We coded a spinning 3d shape in js. There's a flicker in the render of the top triangle, we think it's because the z sorting is not working correctly. How do we resolve this?
Here's a jsfiddle.
Here's the z sorting code:
// z sorting
// dots_for_rendering.sort((a,b) => Math.sqrt((b.x)**2 + (b.y)**2) - Math.sqrt((a.x)**2 + (a.y)**2))
for (var i = 0; i < polygons.length; i++) {
polygons[i].maxz = -Infinity;
polygons[i].minz = Infinity;
polygons[i].midz = 0;
for (var j = 0; j < polygons[i].verticies.length; j++) {
var z = rotated_verticies[polygons[i].verticies[j]].vector[2];
if (z > polygons[i].maxz) {
polygons[i].maxz = z;
}
if (z < polygons[i].minz) {
polygons[i].minz = z;
}
polygons[i].midz += z;
}
polygons[i].midz /= polygons[i].verticies.length;
}
polygons.sort((a, b) => b.midz - a.midz)
// polygons.sort((a,b) => Math.max(b.maxz - a.minz, b.minz - a.maxz))
// polygons.sort((a,b) => {
// if (a.minz < b.maxz) {
// return 0;
// }
// if (b.minz < a.maxz) {
// return -1;
// }
// return 0;
// })
Here's a code snippet:
class Tensor {
constructor(){
var input = this.takeInput(...arguments);
this.vector = input;
}
takeInput() {
var a = true;
for (var arg of arguments) {
if (typeof arg !== "number"){
a = false
}
}
if (a && arguments[2] !== true){
return new Array(...arguments);
}
else {
if (arguments[0] instanceof Tensor){
return arguments[0].vector;
}
else {
if (typeof arguments[0] === "number" && typeof arguments[1] === "number" && arguments[2] === true) {
var res = [];
for (var i = 0; i < arguments[0]; i++) {
res.push(arguments[1]);
}
return res;
}
}
}
}
// used for + - * /
change(f, input){
for (var i in this.vector) {
this.vector[i] = f(this.vector[i], input[i]);
}
return this;
}
copy() {
return new Tensor(...this.vector);
}
dimentions() {
return this.vector.length;
}
//-----------
len() {
var s = 0;
for (var dim of this.vector) {
s += dim ** 2;
}
return Math.sqrt(s);
}
norm() {
return this.div(this.dimentions(), this.len(), true)
}
add() {
var input = this.takeInput(...arguments);
return this.change((x, y) => x + y, input);
}
sub() {
var input = this.takeInput(...arguments);
return this.change((x, y) => x - y, input);
}
mult() {
var input = this.takeInput(...arguments);
return this.change((x, y) => x * y, input);
}
div() {
var input = this.takeInput(...arguments);
return this.change((x, y) => x / y, input);
}
dot() {
var input = this.takeInput(...arguments);
var res = 0;
for (var i in this.vector) {
res += this.vector[i] * input[i]
}
return res;
}
rotate() {
// WARNING: only for 3D currently!!!
