I am working on a augmented reality app for browsers which detects a QR code on a DIN A4 paper and projects an 3D oject in the room.
So far i have a working solution which is working with ARUCO codes, but for my app i need an QR code to project an 3D object in the right perspective. This works also with ARUCO codes, but just on close distance. If the marker is to far away it does not work for me. The solution of this is, to scan a QR code, because the contours can be detected on larger dinstances.
I have a solution which is working with QR codes but the code is wirtten in C++.
I have tried to recode te C++ program to JavaScript.
This is the woking solution which works fine with ARUCO codes in JavaScript:
var JS = http://jeromeetienne.github.io/slides/augmentedrealitywiththreejs/
this is the basic file: https://github.com/jeromeetienne/arplayerforthreejs
This is the code in C++ which is working with QR codes:
var C++ = https://github.com/xingdi-eric-yuan/qr-decoder
So far i have wrote the code from crdecoder.cpp in JavaScript.
Instead of the ARUCO tracking I want wo use the script from qrdecoder.cpp to detect a QR code and get the position.
The code should already detect the contours from an QR code and write it in "this.vecpair;" but it is still not working...
The interface for the decoding in JS code is in the file "threex.jsarucomarker.js" and the function is "QR.Detector();"
And this is my still not finished JS script which is a mix of the ARUCO aruco.js code from JS and the QR logic from the C++ qrdecoder.cpp script.
var QR = QR || {};
QR.Marker = function(id, corners){
this.id = id;
this.corners = corners;
};
QR.Detector = function(){
this.grey = new CV.Image();
this.thres = new CV.Image();
this.homography = new CV.Image();
this.binary = [];
this.cont = [];
this.vec4i = [];
this.contours = this.cont.contours = [];
};
QR.Detector.prototype.detect = function(image){
CV.grayscale(image, this.grey);
CV.adaptiveThreshold(this.grey, this.thres, 2, 7);
this.contours = CV.findContours(this.thres, this.binary);
//this.contours = this.findLimitedConturs(this.thres, 8.00, 0.2 * image.width * image.height);
// console.log(this.contours);
this.vecpair = this.getContourPair(this.contours);
console.log(this.vecpair);
// ARUCO CODE.. MAYBE NOT NECESSARY
//this.candidates = this.findCandidates(this.contours, image.width * 0.10, 0.05, 10);
//this.candidates = this.clockwiseCorners(this.candidates);
//this.candidates = this.notTooNear(this.candidates, 10);
//return this.findMarkers(this.grey, this.candidates, 49);
};
/* C++
struct FinderPattern{
Point topleft;
Point topright;
Point bottomleft;
FinderPattern(Point a, Point b, Point c) : topleft(a), topright(b), bottomleft(c) {}
};
bool compareContourAreas ( std::vector<cv::Point> contour1, std::vector<cv::Point> contour2 ) {
double i = fabs( contourArea(cv::Mat(contour1)) );
double j = fabs( contourArea(cv::Mat(contour2)) );
return ( i > j );
}
*/
QR.Detector.prototype.compareContourAreas = function(c1,c2){
var i = abs(CV.contourArea(c1));
var j = abs(CV.contourArea(c2));
console.log(i+' -- '+j);
return (i > j);
};
/* C++
Point getContourCentre(CONT& vec){
double tempx = 0.0, tempy = 0.0;
for(int i=0; i<vec.size(); i++){
tempx += vec[i].x;
tempy += vec[i].y;
}
return Point(tempx / (double)vec.size(), tempy / (double)vec.size());
}
*/
QR.Detector.prototype.getContourCentre = function(vec){
};
/* C++
bool isContourInsideContour(CONT& in, CONT& out){
for(int i = 0; i<in.size(); i++){
