How do I pass multiple arguments into a javascript callback function? - javascript

Javascript code:
function doSomething(v1,v2){ //blah; }
function SomeClass(callbackFunction,callbackFuncParameters(*Array*))={
this.callback = callbackFunction;
this.method = function(){
this.callback(parameters[0],parameters[1]) // *.*
}
}
var obj = new SomeClass( doSomething, Array('v1text','v2text') );
The problem is if I change function doSomething to
function doSomething(v1,v2,v3){ //blah; }
I have to change the corresponding line (marked as //*.*) in SomeClass to
this.callback(parameters[0],parameters[1],parameters[2]);
What can be done to avoid the (*.*) line to be changed no matter how the number of 'doSomething' function's parameters is changed?
Thanks a lot!

You probably want to use the apply method
this.callback.apply(this, parameters);
The first parameter to apply indicates the value of "this" within the callback and can be set to any value.

Another way now available is to use spread syntax.
this.callback(...callbackFuncParameters)
Here it is again with the full example from the OP:
function doSomething(v1,v2) {
console.log('doing', {v1, v2});
}
function SomeClass(callbackFunction, callbackFuncParameters) {
this.callback = callbackFunction;
this.method = function(){
this.callback(...callbackFuncParameters); // spread!
}
}
var obj = new SomeClass( doSomething, Array('v1text','v2text') );
obj.method()
// output: doing {v1: "v1text", v2: "v2text"}

Related

What does binding a function to 'this' do in the constructor? [duplicate]

