Related
How do I pass variables by reference in JavaScript?
I have three variables that I want to perform several operations to, so I want to put them in a for loop and perform the operations to each one.
Pseudocode:
myArray = new Array(var1, var2, var3);
for (var x = 0; x < myArray.length; x++){
// Do stuff to the array
makePretty(myArray[x]);
}
// Now do stuff to the updated variables
What is the best way to do this?
There is no "pass by reference" available in JavaScript. You can pass an object (which is to say, you can pass-by-value a reference to an object) and then have a function modify the object contents:
function alterObject(obj) {
obj.foo = "goodbye";
}
var myObj = { foo: "hello world" };
alterObject(myObj);
alert(myObj.foo); // "goodbye" instead of "hello world"
You can iterate over the properties of an array with a numeric index and modify each cell of the array, if you want.
var arr = [1, 2, 3];
for (var i = 0; i < arr.length; i++) {
arr[i] = arr[i] + 1;
}
It's important to note that "pass-by-reference" is a very specific term. It does not mean simply that it's possible to pass a reference to a modifiable object. Instead, it means that it's possible to pass a simple variable in such a way as to allow a function to modify that value in the calling context. So:
function swap(a, b) {
var tmp = a;
a = b;
b = tmp; //assign tmp to b
}
var x = 1, y = 2;
swap(x, y);
alert("x is " + x + ", y is " + y); // "x is 1, y is 2"
In a language like C++, it's possible to do that because that language does (sort-of) have pass-by-reference.
edit — this recently (March 2015) blew up on Reddit again over a blog post similar to mine mentioned below, though in this case about Java. It occurred to me while reading the back-and-forth in the Reddit comments that a big part of the confusion stems from the unfortunate collision involving the word "reference". The terminology "pass by reference" and "pass by value" predates the concept of having "objects" to work with in programming languages. It's really not about objects at all; it's about function parameters, and specifically how function parameters are "connected" (or not) to the calling environment. In particular, note that in a true pass-by-reference language — one that does involve objects — one would still have the ability to modify object contents, and it would look pretty much exactly like it does in JavaScript. However, one would also be able to modify the object reference in the calling environment, and that's the key thing that you can't do in JavaScript. A pass-by-reference language would pass not the reference itself, but a reference to the reference.
edit — here is a blog post on the topic. (Note the comment to that post that explains that C++ doesn't really have pass-by-reference. That is true. What C++ does have, however, is the ability to create references to plain variables, either explicitly at the point of function invocation to create a pointer, or implicitly when calling functions whose argument type signature calls for that to be done. Those are the key things JavaScript doesn't support.)
Primitive type variables like strings and numbers are always passed by value.
Arrays and Objects are passed by reference or by value based on these conditions:
if you are setting the value of an object or array it is Pass by Value.
object1 = { prop: "car" };
array1 = [1,2,3];
if you are changing a property value of an object or array then it is Pass by Reference.
object1.prop = "car";
array1[0] = 9;
Code
function passVar(obj1, obj2, num) {
obj1.prop = "laptop"; // will CHANGE original
obj2 = { prop: "computer" }; //will NOT affect original
num = num + 1; // will NOT affect original
}
var object1 = {
prop: "car"
};
var object2 = {
prop: "bike"
};
var number1 = 10;
passVar(object1, object2, number1);
console.log(object1); // output: Object { prop: "laptop" }
console.log(object2); // output: Object { prop: "bike" }
console.log(number1); // ouput: 10
Workaround to pass variable like by reference:
var a = 1;
inc = function(variableName) {
window[variableName] += 1;
};
inc('a');
alert(a); // 2
And yup, actually you can do it without access a global variable:
inc = (function () {
var variableName = 0;
var init = function () {
variableName += 1;
alert(variableName);
}
return init;
})();
inc();
Simple Object
function foo(x) {
// Function with other context
// Modify `x` property, increasing the value
x.value++;
}
// Initialize `ref` as object
var ref = {
// The `value` is inside `ref` variable object
// The initial value is `1`
value: 1
};
// Call function with object value
foo(ref);
// Call function with object value again
foo(ref);
console.log(ref.value); // Prints "3"
Custom Object
Object rvar
/**
* Aux function to create by-references variables
*/
function rvar(name, value, context) {
// If `this` is a `rvar` instance
if (this instanceof rvar) {
// Inside `rvar` context...