var input = this.takeInput(...arguments);
var [x, y, z] = this.vector;
// rotate Z
var t_x = x * Math.cos(input[2]) - y * Math.sin(input[2])
y = y * Math.cos(input[2]) + x * Math.sin(input[2])
x = t_x
// rotate X
var t_y = y * Math.cos(input[0]) - z * Math.sin(input[0])
z = z * Math.cos(input[0]) + y * Math.sin(input[0])
y = t_y
// rotate Y
t_x = x * Math.cos(input[1]) + z * Math.sin(input[1])
z = z * Math.cos(input[1]) - x * Math.sin(input[1])
x = t_x
this.vector = [x, y, z];
return this;
}
}
var canvas = document.getElementById('canvas')
var ctx = canvas.getContext("2d")
w = 300
h = 286
fov = 0.1
scale = 65;
offset = new Tensor(w / 2 - 5, h / 2 - 92, 0.1);
light = new Tensor(3.5, 0.5, 1).norm();
canvas.width = w;
canvas.height = h;
var verticies = [];
verticies.push(new Tensor(0.5, 1, 0))
verticies.push(new Tensor(0.5, -1, 0))
verticies.push(new Tensor(-1, 0, 0))
verticies.push(new Tensor(0, 0, 2))
var polygons = [];
polygons.push({
verticies: [0, 3, 1],
color: 'red',
nf: 1
});
polygons.push({
verticies: [2, 3, 0],
color: 'blue',
nf: 1
});
polygons.push({
verticies: [2, 3, 1],
color: 'green',
nf: -1
});
polygons.push({
verticies: [0, 1, 2],
color: 'yellow',
nf: -1
});
for (var i = 0; i < polygons.length; i++) {
polygons[i].id = i;
}
theta = new Tensor(1.5 * Math.PI, 0, 1.5 * Math.PI);
function loop() {
ctx.clearRect(0, 0, w, h);
rotated_verticies = [];
for (var i = 0; i < verticies.length; i++) {
rotated_verticies.push(verticies[i].copy().rotate(theta));
}
// z sorting
// dots_for_rendering.sort((a,b) => Math.sqrt((b.x)**2 + (b.y)**2) - Math.sqrt((a.x)**2 + (a.y)**2))
for (var i = 0; i < polygons.length; i++) {
polygons[i].maxz = -Infinity;
polygons[i].minz = Infinity;
polygons[i].midz = 0;
for (var j = 0; j < polygons[i].verticies.length; j++) {
var z = rotated_verticies[polygons[i].verticies[j]].vector[2];
// z += 1 * (Math.random() * 2 - 1)
if (z > polygons[i].maxz) {
polygons[i].maxz = z;
}
if (z < polygons[i].minz) {
polygons[i].minz = z;
}
polygons[i].midz += z;
}
polygons[i].midz /= polygons[i].verticies.length;
}
polygons.sort((a, b) => b.midz - a.midz)
// polygons.sort((a,b) => Math.max(b.maxz - a.minz, b.minz - a.maxz))
// polygons.sort((a,b) => {
// if (a.minz < b.maxz) {
// return 0;
// }
// if (b.minz < a.maxz) {
// return -1;
// }
// return 0;
// })
for (var i = 0; i < polygons.length; i++) {
var polygon_2 = [];
for (var j = 0; j < polygons[i].verticies.length; j++) {
var v = rotated_verticies[polygons[i].verticies[j]]
polygon_2.push(v.vector);
}
var norm = getNormal(polygon_2, polygons[i].nf);
// var rotated_light = light.copy().rotate(theta);
var brightness = Math.max(0, norm.dot(light))
//ctx.fillStyle = "hsl(31, "+100+"%, "+(Math.min(9.0*brightness + 40, 100))+"%)";
ctx.fillStyle = "hsl(190, "+100+"%, "+(Math.min(9.0*brightness + 40, 100))+"%)";
// ctx.fillStyle = polygons[i].color
ctx.beginPath();
for (var j = 0; j < polygons[i].verticies.length; j++) {
var vertex = rotated_verticies[polygons[i].verticies[j]].copy();
vertex.mult(scale, scale, 1);
vertex.add(offset);
var n = 1 + vertex.vector[2] * fov;
vertex.div(n, n, 1)
// console.log(vertex.vector)
if (j == 0) {
ctx.moveTo(vertex.vector[0], vertex.vector[1]);
} else {
ctx.lineTo(vertex.vector[0], vertex.vector[1]);
}
}
ctx.closePath();
ctx.fill()
// ctx.stroke()
polygons[i].mid = new Tensor(3, 0, true);
for (var k = 0; k < polygons[i].verticies.length; k++) {
var vertex = rotated_verticies[polygons[i].verticies[k]].copy();
vertex.mult(scale, scale, 1);