What is the use of bind() in JavaScript?
Bind creates a new function that will force the this inside the function to be the parameter passed to bind().
Here's an example that shows how to use bind to pass a member method around that has the correct this:
var myButton = {
content: 'OK',
click() {
console.log(this.content + ' clicked');
}
};
myButton.click();
var looseClick = myButton.click;
looseClick(); // not bound, 'this' is not myButton - it is the globalThis
var boundClick = myButton.click.bind(myButton);
boundClick(); // bound, 'this' is myButton
Which prints out:
OK clicked
undefined clicked
OK clicked
You can also add extra parameters after the 1st (this) parameter and bind will pass in those values to the original function. Any additional parameters you later pass to the bound function will be passed in after the bound parameters:
// Example showing binding some parameters
var sum = function(a, b) {
return a + b;
};
var add5 = sum.bind(null, 5);
console.log(add5(10));
Which prints out:
15
Check out JavaScript Function bind for more info and interactive examples.
Update: ECMAScript 2015 adds support for => functions. => functions are more compact and do not change the this pointer from their defining scope, so you may not need to use bind() as often. For example, if you wanted a function on Button from the first example to hook up the click callback to a DOM event, the following are all valid ways of doing that:
var myButton = {
... // As above
hookEvent(element) {
// Use bind() to ensure 'this' is the 'this' inside click()
element.addEventListener('click', this.click.bind(this));
}
};
Or:
var myButton = {
... // As above
hookEvent(element) {
// Use a new variable for 'this' since 'this' inside the function
// will not be the 'this' inside hookEvent()
var me = this;
element.addEventListener('click', function() { me.click() });
}
};
Or:
var myButton = {
... // As above
hookEvent(element) {
// => functions do not change 'this', so you can use it directly
element.addEventListener('click', () => this.click());
}
};
The simplest use of bind() is to make a function that, no matter
how it is called, is called with a particular this value.
x = 9;
var module = {
x: 81,
getX: function () {
return this.x;
}
};
module.getX(); // 81
var getX = module.getX;
getX(); // 9, because in this case, "this" refers to the global object
// create a new function with 'this' bound to module
var boundGetX = getX.bind(module);
boundGetX(); // 81
Please refer to this link on MDN Web Docs for more information:
Function.prototype.bind()
bind allows-
set the value of "this" to an specific object. This becomes very helpful as sometimes this is not what is intended.
reuse methods
curry a function
For example, you have a function to deduct monthly club fees
function getMonthlyFee(fee){
var remaining = this.total - fee;
this.total = remaining;
return this.name +' remaining balance:'+remaining;
}
Now you want to reuse this function for a different club member. Note that the monthly fee will vary from member to member.
Let's imagine Rachel has a balance of 500, and a monthly membership fee of 90.
var rachel = {name:'Rachel Green', total:500};
Now, create a function that can be used again and again to deduct the fee from her account every month
//bind
var getRachelFee = getMonthlyFee.bind(rachel, 90);
//deduct
getRachelFee();//Rachel Green remaining balance:410
getRachelFee();//Rachel Green remaining balance:320
Now, the same getMonthlyFee function could be used for another member with a different membership fee. For Example, Ross Geller has a 250 balance and a monthly fee of 25
var ross = {name:'Ross Geller', total:250};
//bind
var getRossFee = getMonthlyFee.bind(ross, 25);
//deduct
getRossFee(); //Ross Geller remaining balance:225
getRossFee(); //Ross Geller remaining balance:200
From the MDN docs on Function.prototype.bind() :
The bind() method creates a new function that, when called, has its
this keyword set to the provided value, with a given sequence of
arguments preceding any provided when the new function is called.
So, what does that mean?!
Well, let's take a function that looks like this :
var logProp = function(prop) {
console.log(this[prop]);
};
Now, let's take an object that looks like this :
var Obj = {
x : 5,
y : 10
};
We can bind our function to our object like this :
Obj.log = logProp.bind(Obj);
Now, we can run Obj.log anywhere in our code :
Obj.log('x'); // Output : 5
Obj.log('y'); // Output : 10
This works, because we bound the value of this to our object Obj.
Where it really gets interesting, is when you not only bind a value for this, but also for its argument prop :
Obj.logX = logProp.bind(Obj, 'x');
Obj.logY = logProp.bind(Obj, 'y');
We can now do this :
Obj.logX(); // Output : 5
Obj.logY(); // Output : 10
Unlike with Obj.log, we do not have to pass x or y, because we passed those values when we did our binding.
Variables has local and global scopes. Let's suppose that we have two variables with the same name. One is globally defined and the other is defined inside a function closure and we want to get the variable value which is inside the function closure. In that case we use this bind() method. Please see the simple example below:
var x = 9; // this refers to global "window" object here in the browser
var person = {
x: 81,
getX: function() {
return this.x;
}
};
var y = person.getX; // It will return 9, because it will call global value of x(var x=9).
var x2 = y.bind(person); // It will return 81, because it will call local value of x, which is defined in the object called person(x=81).
document.getElementById("demo1").innerHTML = y();
document.getElementById("demo2").innerHTML = x2();
<p id="demo1">0</p>
<p id="demo2">0</p>
Summary:
The bind() method takes an object as an first argument and creates a new function. When the function is invoked the value of this in the function body will be the object which was passed in as an argument in the bind() function.
How does this work in JS anyway
The value of this in javascript is dependent always depends on what Object the function is called. The value of this always refers to the object left of the dot from where is the function is called. In case of the global scope this is window (or global in nodeJS). Only call, apply and bind can alter the this binding differently. Here is an example to show how the this keyword works:
let obj = {
prop1: 1,
func: function () { console.log(this); }
}
obj.func(); // obj left of the dot so this refers to obj
const customFunc = obj.func; // we store the function in the customFunc obj
customFunc(); // now the object left of the dot is window,
// customFunc() is shorthand for window.customFunc()
// Therefore window will be logged
How is bind used?
Bind can help in overcoming difficulties with the this keyword by having a fixed object where this will refer to. For example:
var name = 'globalName';
const obj = {
name: 'myName',
sayName: function () { console.log(this.name);}
}
const say = obj.sayName; // we are merely storing the function the value of this isn't magically transferred
say(); // now because this function is executed in global scope this will refer to the global var
const boundSay = obj.sayName.bind(obj); // now the value of this is bound to the obj object
boundSay(); // Now this will refer to the name in the obj object: 'myName'
Once the function is bound to a particular this value we can pass it around and even put it on properties on other objects. The value of this will remain the same.
The bind() method creates a new function instance whose this value is bound to the value that was passed into bind().
For example:
window.color = "red";
var o = { color: "blue" };
function sayColor(){
alert(this.color);
}
var objectSayColor = sayColor.bind(o);
objectSayColor(); //blue
Here, a new function called objectSayColor() is created from sayColor() by calling bind() and passing in the object o. The objectSayColor() function has a this value equivalent to o, so calling the function, even as a global call, results in the string “blue” being displayed.
Reference : Nicholas C. Zakas - PROFESSIONAL JAVASCRIPT® FOR WEB DEVELOPERS
I will explain bind theoretically as well as practically
bind in javascript is a method -- Function.prototype.bind . bind is a method. It is called on function prototype. This method creates a function whose body is similar to the function on which it is called but the 'this' refers to the first parameter passed to the bind method. Its syntax is
var bindedFunc = Func.bind(thisObj,optionsArg1,optionalArg2,optionalArg3,...);
Example:--
var checkRange = function(value){
if(typeof value !== "number"){
return false;
}
else {
return value >= this.minimum && value <= this.maximum;
}
}
var range = {minimum:10,maximum:20};
var boundedFunc = checkRange.bind(range); //bounded Function. this refers to range
var result = boundedFunc(15); //passing value
console.log(result) // will give true;
Creating a new Function by Binding Arguments to Values
The bind method creates a new function from another function with one or more arguments bound to specific values, including the implicit this argument.
Partial Application
This is an example of partial application. Normally we supply a function with all of its arguments which yields a value. This is known as function application. We are applying the function to its arguments.
A Higher Order Function (HOF)
Partial application is an example of a higher order function (HOF) because it yields a new function with a fewer number of argument.
Binding Multiple Arguments
You can use bind to transform functions with multiple arguments into new functions.
function multiply(x, y) {
return x * y;
}
let multiplyBy10 = multiply.bind(null, 10);
console.log(multiplyBy10(5));
Converting from Instance Method to Static Function
In the most common use case, when called with one argument the bind method will create a new function that has the this value bound to a specific value. In effect this transforms an instance method to a static method.
function Multiplier(factor) {
this.factor = factor;
}
Multiplier.prototype.multiply = function(x) {
return this.factor * x;
}
function ApplyFunction(func, value) {
return func(value);