// Internal object value
this.value = value;
// Object `name` property
Object.defineProperty(this, 'name', { value: name });
// Object `hasValue` property
Object.defineProperty(this, 'hasValue', {
get: function () {
// If the internal object value is not `undefined`
return this.value !== undefined;
}
});
// Copy value constructor for type-check
if ((value !== undefined) && (value !== null)) {
this.constructor = value.constructor;
}
// To String method
this.toString = function () {
// Convert the internal value to string
return this.value + '';
};
} else {
// Outside `rvar` context...
// Initialice `rvar` object
if (!rvar.refs) {
rvar.refs = {};
}
// Initialize context if it is not defined
if (!context) {
context = this;
}
// Store variable
rvar.refs[name] = new rvar(name, value, context);
// Define variable at context
Object.defineProperty(context, name, {
// Getter
get: function () { return rvar.refs[name]; },
// Setter
set: function (v) { rvar.refs[name].value = v; },
// Can be overrided?
configurable: true
});
// Return object reference
return context[name];
}
}
// Variable Declaration
// Declare `test_ref` variable
rvar('test_ref_1');
// Assign value `5`
test_ref_1 = 5;
// Or
test_ref_1.value = 5;
// Or declare and initialize with `5`:
rvar('test_ref_2', 5);
// ------------------------------
// Test Code
// Test Function
function Fn1(v) { v.value = 100; }
// Test
function test(fn) { console.log(fn.toString()); console.info(fn()); }
// Declare
rvar('test_ref_number');
// First assign
test_ref_number = 5;
test(() => test_ref_number.value === 5);
// Call function with reference
Fn1(test_ref_number);
test(() => test_ref_number.value === 100);
// Increase value
test_ref_number++;
test(() => test_ref_number.value === 101);
// Update value
test_ref_number = test_ref_number - 10;
test(() => test_ref_number.value === 91);
Yet another approach to pass any (local, primitive) variables by reference is by wrapping variable with closure "on the fly" by eval. This also works with "use strict". (Note: be aware that eval is not friendly to JavaScript optimizers, and also missing quotes around variable name may cause unpredictive results)
"use strict"
// Return text that will reference variable by name (by capturing that variable to closure)
function byRef(varName){
return "({get value(){return "+varName+";}, set value(v){"+varName+"=v;}})";
}
// Demo
// Assign argument by reference
function modifyArgument(argRef, multiplier){
argRef.value = argRef.value * multiplier;
}
(function(){
var x = 10;
alert("x before: " + x);
modifyArgument(eval(byRef("x")), 42);
alert("x after: " + x);
})()
Live sample: https://jsfiddle.net/t3k4403w/
There's actually a pretty sollution:
function updateArray(context, targetName, callback) {
context[targetName] = context[targetName].map(callback);
}
var myArray = ['a', 'b', 'c'];
updateArray(this, 'myArray', item => {return '_' + item});
console.log(myArray); //(3) ["_a", "_b", "_c"]
I personally dislike the "pass by reference" functionality offered by various programming languages. Perhaps that's because I am just discovering the concepts of functional programming, but I always get goosebumps when I see functions that cause side effects (like manipulating parameters passed by reference). I personally strongly embrace the "single responsibility" principle.
IMHO, a function should return just one result/value using the return keyword. Instead of modifying a parameter/argument, I would just return the modified parameter/argument value and leave any desired reassignments up to the calling code.
But sometimes (hopefully very rarely), it is necessary to return two or more result values from the same function. In that case, I would opt to include all those resulting values in a single structure or object. Again, processing any reassignments should be up to the calling code.
Example:
Suppose passing parameters would be supported by using a special keyword like 'ref' in the argument list. My code might look something like this:
//The Function
function doSomething(ref value) {
value = "Bar";
}
//The Calling Code
var value = "Foo";
doSomething(value);
console.log(value); //Bar
Instead, I would actually prefer to do something like this:
//The Function
function doSomething(value) {
value = "Bar";
return value;
}
//The Calling Code:
var value = "Foo";
value = doSomething(value); //Reassignment
console.log(value); //Bar
When I would need to write a function that returns multiple values, I would not use parameters passed by reference either. So I would avoid code like this:
//The Function
function doSomething(ref value) {
value = "Bar";
//Do other work
var otherValue = "Something else";
return otherValue;
}
//The Calling Code
var value = "Foo";
var otherValue = doSomething(value);
console.log(value); //Bar
console.log(otherValue); //Something else
Instead, I would actually prefer to return both new values inside an object, like this:
//The Function
function doSomething(value) {
value = "Bar";
//Do more work
var otherValue = "Something else";
return {
value: value,
otherValue: otherValue
};
}
//The Calling Code:
var value = "Foo";
var result = doSomething(value);
value = result.value; //Reassignment
console.log(value); //Bar
console.log(result.otherValue);
These code examples are quite simplified, but it roughly demonstrates how I personally would handle such stuff. It helps me to keep various responsibilities in the correct place.