vertex.add(offset);
var n = 1 + vertex.vector[2] * fov;
vertex.div(n, n, 1)
polygons[i].mid.add(vertex);
}
polygons[i].mid.div(3, polygons[i].verticies.length, true);
ctx.fillStyle = "red"
ctx.font = '50px serif';
// ctx.fillText(polygons[i].id + ", " + polygons[i].nf, polygons[i].mid.vector[0], polygons[i].mid.vector[1])
}
// theta.add(theta.vector[0] + (0.01*mouseY - theta.vector[0]) * 0.1, 0, theta.vector[2] + (-0.01*mouseX - theta.vector[2]) * 0.1)
theta.add(0, -0.0375, 0);
// fov = (mouseX - w/2) * 0.001
requestAnimationFrame(loop);
}
loop();
// setInterval(loop, 1000 / 60)
function getNormal(polygon, nf) {
var Ax = polygon[1][0] - polygon[0][0];
var Ay = polygon[1][1] - polygon[0][1];
var Az = polygon[1][2] - polygon[0][2];
var Bx = polygon[2][0] - polygon[0][0];
var By = polygon[2][1] - polygon[0][1];
var Bz = polygon[2][2] - polygon[0][2];
var Nx = Ay * Bz - Az * By
var Ny = Az * Bx - Ax * Bz
var Nz = Ax * By - Ay * Bx
return new Tensor(nf * Nx, nf * Ny, nf * Nz);
}
function len(p1, p2) {
return Math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2 + (p2[2] - p1[2]) ** 2);
}
mouseX = 0
mouseY = 0
onmousemove = (e) => {
mouseX = e.clientX;
mouseY = e.clientY;
}
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta name=”ad.size” content=”width=300,height=600”>
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>...</title>
</head>
<body>
<canvas id="canvas" width="300" height="238"></canvas>
</body>
</html>
** Edit:
Ok, we've significantly edited the code, see this fiddle, and the following code snippet below. It's still not working correctly, we think it's something to do with the first line of this piece of code, any ideas?
if (polygons[i].mid.copy().sub(camera).dot(norm) < 0) {
var pathelem = document.createElementNS("http://www.w3.org/2000/svg", "path");
pathelem.setAttribute("d", path);
pathelem.setAttribute("fill", "hsl(31, "+100+"%, "+(Math.min(9.0*brightness + 40, 100))+"%)");
svg.appendChild(pathelem);
}
class Tensor {
constructor(){
var input = this.takeInput(...arguments);
this.vector = input;
}
takeInput() {
var a = true;
for (var arg of arguments) {
if (typeof arg !== "number"){
a = false
}
}
if (a && arguments[2] !== true){
return new Array(...arguments);
}
else {
if (arguments[0] instanceof Tensor){
return arguments[0].vector;
}
else {
if (typeof arguments[0] === "number" && typeof arguments[1] === "number" && arguments[2] === true) {
var res = [];
for (var i = 0; i < arguments[0]; i++) {
res.push(arguments[1]);
}
return res;
}
}
}
}
// used for + - * /
change(f, input){
for (var i in this.vector) {
this.vector[i] = f(this.vector[i], input[i]);
}
return this;
}
copy() {
return new Tensor(...this.vector);
}
dimentions() {
return this.vector.length;
}
//-----------
len() {
var s = 0;
for (var dim of this.vector) {
s += dim ** 2;
}
return Math.sqrt(s);
}
norm() {
return this.div(this.dimentions(), this.len(), true)
}
add() {
var input = this.takeInput(...arguments);
return this.change((x, y) => x + y, input);
}
sub() {
var input = this.takeInput(...arguments);
return this.change((x, y) => x - y, input);
}
mult() {
var input = this.takeInput(...arguments);
return this.change((x, y) => x * y, input);
}
div() {
var input = this.takeInput(...arguments);
return this.change((x, y) => x / y, input);
}
dot() {
var input = this.takeInput(...arguments);
var res = 0;
for (var i in this.vector) {
res += this.vector[i] * input[i]
}
return res;
}
rotate() {
// WARNING: only for 3D currently!!!