}
var mul = new Multiplier(5);
// Produces garbage (NaN) because multiplying "undefined" by 10
console.log(ApplyFunction(mul.multiply, 10));
// Produces expected result: 50
console.log(ApplyFunction(mul.multiply.bind(mul), 10));
Implementing a Stateful CallBack
The following example shows how using binding of this can enable an object method to act as a callback that can easily update the state of an object.
function ButtonPressedLogger()
{
this.count = 0;
this.onPressed = function() {
this.count++;
console.log("pressed a button " + this.count + " times");
}
for (let d of document.getElementsByTagName("button"))
d.onclick = this.onPressed.bind(this);
}
new ButtonPressedLogger();
<button>press me</button>
<button>no press me</button>
As mentioned, Function.bind() lets you specify the context that the function will execute in (that is, it lets you pass in what object the this keyword will resolve to in the body of the function.
A couple of analogous toolkit API methods that perform a similar service:
jQuery.proxy()
Dojo.hitch()
Bind Method
A bind implementation might look something like so:
Function.prototype.bind = function () {
const self = this;
const args = [...arguments];
const context = args.shift();
return function () {
return self.apply(context, args.concat([...arguments]));
};
};
The bind function can take any number of arguments and return a new function.
The new function will call the original function using the JS Function.prototype.apply method.The apply method will use the first argument passed to the target function as its context (this), and the second array argument of the apply method will be a combination of the rest of the arguments from the target function, concat with the arguments used to call the return function (in that order).
An example can look something like so:
function Fruit(emoji) {
this.emoji = emoji;
}
Fruit.prototype.show = function () {
console.log(this.emoji);
};
const apple = new Fruit('🍎');
const orange = new Fruit('🍊');
apple.show(); // 🍎
orange.show(); // 🍊
const fruit1 = apple.show;
const fruit2 = apple.show.bind();
const fruit3 = apple.show.bind(apple);
const fruit4 = apple.show.bind(orange);
fruit1(); // undefined
fruit2(); // undefined
fruit3(); // 🍎
fruit4(); // 🍊
/**
* Bind is a method inherited from Function.prototype same like call and apply
* It basically helps to bind a function to an object's context during initialisation
*
* */
window.myname = "Jineesh";
var foo = function(){
return this.myname;
};
//IE < 8 has issues with this, supported in ecmascript 5
var obj = {
myname : "John",
fn:foo.bind(window)// binds to window object
};
console.log( obj.fn() ); // Returns Jineesh
Consider the Simple Program listed below,
//we create object user
let User = { name: 'Justin' };
//a Hello Function is created to Alert the object User
function Hello() {
alert(this.name);
}
//since there the value of this is lost we need to bind user to use this keyword
let user = Hello.bind(User);
user();
//we create an instance to refer the this keyword (this.name);
Simple Explanation:
bind() create a new function, a new reference at a function it returns to you.
In parameter after this keyword, you pass in the parameter you want to preconfigure. Actually it does not execute immediately, just prepares for execution.
You can preconfigure as many parameters as you want.
Simple Example to understand bind:
function calculate(operation) {
if (operation === 'ADD') {
alert('The Operation is Addition');
} else if (operation === 'SUBTRACT') {
alert('The Operation is Subtraction');
}
}
addBtn.addEventListener('click', calculate.bind(this, 'ADD'));
subtractBtn.addEventListener('click', calculate.bind(this, 'SUBTRACT'));
The bind function creates a new function with the same function body as the function it is calling .It is called with the this argument .why we use bind fun. : when every time a new instance is created and we have to use first initial instance then we use bind fun.We can't override the bind fun.simply it stores the initial object of the class.
setInterval(this.animate_to.bind(this), 1000/this.difference);
function.prototype.bind() accepts an Object.
It binds the calling function to the passed Object and the returns
the same.
When an object is bound to a function, it means you will be able to
access the values of that object from within the function using
'this' keyword.
It can also be said as,
function.prototype.bind() is used to provide/change the context of a
function.
let powerOfNumber = function(number) {
let product = 1;
for(let i=1; i<= this.power; i++) {
product*=number;
}
return product;
}
let powerOfTwo = powerOfNumber.bind({power:2});
alert(powerOfTwo(2));
let powerOfThree = powerOfNumber.bind({power:3});
alert(powerOfThree(2));
let powerOfFour = powerOfNumber.bind({power:4});
alert(powerOfFour(2));
Let us try to understand this.
let powerOfNumber = function(number) {
let product = 1;
for (let i = 1; i <= this.power; i++) {
product *= number;
}
return product;
}
Here, in this function, this corresponds to the object bound to the function powerOfNumber. Currently we don't have any function that is bound to this function.