if(pointPolygonTest(out, in[i], false) <= 0) return false;
}
return true;
}
*/
QR.Detector.prototype.isContourInsideContour = function(c_in, c_out){
for(var i = 0; i<c_in.length; i++){
//console.log('-- '+c_out+' -- '+c_in[i]);
if(CV.pointPolygonTest(c_out, c_in[i]) == false) return false;
}
return true;
};
/* C++
vector<CONT > findLimitedConturs(Mat contour, float minPix, float maxPix){
vector<CONT > contours;
vector<Vec4i> hierarchy;
findContours(contour, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);
cout<<"contours.size = "<<contours.size()<<endl;
int m = 0;
while(m < contours.size()){
if(contourArea(contours[m]) <= minPix){
contours.erase(contours.begin() + m);
}else if(contourArea(contours[m]) > maxPix){
contours.erase(contours.begin() + m);
}else ++ m;
}
cout<<"contours.size = "<<contours.size()<<endl;
return contours;
}
*/
QR.Detector.prototype.findLimitedConturs = function(contour, minPix, maxPix){
this.contours = this.cont.contours = [];
this.hierarchy = this.vec4i.hierarchy = [];
CV.findContours(contour, this.contours);
// console.log(this.contours);
var m = 0;
while(m < this.contours.length){
if(CV.contourArea(this.contours[m]) <= minPix){
this.contours.splice(this.contours[0] + m,1);
}else if(CV.contourArea(this.contours[m]) > maxPix){
this.contours.splice(this.contours[0] + m,1);
}else ++ m;
}
// console.log(this.contours.length);
return this.contours;
};
/*
vector<vector<CONT > > getContourPair(vector<CONT > &contours){
vector<vector<CONT > > vecpair;
vector<bool> bflag(contours.size(), false);
for(int i = 0; i<contours.size() - 1; i++){
if(bflag[i]) continue;
vector<CONT > temp;
temp.push_back(contours[i]);
for(int j = i + 1; j<contours.size(); j++){
if(isContourInsideContour(contours[j], contours[i])){
temp.push_back(contours[j]);
bflag[j] = true;
}
}
if(temp.size() > 1){
vecpair.push_back(temp);
}
}
bflag.clear();
for(int i=0; i<vecpair.size(); i++){
sort(vecpair[i].begin(), vecpair[i].end(), compareContourAreas);
}
return vecpair;
}
*/
QR.Detector.prototype.getContourPair = function(contours){
this.vecpair = this.cont.vecpair = [];
var bflag = new Array(contours.length, false); // similar to c++: vector<bool> bflag(contours.size(), false);?
for(var i = 0; i<contours.length - 1; i++){
if(bflag[i] == false){ //similar to c++: if(bflag[i]) continue; ??
var temp = this.cont.temp = [];
//console.log(contours[i]);
temp.push(contours[i]); //similar to c++: temp.push_back(contours[i]); ??
for(var j = i + 1; j<contours.length; j++){
if(this.isContourInsideContour(contours[j], contours[i])){
temp.push(contours[j]);
bflag[j] = true;
// console.log('true');
}
}
if(temp.length > 1){
this.vecpair.push(temp);
}
}
}
//console.log(this.vecpair);
bflag = [];
//console.log(this.vecpair.length);
for(i=0; i<this.vecpair.length; i++){
// sort(this.vecpair[0], this.vecpair[this.vecpair.length], compareContourAreas);
this.vecpair.sort(function(){
console.log('hier');
this.compareContourAreas(this.vecpair[i], this.vecpair[i].length);
});
// console.log(this.vecpair);
}
return this.vecpair;
};
/* C++
void eliminatePairs(vector<vector<CONT > >& vecpair, double minRatio, double maxRatio){
cout<<"maxRatio = "<<maxRatio<<endl;
int m = 0;
bool flag = false;
while(m < vecpair.size()){
flag = false;
if(vecpair[m].size() < 3){
vecpair.erase(vecpair.begin() + m);
continue;
}
for(int i=0; i<vecpair[m].size() - 1; i++){
double area1 = contourArea(vecpair[m][i]);
double area2 = contourArea(vecpair[m][i + 1]);