var input = this.takeInput(...arguments);
var [x, y, z] = this.vector;
// rotate Z
var t_x = x * Math.cos(input[2]) - y * Math.sin(input[2])
y = y * Math.cos(input[2]) + x * Math.sin(input[2])
x = t_x
// rotate X
var t_y = y * Math.cos(input[0]) - z * Math.sin(input[0])
z = z * Math.cos(input[0]) + y * Math.sin(input[0])
y = t_y
// rotate Y
t_x = x * Math.cos(input[1]) + z * Math.sin(input[1])
z = z * Math.cos(input[1]) - x * Math.sin(input[1])
x = t_x
this.vector = [x, y, z];
return this;
}
}
var svg = document.getElementById('svg')
w = 300
h = 286
fov = 0.1
scale = 65;
camera = new Tensor(-w / 2 + 5, -h / 2 + 92, 0.1);
light = new Tensor(3.5, 0.5, 1).norm();
svg.setAttribute('width', w);
svg.setAttribute('height', h);
var vertices = [
new Tensor(0.5, 1, 0),
new Tensor(0.5, -1, 0),
new Tensor(-1, 0, 0),
new Tensor(0, 0, 2)
];
var polygons = [];
polygons.push({
vertices: [0, 3, 1],
color: 'red',
nf: 1
});
polygons.push({
vertices: [2, 3, 0],
color: 'blue',
nf: 1
});
polygons.push({
vertices: [2, 3, 1],
color: 'green',
nf: -1
});
polygons.push({
vertices: [0, 1, 2],
color: 'yellow',
nf: 1
});
for (var i = 0; i < polygons.length; i++) {
polygons[i].id = i;
}
theta = new Tensor(1.5 * Math.PI, 0, 1.5 * Math.PI);
function loop() {
// ctx.clearRect(0, 0, w, h);
svg.innerHTML = "";
rotated_vertices = [];
for (var i = 0; i < vertices.length; i++) {
rotated_vertices.push(vertices[i].copy().rotate(theta));
}
// z sorting
// dots_for_rendering.sort((a,b) => Math.sqrt((b.x)**2 + (b.y)**2) - Math.sqrt((a.x)**2 + (a.y)**2))
for (var i = 0; i < polygons.length; i++) {
polygons[i].maxz = -Infinity;
polygons[i].minz = Infinity;
polygons[i].midz = 0;
for (var j = 0; j < polygons[i].vertices.length; j++) {
var z = rotated_vertices[polygons[i].vertices[j]].vector[2];
// z += 1 * (Math.random() * 2 - 1)
if (z > polygons[i].maxz) {
polygons[i].maxz = z;
}
if (z < polygons[i].minz) {
polygons[i].minz = z;
}
polygons[i].midz += z;
}
polygons[i].midz /= polygons[i].vertices.length;
polygons[i].mid = new Tensor(3, 0, true);
for (var k = 0; k < polygons[i].vertices.length; k++) {
var vertex = rotated_vertices[polygons[i].vertices[k]].copy();
vertex.mult(scale, scale, 1);
vertex.sub(camera);
var n = 1 + vertex.vector[2] * fov;
vertex.div(n, n, 1)
polygons[i].mid.add(vertex);
}
polygons[i].mid.div(3, polygons[i].vertices.length, true);
}
polygons.sort((a, b) => b.midz - a.midz)
// polygons.sort((a,b) => Math.max(b.maxz - a.minz, b.minz - a.maxz))
// polygons.sort((a,b) => {
// if (a.minz < b.maxz) {
// return 0;
// }
// if (b.minz < a.maxz) {
// return -1;
// }
// return 0;
// })
for (var i = 0; i < polygons.length; i++) {
var polygons_embedded_point_coords = [];
for (var j = 0; j < polygons[i].vertices.length; j++) {
var v = rotated_vertices[polygons[i].vertices[j]]
polygons_embedded_point_coords.push(v.vector);
}
var norm = getNormal(polygons_embedded_point_coords, polygons[i].nf);
// var rotated_light = light.copy().rotate(theta);
var brightness = Math.max(0, norm.dot(light))
// ctx.fillStyle = "hsl(31, "+100+"%, "+(Math.min(9.0*brightness + 40, 100))+"%)";
// ctx.fillStyle = polygons[i].color