Let us create a function powerOfTwo which will find the second power of a number using the above function.
let powerOfTwo = powerOfNumber.bind({power:2});
alert(powerOfTwo(2));
Here the object {power : 2} is passed to powerOfNumber function using bind.
The bind function binds this object to the powerOfNumber() and returns the below function to powerOfTwo. Now, powerOfTwo looks like,
let powerOfNumber = function(number) {
let product = 1;
for(let i=1; i<=2; i++) {
product*=number;
}
return product;
}
Hence, powerOfTwo will find the second power.
Feel free to check this out.
bind() function in Javascript
The bind() method creates a new function that, when called, has its this keyword set to the provided value, with a given sequence of arguments preceding any provided when the new function is called.
An example for the first part
grabbed from react package useSt8
import { useState } from "react"
function st8() {
switch(arguments.length) {
case 0: return this[0]
case 1: return void this[1](arguments[0])
default: throw new Error("Expected 0 or 1 arguments")
}
}
function useSt8(initial) {
// this in st8 will be something like [state, setSatate]
return st8.bind(useState(initial))
}
// usage
function Counter() {
const count = useSt8(0);
return (
<>
Count: {count()}
<button onClick={() => count(0)}>Reset</button>
<button onClick={() => count(prevCount => prevCount + 1)}>inc</button>
</>
);
}
An example for the second part
const add = (a, b) => a+b
someThis = this
// new function with this value equal to someThis
add5 = add.bind(someThis, 5)
add5(10) // 15
// we don't use this in add decelartion so this will work too.
add10 = add.bind(null, 10)
add10(5) // 15
Here's the simplest possible explanation:
Say you have a function
function _loop(n) { console.log("so: " + n) }
obviously you can call it like _loop(69) as usual.
Rewrite like this:
var _loop = function() { console.log("so: " + this.n) }
Notice there are now
no arguments as such
you use "this. " to get to the named arguments
You can now call the function like this:
_loop.bind( {"n": 420} )
That's it.
Most typical use case:
A really typical use is when you need to add an argument to a callback.
Callbacks can't have arguments.
So just "rewrite" the callback as above.
Simple example
function lol(second, third) {
console.log(this.first, second, third);
}
lol(); // undefined, undefined, undefined
lol('1'); // undefined, "1", undefined
lol('1', '2'); // undefined, "1", "2"
lol.call({first: '1'}); // "1", undefined, undefined
lol.call({first: '1'}, '2'); // "1", "2", undefined
lol.call({first: '1'}, '2', '3'); // "1", "2", "3"
lol.apply({first: '1'}); // "1", undefined, undefined
lol.apply({first: '1'}, ['2', '3']); // "1", "2", "3"
const newLol = lol.bind({first: '1'});
newLol(); // "1", undefined, undefined
newLol('2'); // "1", "2", undefined
newLol('2', '3'); // "1", "2", "3"
const newOmg = lol.bind({first: '1'}, '2');
newOmg(); // "1", "2", undefined
newOmg('3'); // "1", "2", "3"
const newWtf = lol.bind({first: '1'}, '2', '3');
newWtf(); // "1", "2", "3"
Another usage is that you can pass binded function as an argument to another function which is operating under another execution context.
var name = "sample";
function sample(){
console.log(this.name);
}
var cb = sample.bind(this);
function somefunction(cb){
//other code
cb();
}
somefunction.call({}, cb);
In addition to what have been said, the bind() method allows an object to borrow a method from another object without making a copy of that method. This is known as function borrowing in JavaScript.
i did not read above code but i learn something in simple so want to share here about bind method after bind method we can use it as any normal method.
<pre> note: do not use arrow function it will show error undefined </pre>
let solarSystem = {
sun: 'red',
moon : 'white',
sunmoon : function(){
let dayNight = this.sun + ' is the sun color and present in day and '+this.moon + ' is the moon color and prenet in night';
return dayNight;
}
}
let work = function(work,sleep){
console.log(this.sunmoon()); // accessing the solatSystem it show error undefine sunmmon untill now because we can't access directly for that we use .bind()
console.log('i work in '+ work +' and sleep in '+sleep);
}
let outPut = work.bind(solarSystem);
outPut('day','night')
bind is a function which is available in java script prototype, as the name suggest bind is used to bind your function call to the context whichever you are dealing with for eg:
var rateOfInterest='4%';
var axisBank=
{
rateOfInterest:'10%',
getRateOfInterest:function()
{
return this.rateOfInterest;
}
}
axisBank.getRateOfInterest() //'10%'
let knowAxisBankInterest=axisBank.getRateOfInterest // when you want to assign the function call to a varaible we use this syntax
knowAxisBankInterest(); // you will get output as '4%' here by default the function is called wrt global context
let knowExactAxisBankInterest=knowAxisBankInterest.bind(axisBank); //so here we need bind function call to its local context
knowExactAxisBankInterest() // '10%'