if(area1 / area2 < minRatio || area1 / area2 > maxRatio){
vecpair.erase(vecpair.begin() + m);
flag = true;
break;
}
}
if(!flag){
++ m;
}
}
if(vecpair.size() > 3){
eliminatePairs(vecpair, minRatio, maxRatio * 0.9);
}
}
*/
QR.Detector.prototype.eliminatePairs = function(){};
/* C++
double getDistance(Point a, Point b){
return sqrt(pow((a.x - b.x), 2) + pow((a.y - b.y), 2));
}
*/
QR.Detector.prototype.getDistance = function(){};
/* C++
FinderPattern getFinderPattern(vector<vector<CONT > > &vecpair){
Point pt1 = getContourCentre(vecpair[0][vecpair[0].size() - 1]);
Point pt2 = getContourCentre(vecpair[1][vecpair[1].size() - 1]);
Point pt3 = getContourCentre(vecpair[2][vecpair[2].size() - 1]);
double d12 = getDistance(pt1, pt2);
double d13 = getDistance(pt1, pt3);
double d23 = getDistance(pt2, pt3);
double x1, y1, x2, y2, x3, y3;
double Max = max(d12, max(d13, d23));
Point p1, p2, p3;
if(Max == d12){
p1 = pt1;
p2 = pt2;
p3 = pt3;
}else if(Max == d13){
p1 = pt1;
p2 = pt3;
p3 = pt2;
}else if(Max == d23){
p1 = pt2;
p2 = pt3;
p3 = pt1;
}
x1 = p1.x;
y1 = p1.y;
x2 = p2.x;
y2 = p2.y;
x3 = p3.x;
y3 = p3.y;
if(x1 == x2){
if(y1 > y2){
if(x3 < x1){
return FinderPattern(p3, p2, p1);
}else{
return FinderPattern(p3, p1, p2);
}
}else{
if(x3 < x1){
return FinderPattern(p3, p1, p2);
}else{
return FinderPattern(p3, p2, p1);
}
}
}else{
double newy = (y2 - y1) / (x2 - x1) * x3 + y1 - (y2 - y1) / (x2 - x1) * x1;
if(x1 > x2){
if(newy < y3){
return FinderPattern(p3, p2, p1);
}else{
return FinderPattern(p3, p1, p2);
}
}else{
if(newy < y3){
return FinderPattern(p3, p1, p2);
}else{
return FinderPattern(p3, p2, p1);
}
}
}
}
*/
QR.Detector.prototype.getFinderPattern = function(){};
This are my added CV functions for the detector
The basic file is "cv.js" from the JavaScript project above https://github.com/jeromeetienne/arplayerforthreejs
This functions should work similar to the C++ versions
pointPolygonTest() = http://docs.opencv.org/2.4/doc/tutorials/imgproc/shapedescriptors/point_polygon_test/point_polygon_test.html
contourArea() = http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#double
//src: http://jsfromhell.com/math/is-point-in-poly
CV.pointPolygonTest = function(poly, pt){
for(var c = false, i = -1, l = poly.length, j = l - 1; ++i < l; j = i)
((poly[i].y <= pt.y && pt.y < poly[j].y) || (poly[j].y <= pt.y && pt.y < poly[i].y))
&& (pt.x < (poly[j].x - poly[i].x) * (pt.y - poly[i].y) / (poly[j].y - poly[i].y) + poly[i].x)
&& (c = !c);
return c;
};
//http://stackoverflow.com/questions/16285134/calculating-polygon-area
CV.contourArea = function(cont){
//console.log('cont: '+cont);
var area = 0; // Accumulates area in the loop
var j = cont.length-1; // The last vertex is the 'previous' one to the first
for (var i=0; i<cont.length; i++)
{
area = area + (cont[j].x+cont[i].x) * (cont[j].y+cont[i].y)
//area = area + (X[j]+X[i]) * (Y[j]-Y[i]);
j = i; //j is previous vertex to i
}
return area/2;
};
Working JavaScript Version wich detects the contours of an QR Code
var CV = CV || {};
CV.Image = function(width, height, data){
this.width = width || 0;
this.height = height || 0;
this.data = data || [];
};
CV.grayscale = function(imageSrc, imageDst){
var src = imageSrc.data, dst = imageDst.data, len = src.length,
i = 0, j = 0;
for (; i < len; i += 4){
dst[j ++] =
(src[i] * 0.299 + src[i + 1] * 0.587 + src[i + 2] * 0.114 + 0.5) & 0xff;
}
imageDst.width = imageSrc.width;
imageDst.height = imageSrc.height;
return imageDst;
};
CV.threshold = function(imageSrc, imageDst, threshold){