// ctx.beginPath();
var path = [];
for (var j = 0; j < polygons[i].vertices.length; j++) {
var vertex = rotated_vertices[polygons[i].vertices[j]].copy();
vertex.mult(scale, scale, 1);
vertex.sub(camera);
var n = 1 + vertex.vector[2] * fov;
vertex.div(n, n, 1)
// console.log(vertex.vector)
if (j == 0) {
// ctx.moveTo(vertex.vector[0], vertex.vector[1]);
path.push("M "+vertex.vector[0]+" "+vertex.vector[1]);
} else {
path.push("L "+vertex.vector[0]+" "+vertex.vector[1]);
// ctx.lineTo(vertex.vector[0], vertex.vector[1]);
}
}
// that should work
if (polygons[i].mid.copy().sub(camera).dot(norm) < 0) {
var pathelem = document.createElementNS("http://www.w3.org/2000/svg", "path");
pathelem.setAttribute("d", path);
pathelem.setAttribute("fill", "hsl(31, "+100+"%, "+(Math.min(9.0*brightness + 40, 100))+"%)");
svg.appendChild(pathelem);
}
// ctx.fillStyle = "red"
// ctx.font = '15px serif';
//
// ctx.fillText(polygons[i].id + ", " + polygons[i].nf, polygons[i].mid.vector[0], polygons[i].mid.vector[1])
}
// theta.add(theta.vector[0] + (0.01*mouseY - theta.vector[0]) * 0.1, 0, theta.vector[2] + (-0.01*mouseX - theta.vector[2]) * 0.1)
theta.add(0, -0.0375, 0);
// fov = (mouseX - w/2) * 0.001
requestAnimationFrame(loop);
}
loop();
// setInterval(loop, 1000 / 60)
function getNormal(vertices, nf) {
var Ax = vertices[1][0] - vertices[0][0];
var Ay = vertices[1][1] - vertices[0][1];
var Az = vertices[1][2] - vertices[0][2];
var Bx = vertices[2][0] - vertices[0][0];
var By = vertices[2][1] - vertices[0][1];
var Bz = vertices[2][2] - vertices[0][2];
var Nx = Ay * Bz - Az * By
var Ny = Az * Bx - Ax * Bz
var Nz = Ax * By - Ay * Bx
return new Tensor(nf * Nx, nf * Ny, nf * Nz);
}
function len(p1, p2) {
return Math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2 + (p2[2] - p1[2]) ** 2);
}
mouseX = 0
mouseY = 0
onmousemove = (e) => {
mouseX = e.clientX;
mouseY = e.clientY;
}
<!DOCTYPE html>
<html lang="en" dir="ltr">
<head>
<meta charset="utf-8">
<title></title>
<script src="Tensor.js"></script>
<script src="script-tensors-svg.js" async defer></script>
</head>
<body>
<!-- <canvas id="canvas"></canvas> -->
<svg id="svg" xmlns="http://www.w3.org/2000/svg"></svg>
</body>
</html>
Sorting by average Z just doesn't give you a reliable rendering order. Since your shape is convex, though, you don't need to sort at all.
Make sure the vertices of each triangle are sorted so that you can consistently get a surface normal that points outward. Then, just don't render any triangles with normals that point away from the camera, i.e.:
if (vector_from_camera_to_poly_midpoint \dot poly_normal < 0) {
//render the poly
}
Now you will only render the side of the object that is facing the camera -- none of the polygons will overlap, so you can render them in any order.
jsfiddle: https://jsfiddle.net/nragrkb8/3/
I'm trying to get a spectrogram drawn, works in chrome but draws nothing in all other browsers. I'm using getImageData and putImageData to move existing contents down by a pixel every time new data is pushed in. That new data is then drawn into an offscreen image and then putimagedata to apply it to the full canvas.