Why I cannot access variable through this in Windows 8 JavaScript App

My code is very simple. Ans to me it should work.
var preview = WinJS.Class.define(
function (el, options) {
el.winControl = this;
this.el = el;
this.textarea = d.getElementById('preview-input');
this.preview = d.getElementById('preview-text');
this.form = d.getElementById('perview-form');
this.preview.addEventListener('click', this.click, false);
//WinJS.Utilities.query("button", this.form)
//this.preview.addEventListener('', this.save, false);
},
{
click: function (e) {
this.form.style('display', 'block');
}
}
);
WinJS.Namespace.define('RegCtrl', { preview: preview });
But when click occurs this.form seems to be undefined of null. Why? I do not want to initialize objects in every method of the class.
New tests
I made additional test very small
var preview = WinJS.Class.define(
function (el, options) {
var test = 1;
this.test = 1;
this.test1();
},
{
test1: function () {
console.log(this.form, test);
}
}
);
WinJS.Namespace.define('RegCtrl', { preview: preview });
This test fails on line this.test1();. What I think now that this class is called RegCtrl.preview() rather than new RegCtrl.preview().
How do I shek inside the function that this called as new but not a simple function?
The other answers aren't explaining what's going on, and as such are giving incorrect advice.
JavaScript has first-class function objects - you can pass them around as values. That's exactly what you're doing when you set up this callback:
this.preview.addEventListener('click', this.click, false);
You're taking the contents of the this.click property, which happens to be a function, and handing it to the addEventListener function to do whatever it wants with it.
I was very specific about terminology there - note I specifically said function, not method. JavaScript doesn't really have a method construct, it just has methods as properties on an object.
So where does the "this" member come from? It's determined at the caller - the object you use on the left side of the '.' is the one that becomes the value of this. For example,
function exampleFunc() { console.log("this.myName = " + this.myName); }
var a = { myName: "Chris", doSomething: exampleFunc };
var b = { myName: "Bob", doSomething: exampleFunc };
Note I've assigned the exact same function to the doSomething properties. What what happens:
a.doSomething(); // Outputs "this.myName = Chris"
b.doSomething(); // Outputs "this.myName = Bob"
The exact same function object, called through two different objects, has a different this pointer.
exampleFunc is a global function, let's call it:
exampleFunc() // Outputs "this.myName = undefined"
So where'd the undefined come from? In a global function, "this" is set to window (the global scope), which didn't have the myName property defined. Which also means that you could do this instead:
myName = "Global Name"; // note, no var - we want this global
exampleFunc(); // Outputs "this.myName = Global Name"
Ok, so what's going on with the original question? Basically, you've passed the function this.click to be the callback, but you haven't passed the "this" pointer that you want it called through. Actually, addEventListener doesn't have a way to pass the this pointer. As a result, when the function is invoked this is not pointing at your object. I don't remember off the top of my head what it's pointing at - it's either window or the element that was clicked on, check the DOM documentation to verify.
To get it to call the right function with the right context (context = the correct "this"), the traditional approach is to use a closure. Capture "this" in a variable, then pass in an anonymous function that calls your actual callback with the right this pointer. The code looks like this:
var preview = WinJS.Class.define(
function (el, options) {
// Capture your current this pointer in a global variable
// Using "that" as the name comes from JavaScript: The Good Parts book
var that = this;
el.winControl = this;
this.el = el;
this.textarea = d.getElementById('preview-input');
this.preview = d.getElementById('preview-text');
this.form = d.getElementById('perview-form');
// Note what gets passed instead of this.click:
this.preview.addEventListener('click',
function (e) {
// NOTE: Calling through "that": "this" isn't pointing to the right object anymore
// Calling through "that" resets "this" inside the call to click
that.click(e);
}, false);
},
{
click: function (e) {
this.form.style('display', 'block');
}
}
);
This is a common enough pattern that ECMAScript 5 has a utility function to build these wrappers for you - function.bind. Do this:
this.preview.addEventListener('click',
this.click.bind(this),
false);
The construct this.click.bind(this) will construct a new function that, when called, will set the "this" reference to whatever you passed (in this case "this"), and then invoke the function you called it on.
Yes, there are a lot of different values for "this" floating around. Keeping track of what "this" is pointing at is an important part of mastering JavaScript programming.
I think you may want to define a global JavaScript variable as :
var myForm = document.getElementById('perview-form');
or jest define var myForm; and initialize inside function (el, options) as:
myForm = d.getElementById('perview-form');
Now you can use this variable in your function as :
myForm.style('display', 'block');
EDIT: I believe you may define this variable as first line in your WinJS.Class.define to make it instance level variable as below:
var preview = WinJS.Class.define(
var myForm;
function (el, options) {
....
....
myForm = d.getElementById('perview-form');
...
},
{
click: function (e) {
myForm.style('display', 'block');
}
});
This is a really hard thing to research if you don't know what to look for. I added one line and changed another line. That should fix your issue.
In short, the keyword this gets reset every time you enter a new function, this the value of this inside your click function is not the same this of the outer scope. Preserve this this you want. The name of that seems fairly common.
Edited based on the link provided by the OP.
This code is UNTESTED. If using this doesn't work now, then I'd try this2
Sorry I can't test this, but I don't have the framework anywhere so I'm doing
educated guesswork.
var preview = WinJS.Class.define(
function (el, options) {
that = this; // No var should be needed since it is declared already
el.winControl = this;
this.el = el;
this.textarea = d.getElementById('preview-input');
this.preview = d.getElementById('preview-text');
this.form = d.getElementById('perview-form');
this.preview.addEventListener('click', this.click, false);
//WinJS.Utilities.query("button", this.form)
//this.preview.addEventListener('', this.save, false);
},
// This is the section for instance vars
{
click: function (e) {
that.form.style('display', 'block'); // AND THIS ONE
},
that: null // Added instance variable
},
// And these are static variables
{
that2: null
}
);