Happy coding. :)
I've been playing around with syntax to do this sort of thing, but it requires some helpers that are a little unusual. It starts with not using 'var' at all, but a simple 'DECLARE' helper that creates a local variable and defines a scope for it via an anonymous callback. By controlling how variables are declared, we can choose to wrap them into objects so that they can always be passed by reference, essentially. This is similar to one of the Eduardo Cuomo's answer above, but the solution below does not require using strings as variable identifiers. Here's some minimal code to show the concept.
function Wrapper(val){
this.VAL = val;
}
Wrapper.prototype.toString = function(){
return this.VAL.toString();
}
function DECLARE(val, callback){
var valWrapped = new Wrapper(val);
callback(valWrapped);
}
function INC(ref){
if(ref && ref.hasOwnProperty('VAL')){
ref.VAL++;
}
else{
ref++;//or maybe throw here instead?
}
return ref;
}
DECLARE(5, function(five){ //consider this line the same as 'let five = 5'
console.log("five is now " + five);
INC(five); // increment
console.log("five is incremented to " + five);
});
Actually it is really easy. The problem is understanding that once passing classic arguments, you are scoped into another, read-only zone.
The solution is to pass the arguments using JavaScript's object-oriented design. It is the same as putting the arguments in a global/scoped variable, but better...
function action(){
/* Process this.arg, modification allowed */
}
action.arg = [["empty-array"], "some string", 0x100, "last argument"];
action();
You can also promise stuff up to enjoy the well-known chain:
Here is the whole thing, with promise-like structure
function action(){
/* Process this.arg, modification allowed */
this.arg = ["a", "b"];
}
action.setArg = function(){this.arg = arguments; return this;}
action.setArg(["empty-array"], "some string", 0x100, "last argument")()
Or better yet...
action.setArg(["empty-array"],"some string",0x100,"last argument").call()
JavaScript can modify array items inside a function (it is passed as a reference to the object/array).
function makeAllPretty(items) {
for (var x = 0; x < myArray.length; x++){
// Do stuff to the array
items[x] = makePretty(items[x]);
}
}
myArray = new Array(var1, var2, var3);
makeAllPretty(myArray);
Here's another example:
function inc(items) {
for (let i=0; i < items.length; i++) {
items[i]++;
}
}
let values = [1,2,3];
inc(values);
console.log(values);
// Prints [2,3,4]
Putting aside the pass-by-reference discussion, those still looking for a solution to the stated question could use:
const myArray = new Array(var1, var2, var3);
myArray.forEach(var => var = makePretty(var));
As we don't have javascript pass by reference functionality, the only way to do this is to make the function return the value and let the caller assign it:
So
"makePretty(myArray[x]);"
should be
"myArray[x] = makePretty(myArray[x]);"
This is in case you need assignment inside the function, if only mutation is necessary, then passing the object and mutating it should be enough
I know exactly what you mean. The same thing in Swift will be no problem. The bottom line is use let, not var.
The fact that primitives are passed by value, but the fact that the value of var i at the point of iteration is not copied into the anonymous function is quite surprising to say the least.
for (let i = 0; i < boxArray.length; i++) {
boxArray[i].onclick = function() { console.log(i) }; // Correctly prints the index
}
If you want to pass variables by reference, a better way to do that is by passing your arguments in an object and then start changing the value by using window:
window["varName"] = value;
Example:
// Variables with first values
var x = 1, b = 0, f = 15;
function asByReference (
argumentHasVars = {}, // Passing variables in object
newValues = []) // Pass new values in array
{
let VarsNames = [];
// Getting variables names one by one
for(let name in argumentHasVars)
VarsNames.push(name);
// Accessing variables by using window one by one
for(let i = 0; i < VarsNames.length; i += 1)
window[VarsNames[i]] = newValues[i]; // Set new value
}
console.log(x, b, f); // Output with first values
asByReference({x, b, f}, [5, 5, 5]); // Passing as by reference
console.log(x, b, f); // Output after changing values
I like to solve the lack of by reference in JavaScript like this example shows.