Spectrogram = (function() {
//constructor function
var Spectrogram = function(options) {
//compose options
this.canvas = options.canvas;
this.width = options.size; //the size of the FFT
this.height = options.length; //the number of FFT to keep
if (typeof options.min !== 'undefined' && typeof options.max !== 'undefined') {
this.rangeType = 'static';
this.min = options.min;
this.max = options.max;
} else {
this.rangeType = 'auto';
this.min = Infinity;
this.max = -Infinity;
}
//set the function used to determine a value's color
this.colorScaleFn = options.colorScaleFn || defaultColorScaling;
//precalculate the range used in color scaling
this.range = this.max - this.min;
//the 2d drawing context
this.ctx = this.canvas.getContext('2d', { alpha: false });
//single pixel image used to draw new data points
this.im = this.ctx.createImageData(this.width, 1);
this.canvas.width = this.width;
this.canvas.height = this.height;
//adds a new row of data to the edge of the spectrogram, shifting existing
//contents by 1px
this.addData = function (newData) {
if (newData.length != this.width) {
console.error('Unmatched dataset size. Expected ' + this.width + ', was + ' + newData.length);
return;
}
if (this.rangeType == 'auto') {
var changed = false;
for (var i = 0; i < newData.length; ++i) {
if (newData[i] < this.min) {
this.min = newData[i];
changed = true;
} else if (newData[i] > this.max) {
this.max = newData[i];
changed = true;
}
}
if (changed) {
this.range = this.max - this.min;
}
}
//move the current contents by 1px
var im = this.ctx.getImageData(0, 0, this.width, this.height - 1);
this.ctx.putImageData(im, 0, 1);
//draw the new data values into the temporary image
var j = 0;
for (var i = 0; i < newData.length; ++i) {
var c = this.colorScaleFn(newData[i]);
this.im.data[j] = c[0];
this.im.data[j + 1] = c[1];
this.im.data[j + 2] = c[2];
j += 4;
}
//put the new data colors into the full canvas
this.ctx.putImageData(this.im, 0, 0);
}
}
function defaultColorScaling(value) {
var x = (value - this.min) / this.range;
if (x < 0) {
x = 0;
} else if (x > 1) {
x = 1;
}
var g = Math.pow(x, 2);
var b = 0.75 - 1.5 * Math.abs(x - 0.45);
var r = 0;
return [Math.round(r * 255), Math.round(g * 255), Math.round(b * 255)];
}
return Spectrogram;
})();
const size = 1024;
const length = 200;
const dataMax = 100;
const velMax = 1;
const canvas = document.getElementById('spec');
canvas.width = size;
canvas.height = length;
const spec = new Spectrogram({
canvas: canvas,
size: size,
length: length
});
const data = [];
const vel = [];
for (var i = 0; i < size; ++i) {
data.push(0);
vel.push(0);
}
setInterval(function() {
for (var i = 0; i < size; ++i) {
data[i] += vel[i];
if (i > 0) data[i] += vel[i - 1];
if (i < size - 1) data[i] += vel[i + 1];
if (data[i] >= dataMax) {
data[i] = dataMax;
vel[i] = 0;
} else if (data[i] <= -dataMax) {
data[i] = -dataMax;
vel[i] = 0;
}
if (vel[i] == 0) {
vel[i] = (Math.random() - 0.5) * 100;
}
}
spec.addData(data);
}, 100);
Your problem was induced by a misconception:
getContext('2d', {alpha: false}) should have no incidence on createImageData function, so you still have to set the alpha value of your ImageData to something else than 0.