Javascript classes and variable references

I'm trying to solve this puzzle minded Javascript OOP problem.
So I have the following class :
var ClassA = function() {
this.initialize();
}
ClassA.prototype = {
methods : ['alpha','beta','gama'],
initialize : function() {
for ( var i in this.methods ) {
this[this.methods[i]] = function() {
console.log(this.methods[i]);
}
}
}
}
var a = new ClassA();
When I call every method I expect to print the name of it, right? But here is what i get :
a.alpha(); // returns gama ?!?
a.beta(); // returns gama ?!?
a.gama(); // returns gama
But when my class looks like this :
var ClassB = function() {
this.initialize();
}
ClassB.prototype = {
methods : ['alpha', 'beta', 'gama'],
initialize: function() {
for ( var i in this.methods ) {
this.addMethod(this.methods[i]);
}
},
addMethod: function(method) {
this[method] = function() {
console.log(method);
}
}
}
var b = new ClassB();
b.alpha(); // returns alpha
b.beta(); // returns beta
b.gama(); // returns gama
Why is this happening ?
for ( var i in this.methods ) {
this[this.methods[i]] = function() {
console.log(this.methods[i]);
}
}
Your problem lies here. When this loop ends, i is the last element. Each function uses the same i, so they are all the last element.
When you use addMethod you are making a closure to "capture" the correct value.
EDIT: When you call addMethod you are "copying" the value, instead of using the i value, which changes with each loop iteration.
In your first version:
initialize : function() {
for ( var i in this.methods ) {
this[this.methods[i]] = function() {
console.log(this.methods[i]);
}
}
}
The methods that you create within initialize all refer to the same i variable from initialize - and after initialize runs i has the value "gama", so regardless of which of the methods you call that's the value of i that they'll log to the console. JS doesn't store the current value of i at the time the method is created.
JS creates a "closure" for each function - variables declared in your initialize function (i.e., i) continue to be in scope for the nested function(s) even after initialize has finished.
The second version calls addMethod to add each method:
addMethod: function(method) {
this[method] = function() {
console.log(method);
}
}
...and so when they run they'll refer to their own "copy" of the method parameter because then there is a separate closure for each of the methods.
Edit: See also this question: How do JavaScript closures work? (several answers there explain this more clearly than I did).
You can fix your first example by adding an anonymous closure:
initialize : function() {
for ( var i in this.methods ) {
(function (i) { // anonymous closure
this[this.methods[i]] = function() {
console.log(this.methods[i]);
}
}).call(this, i); // use .call() if you need "this" inside
}
}
Now it will work the same way as your second example. "Anonymous" means that the closure is made by function which doesn't have a name and is called instantly as it is "created".
Note sideways: use .call(this, ...) to preserve this inside the called function, or you can do var that = this, use that instead of this and call the function normally:
for ( var i in this.methods ) {
var that = this;
(function (i) { // anonymous closure
that[that.methods[i]] = function() {
console.log(that.methods[i]);
}
})(i); // Called normally so use "that" instead of "this"!
}
Well, first of all stop using for (property in object) loops on Arrays. It's all fun and games until somebody prototypes to the Array object which is both a perfectly reasonable and very useful/popular thing to do. This will result in custom methods getting added to your for x in array loops.
As for the problem, it's doing exactly what you told it to do in version 1. The problem is that by the time you get around to firing it, i is the last thing i was, 'gamma'. When you pass a reference into a function as an argument, the function holds on to the value's state as it was passed.

How does 'call' work in javascript?

I have a question on 'call' in javascript.
var humanWithHand = function(){
this.raiseHand = function(){
alert("raise hand");
}
}
var humanWithFoot = function(){
this.raiseFoot = function(){
alert("raise foot");
}
}
var human = function(){
humanWithHand.call( this );
humanWithFoot.call( this );
}
var test = new human();
so..when I use 'call' as humanWithHand.call(this), what happens internally?
does humanWithHand variable copies (or points?) its properties and members to human variable's prototype?
Yehuda Katz has a good writeup of JavaScript's Function#call method. His writeup should answer your question, and many followup questions besides.
When you call a function directly, using the general syntax:
var foo = function() {
console.log("foo");
return this;
};
foo(); // evaluates to `window`
Then this inside the function call is whatever this is outside the function call. By default, in the browser, this outside any function calls is window. So inside the function call as above, this is also by default window.
When you call a function using the method-call syntax:
var bar = {
foo: function() {
console.log("foo");
return this;
}
};
bar.foo(); // evaluates to `bar`
Then this inside the function call is the object to the left of the rightmost period: in this case, bar.
We can simulate this situation using call.
When you set up a function outside an object and want to call it with this inside the function call set to an object, you can:
var foo = function() {
console.log("foo");
return this;
}
var bar = { };
foo.call(bar); // evaluates to `bar`
You can use this technique to pass arguments as well:
var foo = function(arg1, arg2) {
console.log("foo");
return arg1 + arg2;
}
var bar = { };
foo.call(bar, "abc", "xyz"); // evaluates to `"abcxyz"`
.call() sets the this value and then calls the function with the arguments you passed to .call(). You use .call() instead of just calling the function directly when you want to set the this value inside the called function rather than let it be set to whatever javascript would normally set it to.
.apply() is a sister function. It can also set the this value and it can take arguments in an array so it can be used when you are trying to pass a variable argument list from some other function call or when you're constructing an argument list programmatically which may have different numbers of arguments depending upon the situation.