var src = imageSrc.data, dst = imageDst.data,
len = src.length, tab = [], i;
for (i = 0; i < 256; ++ i){
tab[i] = i <= threshold? 0: 255;
}
for (i = 0; i < len; ++ i){
dst[i] = tab[ src[i] ];
}
imageDst.width = imageSrc.width;
imageDst.height = imageSrc.height;
return imageDst;
};
CV.adaptiveThreshold = function(imageSrc, imageDst, kernelSize, threshold){
var src = imageSrc.data, dst = imageDst.data, len = src.length, tab = [], i;
CV.stackBoxBlur(imageSrc, imageDst, kernelSize);
for (i = 0; i < 768; ++ i){
tab[i] = (i - 255 <= -threshold)? 255: 0;
}
for (i = 0; i < len; ++ i){
dst[i] = tab[ src[i] - dst[i] + 255 ];
}
imageDst.width = imageSrc.width;
imageDst.height = imageSrc.height;
return imageDst;
};
CV.otsu = function(imageSrc){
var src = imageSrc.data, len = src.length, hist = [],
threshold = 0, sum = 0, sumB = 0, wB = 0, wF = 0, max = 0,
mu, between, i;
for (i = 0; i < 256; ++ i){
hist[i] = 0;
}
for (i = 0; i < len; ++ i){
hist[ src[i] ] ++;
}
for (i = 0; i < 256; ++ i){
sum += hist[i] * i;
}
for (i = 0; i < 256; ++ i){
wB += hist[i];
if (0 !== wB){
wF = len - wB;
if (0 === wF){
break;
}
sumB += hist[i] * i;
mu = (sumB / wB) - ( (sum - sumB) / wF );
between = wB * wF * mu * mu;
if (between > max){
max = between;
threshold = i;
}
}
}
return threshold;
};
CV.stackBoxBlurMult =
[1, 171, 205, 293, 57, 373, 79, 137, 241, 27, 391, 357, 41, 19, 283, 265];
CV.stackBoxBlurShift =
[0, 9, 10, 11, 9, 12, 10, 11, 12, 9, 13, 13, 10, 9, 13, 13];
CV.BlurStack = function(){
this.color = 0;
this.next = null;
};
CV.stackBoxBlur = function(imageSrc, imageDst, kernelSize){
var src = imageSrc.data, dst = imageDst.data,
height = imageSrc.height, width = imageSrc.width,
heightMinus1 = height - 1, widthMinus1 = width - 1,
size = kernelSize + kernelSize + 1, radius = kernelSize + 1,
mult = CV.stackBoxBlurMult[kernelSize],
shift = CV.stackBoxBlurShift[kernelSize],
stack, stackStart, color, sum, pos, start, p, x, y, i;
stack = stackStart = new CV.BlurStack();
for (i = 1; i < size; ++ i){
stack = stack.next = new CV.BlurStack();
}
stack.next = stackStart;
pos = 0;
for (y = 0; y < height; ++ y){
start = pos;
color = src[pos];
sum = radius * color;
stack = stackStart;
for (i = 0; i < radius; ++ i){
stack.color = color;
stack = stack.next;
}
for (i = 1; i < radius; ++ i){
stack.color = src[pos + i];
sum += stack.color;
stack = stack.next;
}
stack = stackStart;
for (x = 0; x < width; ++ x){
dst[pos ++] = (sum * mult) >>> shift;
p = x + radius;
p = start + (p < widthMinus1? p: widthMinus1);
sum -= stack.color - src[p];
stack.color = src[p];
stack = stack.next;
}
}
for (x = 0; x < width; ++ x){
pos = x;
start = pos + width;
color = dst[pos];
sum = radius * color;
stack = stackStart;
for (i = 0; i < radius; ++ i){
stack.color = color;
stack = stack.next;
}
for (i = 1; i < radius; ++ i){
stack.color = dst[start];
sum += stack.color;
stack = stack.next;
start += width;
}
stack = stackStart;
for (y = 0; y < height; ++ y){
dst[pos] = (sum * mult) >>> shift;
p = y + radius;
p = x + ( (p < heightMinus1? p: heightMinus1) * width );
sum -= stack.color - dst[p];
stack.color = dst[p];
stack = stack.next;
pos += width;
}
}
return imageDst;
};
CV.gaussianBlur = function(imageSrc, imageDst, imageMean, kernelSize){
var kernel = CV.gaussianKernel(kernelSize);
imageDst.width = imageSrc.width;
imageDst.height = imageSrc.height;
imageMean.width = imageSrc.width;
imageMean.height = imageSrc.height;
CV.gaussianBlurFilter(imageSrc, imageMean, kernel, true);