There are also other things in your code that don't go well, even if unrealted with your current issue:
You should avoid at all costs an high frequency setInterval where you perform a task that can take more than the interval (and in your case it can), but rather use something like a requestAnimationFrame loop.
Don't use getImageData + putImageData to draw your context on itself, simply use ctx.drawImage(ctx.canvas, x, y).
There might be other things to fix in your code, but here is an update with these three major things:
Spectrogram = (function() {
//constructor function
var Spectrogram = function(options) {
//compose options
this.canvas = options.canvas;
this.width = options.size; //the size of the FFT
this.height = options.length; //the number of FFT to keep
if (typeof options.min !== 'undefined' && typeof options.max !== 'undefined') {
this.rangeType = 'static';
this.min = options.min;
this.max = options.max;
} else {
this.rangeType = 'auto';
this.min = Infinity;
this.max = -Infinity;
}
//set the function used to determine a value's color
this.colorScaleFn = options.colorScaleFn || defaultColorScaling;
//precalculate the range used in color scaling
this.range = this.max - this.min;
//the 2d drawing context
this.ctx = this.canvas.getContext('2d', {
alpha: false
});
//single pixel image used to draw new data points
this.im = this.ctx.createImageData(this.width, 1);
this.canvas.width = this.width;
this.canvas.height = this.height;
//adds a new row of data to the edge of the spectrogram, shifting existing
//contents by 1px
this.addData = function(newData) {
if (newData.length != this.width) {
console.error('Unmatched dataset size. Expected ' + this.width + ', was + ' + newData.length);
return;
}
if (this.rangeType == 'auto') {
var changed = false;
for (var i = 0; i < newData.length; ++i) {
if (newData[i] < this.min) {
this.min = newData[i];
changed = true;
} else if (newData[i] > this.max) {
this.max = newData[i];
changed = true;
}
}
if (changed) {
this.range = this.max - this.min;
}
}
//move the current contents by 1px
this.ctx.drawImage(this.ctx.canvas, 0, 1)
//draw the new data values into the temporary image
var j = 0;
for (var i = 0; i < newData.length; ++i) {
var c = this.colorScaleFn(newData[i]);
this.im.data[j] = c[0];
this.im.data[j + 1] = c[1];
this.im.data[j + 2] = c[2];
// don't forget the alpha channel, createImageData is always full of zeroes
this.im.data[j + 3] = 255;
j += 4;
}
this.ctx.putImageData(this.im, 0, 0);
}
}
function defaultColorScaling(value) {
var x = (value - this.min) / this.range;
if (x < 0) {
x = 0;
} else if (x > 1) {
x = 1;
}
var g = Math.pow(x, 2);
var b = 0.75 - 1.5 * Math.abs(x - 0.45);
var r = 0;
return [Math.round(r * 255), Math.round(g * 255), Math.round(b * 255)];
}
return Spectrogram;
})();
const size = 1024;
const length = 200;
const dataMax = 100;
const velMax = 1;
const canvas = document.getElementById('spec');
canvas.width = size;
canvas.height = length;
const spec = new Spectrogram({
canvas: canvas,
size: size,
length: length
});
const data = [];
const vel = [];
for (var i = 0; i < size; ++i) {
data.push(0);
vel.push(0);
}
// our animation loop
function draw() {
for (var i = 0; i < size; ++i) {
data[i] += vel[i];
if (i > 0) data[i] += vel[i - 1];
if (i < size - 1) data[i] += vel[i + 1];
if (data[i] >= dataMax) {
data[i] = dataMax;
vel[i] = 0;
} else if (data[i] <= -dataMax) {
data[i] = -dataMax;
vel[i] = 0;
}
if (vel[i] == 0) {
vel[i] = (Math.random() - 0.5) * 100;
}
}
spec.addData(data);
requestAnimationFrame(draw);
}
draw();
<div style="width: 100%; height: 100%; padding: 0; margin: 0;">
<canvas style="width: 100%; height: 100%;" id="spec"></canvas>
</div>
For a project I am attempting to make my own linear gradient code. And I have managed to come quite far, however, it is not perfect. Some places the gradient is not looking as it should.