Extend Javascript Function passed as parameter

I have a javascript function (class) that takes a function reference as one paremter.
function MyClass ( callBack ) {
if (typeof callBack !== 'function')
throw "You didn't pass me a function!"
}
For reasons I won't go in to here, I need to append something to the function by enclosing it in an anonymous function, but the only way I've been able to figure out how to do it is by adding a public function to MyClass that takes the callBack function as a parameter and returns the modified version.
function MyClass () {
this.modifyCallBack = function ( callBack ) {
var oldCallBack = callBack;
callBack = function () {
oldCallBack(); // call the original functionality
/* new code goes here */
}
return callBack;
}
}
/* elsewhere on the page, after the class is instantiated and the callback function defined */
myCallBackFunction = MyClassInstance.modifyCallBack( myCallBackFunction );
Is it possible to make this work when passing the callBack function as a parameter to the class? Attempting to modify the function in this manner when passign it as a parameter seems to only affect the instance of it in within the class, but that doesn't seem like it's a valid assumption since functions are Objects in javascript, and are hence passed by reference.
Update: as crescentfresh pointed out (and I failed to explain well), I want to modify the callBack function in-place. I'd rather not call a second function if it's possible to do all of this when the class is instantiated.
Function objects don't provide methods to modify them. Therefore, what you want to do is impossible the way you want to do it. It's the same thing Jon Skeet likes to point out about Java: Objects are not really passed by reference, but instead a pointer to them is passed by value. That means that changing the value of an argument variable to a new one won't affect the original one at all.
There are only two ways to do what you want in call-by-value languages like Java and JavaScript: The first one would be to use the (function) object's methods to modify it. As I already stated, function objects don't have those. The other one is to pass the object of which the function object is a property as a second argument and set the appropriate property to a new function which wraps the old one.
Example:
var foo = {};
foo.func = function() {};
function wrapFunc(obj) {
var oldFunc = obj.func;
obj.func = function() {
// do some stuff
oldFunc.call(obj, _some_argument__);
};
}
wrapFunc(foo);
This works for global functions as well: they are properties of the window object.
As Javascript uses lexical scoping on variables the following is possible:
var modifiableCallback=function() { alert('A'); };
function ModifyCallbackClass(callback)
{
modifiableCallback=function() { callback(); alert('B'); };
}
function body_onload()
{
var myClass=new ModifyCallbackClass(modifiableCallback);
modifiableCallback();
}
This does what you want, however the function "modifiableCallback" must be referred to with the same name inside ModifyCallbackClass, otherwise the closure will not be applied. So this may limit the usefulness of this approach for you a little.
Using eval (performance may suffer a bit) it is also possible to make this approach more flexible:
var modfiableCallback1=function() { alert('A'); };
var modfiableCallback2=function() { alert('B'); };
var modfiableCallback3=function() { alert('C'); };
function ModifyCallbackClass(callbackName)
{
var temp=eval(callbackName);
var temp2=eval(callbackName);
temp= function() { temp2(); alert('Modified'); };
eval(callbackName + " = temp;");
}
function body_onload()
{
var myClass=new ModifyCallbackClass("modfiableCallback1");
modfiableCallback1();
myClass=new ModifyCallbackClass("modfiableCallback2");
modfiableCallback2();
myClass=new ModifyCallbackClass("modfiableCallback3");
modfiableCallback3();
}
I assume you are saving this callback somewhere... Any reason this won't work?
function MyClass ( callBack ) {
var myCallBack;
if (typeof callBack !== 'function')
throw "You didn't pass me a function!"
var oldCallBack = callBack;
callBack = function () {
oldCallBack(); // call the original functionality
/* new code goes here */
}
myCallBack = callback;
}
You want to do something like:
function MyClass () {
this.modifyCallBack = function ( callBack ) {
var oldCallBack = callBack;
callBack = function () {
oldCallBack(); // call the original functionality
alert("new functionality");
}
return callBack;
}
}
/* elsewhere on the page, after the class is instantiated and the callback function defined */
var myCallBackFunction = function () {alert("original");};
var MyClassInstance = new MyClass();
myCallBackFunction = MyClassInstance.modifyCallBack( myCallBackFunction );
myCallBackFunction();

Categories