The essence of this is that you don't try to create a by reference. You instead use the return functionality and make it able to return multiple values. So there isn't any need to insert your values in arrays or objects.
var x = "First";
var y = "Second";
var z = "Third";
log('Before call:',x,y,z);
with (myFunc(x, y, z)) {x = a; y = b; z = c;} // <-- Way to call it
log('After call :',x,y,z);
function myFunc(a, b, c) {
a = "Changed first parameter";
b = "Changed second parameter";
c = "Changed third parameter";
return {a:a, b:b, c:c}; // <-- Return multiple values
}
function log(txt,p1,p2,p3) {
document.getElementById('msg').innerHTML += txt + '<br>' + p1 + '<br>' + p2 + '<br>' + p3 + '<br><br>'
}
<div id='msg'></div>
Using Destructuring here is an example where I have 3 variables, and on each I do the multiple operations:
If value is less than 0 then change to 0,
If greater than 255 then change to 1,
Otherwise dived the number by 255 to convert from a range of 0-255 to a range of 0-1.
let a = 52.4, b = -25.1, c = 534.5;
[a, b, c] = [a, b, c].map(n => n < 0 ? 0 : n > 255 ? 1 : n / 255);
console.log(a, b, c); // 0.20549019607843136 0 1
While learning about javascript closures, I came across this answer https://stackoverflow.com/a/111111/3886155 on stackoverflow.
It's a very good explanation of closures.
But I have some confusion in Example 4 and Example 5.
I just copy entire snippet here:
Example 4:
var gLogNumber, gIncreaseNumber, gSetNumber;
function setupSomeGlobals() {
// Local variable that ends up within closure
var num = 666;
// Store some references to functions as global variables
gLogNumber = function() { console.log(num); }
gIncreaseNumber = function() { num++; }
gSetNumber = function(x) { num = x; }
}
setupSomeGlobals();
gIncreaseNumber();
gLogNumber(); // 667
gSetNumber(5);
gLogNumber(); // 5
var oldLog = gLogNumber;
setupSomeGlobals();
gLogNumber(); // 666
oldLog() // 5
After reading some examples I can say that whenever function inside the function executes it can always remember the variables declared inside outer function.
I agree that if these closure variable updated anyway it still refers to the new variable value.
My problem in this example is specially related to var oldLog=gLogNumber;
How it can return old number after call to the setupSomeGlobals();?
because now the var num has reset.So why it is not using this new num value 666?
Now Example 5:
function buildList(list) {
var result = [];
for (var i = 0; i < list.length; i++) {
var item = 'item' + i;
result.push( function() {console.log(item + ' ' + list[i])} );
}
return result;
}
function testList() {
var fnlist = buildList([1,2,3]);
// Using j only to help prevent confusion -- could use i.
for (var j = 0; j < fnlist.length; j++) {
fnlist[j]();
}
}
Here they have pushed functions into array and executed them after loop finishes.But now reference to the closure variables is the latest one after loop finishes.Why not old one?
In both examples you are just assigning function definition to variable or array index.But first one points to old and second one points to latest.Why?
How it can return old number after call to the setupSomeGlobals()
num is not globally scoped, so the value num is in the context of which reference of gLogNumber is invoked.
After invocation of setupSomeGlobals method again, reference to gLogNumber got changed. try this
console.log(Object.is( gLogNumber, oldLog )); //true
setupSomeGlobals();
console.log(Object.is( gLogNumber, oldLog )); //false
So, oldLog retained old reference and hence old value of num, but gLogNumber got new num.
But now reference to the closure variables is the latest one after
loop finishes.Why not old one?
For this problem, have a look at
JavaScript closure inside loops – simple practical example.
I don't understand var a = [], i here. How can a be declared as both an array and whatever i's type is?
// Source: Javascript: The Good Parts, p. 63
Array.dim = function (dimension, initial) {
var a = [], i;
for(i = 0; i< dimension; i +=1)
{
a[i] = initial;
}
return a;
}
it means declare both (separately) - not declare them to be equal
same thing as:
var a = [];
var i;
The following code:
var a = [], i;
is EXACTLY the same as this code:
var a = [];
var i;
It means:
a is an empty array
i is an uninitialized var
Javascript variables don't have types.
a is initialized to an array; i is not initialized at all.
Nothing prevents you from later writing
a = 42;
i = ["Hi", "there!"];
Javavscript variables does not have any types. Here a is initialized as an array
var a = []; //Same as var a= new Array();
and i can have any value
var i = 0;// Here it is an integer
i = "Hello";// String. Type changed to string. But it is not a good practice
Read JavaScript Variables and DataTypes
var a = [], i literally means define a as an array and define i as a variable. Nothing is actually assigned to i.
For example:
var a = 5,
b = 8,
c = "string";
This basically allows you to define 3 variables without having to use the word var 3 times. Shorthand JavaScript.
