.prototype.initAndSend = function() { this.init(); this.send(); };
You will then be able to write thing1.initAndSend() without modifying thing1. In addition, thing1.constructor will be equal to the thing method, whereas {}.constructor is equal to Object.
By the way, standard convention is to capitalize class names.
Functions are objects and also constructors (you can instantiate them using new).
Hash-tables/Objects ({}) are not able to be instantiated, thus they are commonly used as data structures. And I am not so sure if it is wise to call them "Objects".
With the first method, you are declaring a single object. With the second, you are declaring a class from which you can instantiate (i.e. create) many different copies.