CV.gaussianBlurFilter(imageMean, imageDst, kernel, false);
return imageDst;
};
CV.gaussianBlurFilter = function(imageSrc, imageDst, kernel, horizontal){
var src = imageSrc.data, dst = imageDst.data,
height = imageSrc.height, width = imageSrc.width,
pos = 0, limit = kernel.length >> 1,
cur, value, i, j, k;
for (i = 0; i < height; ++ i){
for (j = 0; j < width; ++ j){
value = 0.0;
for (k = -limit; k <= limit; ++ k){
if (horizontal){
cur = pos + k;
if (j + k < 0){
cur = pos;
}
else if (j + k >= width){
cur = pos;
}
}else{
cur = pos + (k * width);
if (i + k < 0){
cur = pos;
}
else if (i + k >= height){
cur = pos;
}
}
value += kernel[limit + k] * src[cur];
}
dst[pos ++] = horizontal? value: (value + 0.5) & 0xff;
}
}
return imageDst;
};
CV.gaussianKernel = function(kernelSize){
var tab =
[ [1],
[0.25, 0.5, 0.25],
[0.0625, 0.25, 0.375, 0.25, 0.0625],
[0.03125, 0.109375, 0.21875, 0.28125, 0.21875, 0.109375, 0.03125] ],
kernel = [], center, sigma, scale2X, sum, x, i;
if ( (kernelSize <= 7) && (kernelSize % 2 === 1) ){
kernel = tab[kernelSize >> 1];
}else{
center = (kernelSize - 1.0) * 0.5;
sigma = 0.8 + (0.3 * (center - 1.0) );
scale2X = -0.5 / (sigma * sigma);
sum = 0.0;
for (i = 0; i < kernelSize; ++ i){
x = i - center;
sum += kernel[i] = Math.exp(scale2X * x * x);
}
sum = 1 / sum;
for (i = 0; i < kernelSize; ++ i){
kernel[i] *= sum;
}
}
return kernel;
};
CV.findContours = function(imageSrc, binary){
var width = imageSrc.width, height = imageSrc.height, contours = [],
src, deltas, pos, pix, nbd, outer, hole, i, j;
src = CV.binaryBorder(imageSrc, binary);
deltas = CV.neighborhoodDeltas(width + 2);
pos = width + 3;
nbd = 1;
for (i = 0; i < height; ++ i, pos += 2){
for (j = 0; j < width; ++ j, ++ pos){
pix = src[pos];
if (0 !== pix){
outer = hole = false;
if (1 === pix && 0 === src[pos - 1]){
outer = true;
}
else if (pix >= 1 && 0 === src[pos + 1]){
hole = true;
}
if (outer || hole){
++ nbd;
contours.push( CV.borderFollowing(src, pos, nbd, {x: j, y: i}, hole, deltas) );
}
}
}
}
return contours;
};
CV.borderFollowing = function(src, pos, nbd, point, hole, deltas){
var contour = [], pos1, pos3, pos4, s, s_end, s_prev;
contour.hole = hole;
s = s_end = hole? 0: 4;
do{
s = (s - 1) & 7;
pos1 = pos + deltas[s];
if (src[pos1] !== 0){
break;
}
}while(s !== s_end);
if (s === s_end){
src[pos] = -nbd;
contour.push( {x: point.x, y: point.y} );
}else{
pos3 = pos;
s_prev = s ^ 4;
while(true){
s_end = s;
do{
pos4 = pos3 + deltas[++ s];
}while(src[pos4] === 0);
s &= 7;
if ( ( (s - 1) >>> 0) < (s_end >>> 0) ){
src[pos3] = -nbd;
}
else if (src[pos3] === 1){
src[pos3] = nbd;
}
contour.push( {x: point.x, y: point.y} );
s_prev = s;
point.x += CV.neighborhood[s][0];
point.y += CV.neighborhood[s][1];
if ( (pos4 === pos) && (pos3 === pos1) ){
break;
}
pos3 = pos4;
s = (s + 4) & 7;
}
}
return contour;
};
CV.neighborhood =
[ [1, 0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1], [0, 1], [1, 1] ];
CV.neighborhoodDeltas = function(width){
var deltas = [], len = CV.neighborhood.length, i = 0;
for (; i < len; ++ i){
deltas[i] = CV.neighborhood[i][0] + (CV.neighborhood[i][1] * width);
}
return deltas.concat(deltas);
};
CV.approxPolyDP = function(contour, epsilon){
var slice = {start_index: 0, end_index: 0},
right_slice = {start_index: 0, end_index: 0},
poly = [], stack = [], len = contour.length,
pt, start_pt, end_pt, dist, max_dist, le_eps,
dx, dy, i, j, k;
epsilon *= epsilon;
k = 0;
for (i = 0; i < 3; ++ i){
max_dist = 0;