Defining your variables before you use them prevent errors if the variable is not present, making functions more reliable. For example, not defining x as a variable will result in:
if(x) { /* native code */ }
Throwing an error but:
if(window.x) { /* native code */ }
Will not, because it checks the window object for x, where all global variables are stored.
How do I pass variables by reference in JavaScript?
I have three variables that I want to perform several operations to, so I want to put them in a for loop and perform the operations to each one.
Pseudocode:
myArray = new Array(var1, var2, var3);
for (var x = 0; x < myArray.length; x++){
// Do stuff to the array
makePretty(myArray[x]);
}
// Now do stuff to the updated variables
What is the best way to do this?
There is no "pass by reference" available in JavaScript. You can pass an object (which is to say, you can pass-by-value a reference to an object) and then have a function modify the object contents:
function alterObject(obj) {
obj.foo = "goodbye";
}
var myObj = { foo: "hello world" };
alterObject(myObj);
alert(myObj.foo); // "goodbye" instead of "hello world"
You can iterate over the properties of an array with a numeric index and modify each cell of the array, if you want.
var arr = [1, 2, 3];
for (var i = 0; i < arr.length; i++) {
arr[i] = arr[i] + 1;
}
It's important to note that "pass-by-reference" is a very specific term. It does not mean simply that it's possible to pass a reference to a modifiable object. Instead, it means that it's possible to pass a simple variable in such a way as to allow a function to modify that value in the calling context. So:
function swap(a, b) {
var tmp = a;
a = b;
b = tmp; //assign tmp to b
}
var x = 1, y = 2;
swap(x, y);
alert("x is " + x + ", y is " + y); // "x is 1, y is 2"
In a language like C++, it's possible to do that because that language does (sort-of) have pass-by-reference.
edit — this recently (March 2015) blew up on Reddit again over a blog post similar to mine mentioned below, though in this case about Java. It occurred to me while reading the back-and-forth in the Reddit comments that a big part of the confusion stems from the unfortunate collision involving the word "reference". The terminology "pass by reference" and "pass by value" predates the concept of having "objects" to work with in programming languages. It's really not about objects at all; it's about function parameters, and specifically how function parameters are "connected" (or not) to the calling environment. In particular, note that in a true pass-by-reference language — one that does involve objects — one would still have the ability to modify object contents, and it would look pretty much exactly like it does in JavaScript. However, one would also be able to modify the object reference in the calling environment, and that's the key thing that you can't do in JavaScript. A pass-by-reference language would pass not the reference itself, but a reference to the reference.
edit — here is a blog post on the topic. (Note the comment to that post that explains that C++ doesn't really have pass-by-reference. That is true. What C++ does have, however, is the ability to create references to plain variables, either explicitly at the point of function invocation to create a pointer, or implicitly when calling functions whose argument type signature calls for that to be done. Those are the key things JavaScript doesn't support.)
Primitive type variables like strings and numbers are always passed by value.
Arrays and Objects are passed by reference or by value based on these conditions:
if you are setting the value of an object or array it is Pass by Value.
object1 = { prop: "car" };
array1 = [1,2,3];
if you are changing a property value of an object or array then it is Pass by Reference.
object1.prop = "car";
array1[0] = 9;
Code
function passVar(obj1, obj2, num) {
obj1.prop = "laptop"; // will CHANGE original
obj2 = { prop: "computer" }; //will NOT affect original
num = num + 1; // will NOT affect original
}
var object1 = {
prop: "car"
};
var object2 = {
prop: "bike"
};
var number1 = 10;
passVar(object1, object2, number1);
console.log(object1); // output: Object { prop: "laptop" }
console.log(object2); // output: Object { prop: "bike" }
console.log(number1); // ouput: 10
Workaround to pass variable like by reference:
var a = 1;
inc = function(variableName) {
window[variableName] += 1;
};
inc('a');
alert(a); // 2
And yup, actually you can do it without access a global variable:
inc = (function () {
var variableName = 0;
var init = function () {
variableName += 1;
alert(variableName);
}
return init;
})();
inc();
Simple Object
function foo(x) {
// Function with other context
// Modify `x` property, increasing the value
x.value++;
}
// Initialize `ref` as object
var ref = {
// The `value` is inside `ref` variable object
// The initial value is `1`
value: 1
};
// Call function with object value
foo(ref);
// Call function with object value again
foo(ref);
console.log(ref.value); // Prints "3"
Custom Object
Object rvar
/**
* Aux function to create by-references variables
*/
function rvar(name, value, context) {
// If `this` is a `rvar` instance
if (this instanceof rvar) {
// Inside `rvar` context...