See the following code where the colorStops are the stops in the gradient. It is supposed to show a gradient in between red, yellow and green as in a traffic light.
gradientSlider = {
colorStops: ["#b30000", "#ffff1a", "#00e600"],
minValue: 0,
maxValue: 100,
init: function(canvas) {
this.canvas = canvas;
this.ctx = canvas.getContext("2d");
this.width = canvas.width;
this.height = canvas.height;
this.colors = this.calculateHexColorForStep();
this.draw();
},
draw: function() {
pixelWidth = this.width / this.maxValue;
for (i = 0; i < this.maxValue; i++) {
this.ctx.beginPath();
this.ctx.rect(i * pixelWidth, 0, pixelWidth, this.height);
this.ctx.fillStyle = this.colors[i];
this.ctx.fill();
}
},
calculateHexColorForStep: function() {
result = [];
stepsPerGradient = this.maxValue / (this.colorStops.length - 1);
for (i = 0; i < this.colorStops.length - 1; i++) {
percentIncrease = 100 / stepsPerGradient / 100;
firstColor = this.colorStops[i];
targetColor = this.colorStops[i + 1];
firstColorDecArray = this.tools.parseColor(firstColor);
targetColorDecArray = this.tools.parseColor(targetColor);
for (j = 0; j <= stepsPerGradient; j++) {
if (j == 0) {
result.push(firstColor);
} else if (j == stepsPerGradient) {
result.push(targetColor);
} else {
stepColorDecArray = [firstColorDecArray[0] + (percentIncrease * j) * (targetColorDecArray[0] - firstColorDecArray[0]),
firstColorDecArray[1] + (percentIncrease * j) * (targetColorDecArray[1] - firstColorDecArray[1]),
firstColorDecArray[2] + (percentIncrease * j) * (targetColorDecArray[2] - firstColorDecArray[2])
];
result.push(this.tools.decimalToHex(stepColorDecArray));
}
}
}
return result;
},
tools: {
parseColor: function(hexColorString) {
var m;
m = hexColorString.match(/^#([0-9a-f]{6})$/i)[1];
if (m) {
return [parseInt(m.substring(0, 2), 16), parseInt(m.substring(2, 4), 16), parseInt(m.substring(4, 6), 16)];
}
},
decimalToHex: function(decimalNumberArray) {
//TODO fikse tall under ti - alltid to plasser
var results = [];
results[1] = Math.round(decimalNumberArray[0]).toString(16);
results[2] = Math.round(decimalNumberArray[1]).toString(16);
results[3] = Math.round(decimalNumberArray[2]).toString(16);
for (var i = 1; i <= results.length; i++) {
if (!(isNaN(results[i]))) {
if (results[i] < 10) {
results[i] = "0" + results[i];
}
}
}
return "#" + results[1] + results[2] + results[3];
}
}
}
//get the canvas element
var canvasElm = document.querySelector("canvas");
//initialize the slider
gradientSlider.init(canvasElm);
<canvas id="gradient-slider" width="600" height="200" class="gradientslider"></canvas>
My solution is a fixed version of the function tools.decimalToHex. The error was that you treat the results array as an array of numbers, instead of an array of strings.
decimalToHex : function(decimalNumberArray){
var results = [];
// Maybe check if number is in range 0 - 255, before converting to string?
results[0] = Math.round(decimalNumberArray[0]).toString(16);
results[1] = Math.round(decimalNumberArray[1]).toString(16);
results[2] = Math.round(decimalNumberArray[2]).toString(16);
for (var i = 0; i<results.length; i++) {
if(results[i].length < 2) {
results[i] = "0" + results[i];
}
}
return "#" + results[0] + results[1] + results[2];
}
Corresponding jsFiddle: https://jsfiddle.net/8xr4zujj/4/