k = (k + right_slice.start_index) % len;
start_pt = contour[k];
if (++ k === len) {k = 0;}
for (j = 1; j < len; ++ j){
pt = contour[k];
if (++ k === len) {k = 0;}
dx = pt.x - start_pt.x;
dy = pt.y - start_pt.y;
dist = dx * dx + dy * dy;
if (dist > max_dist){
max_dist = dist;
right_slice.start_index = j;
}
}
}
if (max_dist <= epsilon){
poly.push( {x: start_pt.x, y: start_pt.y} );
}else{
slice.start_index = k;
slice.end_index = (right_slice.start_index += slice.start_index);
right_slice.start_index -= right_slice.start_index >= len? len: 0;
right_slice.end_index = slice.start_index;
if (right_slice.end_index < right_slice.start_index){
right_slice.end_index += len;
}
stack.push( {start_index: right_slice.start_index, end_index: right_slice.end_index} );
stack.push( {start_index: slice.start_index, end_index: slice.end_index} );
}
while(stack.length !== 0){
slice = stack.pop();
end_pt = contour[slice.end_index % len];
start_pt = contour[k = slice.start_index % len];
if (++ k === len) {k = 0;}
if (slice.end_index <= slice.start_index + 1){
le_eps = true;
}else{
max_dist = 0;
dx = end_pt.x - start_pt.x;
dy = end_pt.y - start_pt.y;
for (i = slice.start_index + 1; i < slice.end_index; ++ i){
pt = contour[k];
if (++ k === len) {k = 0;}
dist = Math.abs( (pt.y - start_pt.y) * dx - (pt.x - start_pt.x) * dy);
if (dist > max_dist){
max_dist = dist;
right_slice.start_index = i;
}
}
le_eps = max_dist * max_dist <= epsilon * (dx * dx + dy * dy);
}
if (le_eps){
poly.push( {x: start_pt.x, y: start_pt.y} );
}else{
right_slice.end_index = slice.end_index;
slice.end_index = right_slice.start_index;
stack.push( {start_index: right_slice.start_index, end_index: right_slice.end_index} );
stack.push( {start_index: slice.start_index, end_index: slice.end_index} );
}
}
return poly;
};
CV.warp = function(imageSrc, imageDst, contour, warpSize){
var src = imageSrc.data, dst = imageDst.data,
width = imageSrc.width, height = imageSrc.height,
pos = 0,
sx1, sx2, dx1, dx2, sy1, sy2, dy1, dy2, p1, p2, p3, p4,
m, r, s, t, u, v, w, x, y, i, j;
m = CV.getPerspectiveTransform(contour, warpSize - 1);
r = m[8];
s = m[2];
t = m[5];
for (i = 0; i < warpSize; ++ i){
r += m[7];
s += m[1];
t += m[4];
u = r;
v = s;
w = t;
for (j = 0; j < warpSize; ++ j){
u += m[6];
v += m[0];
w += m[3];
x = v / u;
y = w / u;
sx1 = x >>> 0;
sx2 = (sx1 === width - 1)? sx1: sx1 + 1;
dx1 = x - sx1;
dx2 = 1.0 - dx1;
sy1 = y >>> 0;
sy2 = (sy1 === height - 1)? sy1: sy1 + 1;
dy1 = y - sy1;
dy2 = 1.0 - dy1;
p1 = p2 = sy1 * width;
p3 = p4 = sy2 * width;
dst[pos ++] =
(dy2 * (dx2 * src[p1 + sx1] + dx1 * src[p2 + sx2]) +
dy1 * (dx2 * src[p3 + sx1] + dx1 * src[p4 + sx2]) ) & 0xff;
}
}
imageDst.width = warpSize;
imageDst.height = warpSize;
return imageDst;
};
CV.getPerspectiveTransform = function(src, size){
var rq = CV.square2quad(src);
rq[0] /= size;
rq[1] /= size;
rq[3] /= size;
rq[4] /= size;
rq[6] /= size;
rq[7] /= size;
return rq;
};
CV.square2quad = function(src){
var sq = [], px, py, dx1, dx2, dy1, dy2, den;
px = src[0].x - src[1].x + src[2].x - src[3].x;
py = src[0].y - src[1].y + src[2].y - src[3].y;
if (0 === px && 0 === py){
sq[0] = src[1].x - src[0].x;
sq[1] = src[2].x - src[1].x;
sq[2] = src[0].x;
sq[3] = src[1].y - src[0].y;
sq[4] = src[2].y - src[1].y;
sq[5] = src[0].y;
sq[6] = 0;
sq[7] = 0;
sq[8] = 1;
}else{
dx1 = src[1].x - src[2].x;
dx2 = src[3].x - src[2].x;
dy1 = src[1].y - src[2].y;
dy2 = src[3].y - src[2].y;
den = dx1 * dy2 - dx2 * dy1;
sq[6] = (px * dy2 - dx2 * py) / den;