// Internal object value
this.value = value;
// Object `name` property
Object.defineProperty(this, 'name', { value: name });
// Object `hasValue` property
Object.defineProperty(this, 'hasValue', {
get: function () {
// If the internal object value is not `undefined`
return this.value !== undefined;
}
});
// Copy value constructor for type-check
if ((value !== undefined) && (value !== null)) {
this.constructor = value.constructor;
}
// To String method
this.toString = function () {
// Convert the internal value to string
return this.value + '';
};
} else {
// Outside `rvar` context...
// Initialice `rvar` object
if (!rvar.refs) {
rvar.refs = {};
}
// Initialize context if it is not defined
if (!context) {
context = this;
}
// Store variable
rvar.refs[name] = new rvar(name, value, context);
// Define variable at context
Object.defineProperty(context, name, {
// Getter
get: function () { return rvar.refs[name]; },
// Setter
set: function (v) { rvar.refs[name].value = v; },
// Can be overrided?
configurable: true
});
// Return object reference
return context[name];
}
}
// Variable Declaration
// Declare `test_ref` variable
rvar('test_ref_1');
// Assign value `5`
test_ref_1 = 5;
// Or
test_ref_1.value = 5;
// Or declare and initialize with `5`:
rvar('test_ref_2', 5);
// ------------------------------
// Test Code
// Test Function
function Fn1(v) { v.value = 100; }
// Test
function test(fn) { console.log(fn.toString()); console.info(fn()); }
// Declare
rvar('test_ref_number');
// First assign
test_ref_number = 5;
test(() => test_ref_number.value === 5);
// Call function with reference
Fn1(test_ref_number);
test(() => test_ref_number.value === 100);
// Increase value
test_ref_number++;
test(() => test_ref_number.value === 101);
// Update value
test_ref_number = test_ref_number - 10;
test(() => test_ref_number.value === 91);
Yet another approach to pass any (local, primitive) variables by reference is by wrapping variable with closure "on the fly" by eval. This also works with "use strict". (Note: be aware that eval is not friendly to JavaScript optimizers, and also missing quotes around variable name may cause unpredictive results)
"use strict"
// Return text that will reference variable by name (by capturing that variable to closure)
function byRef(varName){
return "({get value(){return "+varName+";}, set value(v){"+varName+"=v;}})";
}
// Demo
// Assign argument by reference
function modifyArgument(argRef, multiplier){
argRef.value = argRef.value * multiplier;
}
(function(){
var x = 10;
alert("x before: " + x);
modifyArgument(eval(byRef("x")), 42);
alert("x after: " + x);
})()
Live sample: https://jsfiddle.net/t3k4403w/
There's actually a pretty sollution:
function updateArray(context, targetName, callback) {
context[targetName] = context[targetName].map(callback);
}
var myArray = ['a', 'b', 'c'];
updateArray(this, 'myArray', item => {return '_' + item});
console.log(myArray); //(3) ["_a", "_b", "_c"]
I personally dislike the "pass by reference" functionality offered by various programming languages. Perhaps that's because I am just discovering the concepts of functional programming, but I always get goosebumps when I see functions that cause side effects (like manipulating parameters passed by reference). I personally strongly embrace the "single responsibility" principle.
IMHO, a function should return just one result/value using the return keyword. Instead of modifying a parameter/argument, I would just return the modified parameter/argument value and leave any desired reassignments up to the calling code.
But sometimes (hopefully very rarely), it is necessary to return two or more result values from the same function. In that case, I would opt to include all those resulting values in a single structure or object. Again, processing any reassignments should be up to the calling code.
Example:
Suppose passing parameters would be supported by using a special keyword like 'ref' in the argument list. My code might look something like this:
//The Function
function doSomething(ref value) {
value = "Bar";
}
//The Calling Code
var value = "Foo";
doSomething(value);
console.log(value); //Bar
Instead, I would actually prefer to do something like this:
//The Function
function doSomething(value) {
value = "Bar";
return value;
}
//The Calling Code:
var value = "Foo";
value = doSomething(value); //Reassignment
console.log(value); //Bar
When I would need to write a function that returns multiple values, I would not use parameters passed by reference either. So I would avoid code like this:
//The Function
function doSomething(ref value) {
value = "Bar";
//Do other work
var otherValue = "Something else";
return otherValue;
}
//The Calling Code
var value = "Foo";
var otherValue = doSomething(value);
console.log(value); //Bar
console.log(otherValue); //Something else
Instead, I would actually prefer to return both new values inside an object, like this:
//The Function
function doSomething(value) {
value = "Bar";
//Do more work
var otherValue = "Something else";
return {
value: value,
otherValue: otherValue
};
}
//The Calling Code:
var value = "Foo";
var result = doSomething(value);
value = result.value; //Reassignment
console.log(value); //Bar
console.log(result.otherValue);
These code examples are quite simplified, but it roughly demonstrates how I personally would handle such stuff. It helps me to keep various responsibilities in the correct place.