sq[7] = (dx1 * py - px * dy1) / den;
sq[8] = 1;
sq[0] = src[1].x - src[0].x + sq[6] * src[1].x;
sq[1] = src[3].x - src[0].x + sq[7] * src[3].x;
sq[2] = src[0].x;
sq[3] = src[1].y - src[0].y + sq[6] * src[1].y;
sq[4] = src[3].y - src[0].y + sq[7] * src[3].y;
sq[5] = src[0].y;
}
return sq;
};
CV.isContourConvex = function(contour){
var orientation = 0, convex = true,
len = contour.length, i = 0, j = 0,
cur_pt, prev_pt, dxdy0, dydx0, dx0, dy0, dx, dy;
prev_pt = contour[len - 1];
cur_pt = contour[0];
dx0 = cur_pt.x - prev_pt.x;
dy0 = cur_pt.y - prev_pt.y;
for (; i < len; ++ i){
if (++ j === len) {j = 0;}
prev_pt = cur_pt;
cur_pt = contour[j];
dx = cur_pt.x - prev_pt.x;
dy = cur_pt.y - prev_pt.y;
dxdy0 = dx * dy0;
dydx0 = dy * dx0;
orientation |= dydx0 > dxdy0? 1: (dydx0 < dxdy0? 2: 3);
if (3 === orientation){
convex = false;
break;
}
dx0 = dx;
dy0 = dy;
}
return convex;
};
CV.perimeter = function(poly){
var len = poly.length, i = 0, j = len - 1,
p = 0.0, dx, dy;
for (; i < len; j = i ++){
dx = poly[i].x - poly[j].x;
dy = poly[i].y - poly[j].y;
p += Math.sqrt(dx * dx + dy * dy) ;
}
return p;
};
CV.minEdgeLength = function(poly){
var len = poly.length, i = 0, j = len - 1,
min = Infinity, d, dx, dy;
for (; i < len; j = i ++){
dx = poly[i].x - poly[j].x;
dy = poly[i].y - poly[j].y;
d = dx * dx + dy * dy;
if (d < min){
min = d;
}
}
return Math.sqrt(min);
};
CV.countNonZero = function(imageSrc, square){
var src = imageSrc.data, height = square.height, width = square.width,
pos = square.x + (square.y * imageSrc.width),
span = imageSrc.width - width,
nz = 0, i, j;
for (i = 0; i < height; ++ i){
for (j = 0; j < width; ++ j){
if ( 0 !== src[pos ++] ){
++ nz;
}
}
pos += span;
}
return nz;
};
CV.binaryBorder = function(imageSrc, dst){
var src = imageSrc.data, height = imageSrc.height, width = imageSrc.width,
posSrc = 0, posDst = 0, i, j;
for (j = -2; j < width; ++ j){
dst[posDst ++] = 0;
}
for (i = 0; i < height; ++ i){
dst[posDst ++] = 0;
for (j = 0; j < width; ++ j){
dst[posDst ++] = (0 === src[posSrc ++]? 0: 1);
}
dst[posDst ++] = 0;
}
for (j = -2; j < width; ++ j){
dst[posDst ++] = 0;
}
return dst;
};
//src: http://jsfromhell.com/math/is-point-in-poly
CV.pointPolygonTest = function(poly, pt){
for(var c = false, i = -1, l = poly.length, j = l - 1; ++i < l; j = i)
((poly[i].y <= pt.y && pt.y < poly[j].y) || (poly[j].y <= pt.y && pt.y < poly[i].y))
&& (pt.x < (poly[j].x - poly[i].x) * (pt.y - poly[i].y) / (poly[j].y - poly[i].y) + poly[i].x)
&& (c = !c);
return c;
};
//http://stackoverflow.com/questions/16285134/calculating-polygon-area
CV.contourArea = function(cont){
//console.log('cont: '+cont);
var area = 0; // Accumulates area in the loop
var j = cont.length-1; // The last vertex is the 'previous' one to the first
for (var i=0; i<cont.length; i++)
{
area = area + (cont[j].x+cont[i].x) * (cont[j].y+cont[i].y);
//area = area + (X[j]+X[i]) * (Y[j]-Y[i]);
j = i; //j is previous vertex to i
}
return area/2;
};
At my school I am learning how to code in JS using a site called codehs.com. After a while I learned about graphics with JS. There was this one point where I had to create a circle:
var circle = new Circle(50);
circle.setPosition(100,100);
add(circle);
After a few days I came across another website that was teaching students how code using JS. The website was called khanacademy.org I was interested and saw that the first lesson was making drawings. I looked at the video provided and it had a different code to make a circle.