Happy coding. :)
I've been playing around with syntax to do this sort of thing, but it requires some helpers that are a little unusual. It starts with not using 'var' at all, but a simple 'DECLARE' helper that creates a local variable and defines a scope for it via an anonymous callback. By controlling how variables are declared, we can choose to wrap them into objects so that they can always be passed by reference, essentially. This is similar to one of the Eduardo Cuomo's answer above, but the solution below does not require using strings as variable identifiers. Here's some minimal code to show the concept.
function Wrapper(val){
this.VAL = val;
}
Wrapper.prototype.toString = function(){
return this.VAL.toString();
}
function DECLARE(val, callback){
var valWrapped = new Wrapper(val);
callback(valWrapped);
}
function INC(ref){
if(ref && ref.hasOwnProperty('VAL')){
ref.VAL++;
}
else{
ref++;//or maybe throw here instead?
}
return ref;
}
DECLARE(5, function(five){ //consider this line the same as 'let five = 5'
console.log("five is now " + five);
INC(five); // increment
console.log("five is incremented to " + five);
});
Actually it is really easy. The problem is understanding that once passing classic arguments, you are scoped into another, read-only zone.
The solution is to pass the arguments using JavaScript's object-oriented design. It is the same as putting the arguments in a global/scoped variable, but better...
function action(){
/* Process this.arg, modification allowed */
}
action.arg = [["empty-array"], "some string", 0x100, "last argument"];
action();
You can also promise stuff up to enjoy the well-known chain:
Here is the whole thing, with promise-like structure
function action(){
/* Process this.arg, modification allowed */
this.arg = ["a", "b"];
}
action.setArg = function(){this.arg = arguments; return this;}
action.setArg(["empty-array"], "some string", 0x100, "last argument")()
Or better yet...
action.setArg(["empty-array"],"some string",0x100,"last argument").call()
JavaScript can modify array items inside a function (it is passed as a reference to the object/array).
function makeAllPretty(items) {
for (var x = 0; x < myArray.length; x++){
// Do stuff to the array
items[x] = makePretty(items[x]);
}
}
myArray = new Array(var1, var2, var3);
makeAllPretty(myArray);
Here's another example:
function inc(items) {
for (let i=0; i < items.length; i++) {
items[i]++;
}
}
let values = [1,2,3];
inc(values);
console.log(values);
// Prints [2,3,4]
Putting aside the pass-by-reference discussion, those still looking for a solution to the stated question could use:
const myArray = new Array(var1, var2, var3);
myArray.forEach(var => var = makePretty(var));
As we don't have javascript pass by reference functionality, the only way to do this is to make the function return the value and let the caller assign it:
So
"makePretty(myArray[x]);"
should be
"myArray[x] = makePretty(myArray[x]);"
This is in case you need assignment inside the function, if only mutation is necessary, then passing the object and mutating it should be enough
I know exactly what you mean. The same thing in Swift will be no problem. The bottom line is use let, not var.
The fact that primitives are passed by value, but the fact that the value of var i at the point of iteration is not copied into the anonymous function is quite surprising to say the least.
for (let i = 0; i < boxArray.length; i++) {
boxArray[i].onclick = function() { console.log(i) }; // Correctly prints the index
}
If you want to pass variables by reference, a better way to do that is by passing your arguments in an object and then start changing the value by using window:
window["varName"] = value;
Example:
// Variables with first values
var x = 1, b = 0, f = 15;
function asByReference (
argumentHasVars = {}, // Passing variables in object
newValues = []) // Pass new values in array
{
let VarsNames = [];
// Getting variables names one by one
for(let name in argumentHasVars)
VarsNames.push(name);
// Accessing variables by using window one by one
for(let i = 0; i < VarsNames.length; i += 1)
window[VarsNames[i]] = newValues[i]; // Set new value
}
console.log(x, b, f); // Output with first values
asByReference({x, b, f}, [5, 5, 5]); // Passing as by reference
console.log(x, b, f); // Output after changing values
I like to solve the lack of by reference in JavaScript like this example shows.
The essence of this is that you don't try to create a by reference. You instead use the return functionality and make it able to return multiple values. So there isn't any need to insert your values in arrays or objects.
var x = "First";
var y = "Second";
var z = "Third";
log('Before call:',x,y,z);
with (myFunc(x, y, z)) {x = a; y = b; z = c;} // <-- Way to call it
log('After call :',x,y,z);
function myFunc(a, b, c) {
a = "Changed first parameter";
b = "Changed second parameter";
c = "Changed third parameter";
return {a:a, b:b, c:c}; // <-- Return multiple values
}
function log(txt,p1,p2,p3) {
document.getElementById('msg').innerHTML += txt + '<br>' + p1 + '<br>' + p2 + '<br>' + p3 + '<br><br>'
}
<div id='msg'></div>
Using Destructuring here is an example where I have 3 variables, and on each I do the multiple operations:
If value is less than 0 then change to 0,
If greater than 255 then change to 1,
Otherwise dived the number by 255 to convert from a range of 0-255 to a range of 0-1.
let a = 52.4, b = -25.1, c = 534.5;
[a, b, c] = [a, b, c].map(n => n < 0 ? 0 : n > 255 ? 1 : n / 255);
console.log(a, b, c); // 0.20549019607843136 0 1
I am to write up some code using Javascript. Here is what we are to do:
"Implement a javascript Fibonacci numbers using closures. Specifically, write an function that stores two consecuitive Fibonacci numbers, initially 0 and 1. The function also defines and returns a nested function getNext(). The getNext() function updates the two stored Fibonacci numbers to the next two Fibonacci numbers and returns the current one. E.g. on the first call to getNext() the return value is 0, on the next call it is 1, then 1 again, then 2, etc."
I kind of understand this but not really. Could someone maybe help clarify? Thanks!
The basic idea behind closures is that, since closers bind all local data by value, you can use them to initialize and then modify variables that are only local to that "instance" of the generated function.
Since this seems like homework, I'm going to answer a different question using closures: Use closures to get perfect squares (1, 4, 9, etc.), one at a time.
function makeSquareIteratorFunction() {
var squareRoot = 1;
var getNext = function() {
// Calculate the number you need to return
var square = squareRoot * squareRoot;
// Apply side effects. In this case just incrementing the counter, but with
// Fibonacci you will need to be a little more creative :-)
// You might also prefer to do this first. Depends on your approach.
squareRoot = squareRoot + 1;
// Return the value
return square;
};
// Return the function object, which can then be called later
return getNext;
}
// Usage
var getNextSquare = makeSquareIteratorFunction();
alert(getNextSquare()); // 1
alert(getNextSquare()); // 4
alert(getNextSquare()); // 9
Now, it's worth pointing out that the local variables defined in the outer function (makeSquareIteratorFunction) are localized and bound to the closure. So if you call makeSquareIteratorFunction() multiple times, the later ones will be independent of the first one:
var getNextSquare1 = makeSquareIteratorFunction();
alert(getNextSquare1()); // 1
alert(getNextSquare1()); // 4
var getNextSquare2 = makeSquareIteratorFunction();
alert(getNextSquare2()); // 1 (!) because it's a new closure, initialized the same way
alert(getNextSquare1()); // 9 (!) because it was "on" 4 last time
Hopefully that helps explain it a little? If not, leave a comment. :-)
I just wanted to post a little bit more up to date answer - the fibonacci closure is more readable written using modern JavaScript
function fibonacci() {
let x = 0;
let y = 1;
let z = 0;
return function getNext() {
[z, x, y] = [x, y, x + y];
return z;
};
}
let fun = fibonacci();
for (let i = 0; i < 10; i++) {
console.log(fun());
}
var fibonacci = (function () {
var arr = [0, 1];
return function () {
var num = arr[arr.length - 1],
len = arr.length;
arr.push(arr[len - 1] + arr[len - 2]);
return num;
};
}());
//test
var i;
for (i = 0; i < 10; i++) {
console.log(fibonacci());
}
//1,1,2,3,5,8,13,21,34,55
See the description in http://sarathsaleem.github.com/JavaScriptTasks/
I did this as an answer to this question
Write a function which will return you first two times 1, then 2, then 3, then 5 and so on (Fibonacci numbers). Don’t use any global variables.
fibonacci = ([f0, f1] = [0, 1]) => () => ([f0, f1] = [f1, f0 + f1])[0];
I just wanted to give a more up to date answer written using modern JavaScript.