ellipse(203, 197, 300, 350);
I am confused on how to make a circle using JS since I just started.
I'm one of the founders of CodeHS. CodeHS uses a custom JavaScript library on top of regular JavaScript. Khan Academy uses Processing JS, which is a different library (You can use Processing on CodeHS as well if you like).
You can see the documentation for everything in the CodeHS JS library at https://codehs.com/docs and learn how to use it in the Intro CS in JavaScript course.
We have designed this library to be great for learning -- it gives you experience using Object Oriented Programming while making it simple to create and manipulate shapes for programs like a Helicopter Game.
Additionally, you can include the library on an HTML page that runs JavaScript by adding this script tag to your page.
<script type="text/javascript" src="https://static.codehs.com/gulp/3d065bc81d3b7edf21e928ce2c764374a03c5cd6/chs-js-lib/chs.js"></script>
Here's an example of a full HTML page that runs JavaScript and uses the CodeHS library on it to draw a circle.
<html>
<head>
<title>Circle Example</title>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js"></script>
<script type="text/javascript" src="https://static.codehs.com/gulp/3d065bc81d3b7edf21e928ce2c764374a03c5cd6/chs-js-lib/chs.js"></script>
<style>
canvas {
border: 1px solid black;
display: inline-block;
vertical-align: top;
}
pre {
border: 1px solid black;
display: inline-block;
width: 400px;
height: 500px;
background-color: #F5F5F5;
}
</style>
</head>
<body>
<h1>Circle Example</h1>
<canvas
width="400"
height="500"
class="codehs-editor-canvas"></canvas>
<script>
window.onload = function() {
var circle = new Circle(50);
circle.setPosition(100,100);
add(circle);
};
</script>
</body>
</html>
Looks like KHAN ACADEMY uses ProcessingJS to draw the circle
I was unable to check what is the library CodeHS uses to draw a circle, but has to be a different one. But the fact is that there are so many good libraries developed in javascript to make whatever you can imagine. They're generally different one from another but their goal is to make our life easier.
JavaScript library | Wikipedia
What's a JS library? | KHAN ACADEMY
I tried using the processing platform for CodeHs, just copying and pasting this code:
/**
* This program finds the shortest path through a series of obstacles using A* search,
* smooths the path, then uses PID control to drive a robot to the goal.
**/
// You can play around with these constants---
var NUM_BLOCKS = 20;
var OBSTACLE_PROBABILITY = 0.2;
var MOVE_NOISE = 0.1;
var STEERING_NOISE = 0.1;
var ROBOT_SPEED = 0.5;
var MAX_STEERING_ANGLE = Math.PI/4.0;
var tP = 2.0;
var tI = 0.0001;
var tD = 16.0;
var weightData = 0.1;
var weightSmooth = 0.1;
// Search types
var A_STAR = 0;
var GREEDY = 1;
var BREADTH_FIRST = 2;
var DEPTH_FIRST = 3;
var SEARCH_MODE = A_STAR;
// --------------------------------------------
var BLOCK_SIZE = width/NUM_BLOCKS;
var START = 2;
var GOAL_X = NUM_BLOCKS-1;
var GOAL_Y = NUM_BLOCKS-1;
var GOAL = 3;
var START_COLOR = color(23, 33, 176);
var GOAL_COLOR = color(199, 188, 68);
var FRONTIER_COLOR = color(105, 179, 105);
var EXPLORED_COLOR = color(117, 117, 117, 100);
var PATH_COLOR = color(166, 53, 53);
var SMOOTH_PATH_COLOR = color(53, 68, 166);
var PLAN = 0;
var SMOOTH = 1;
var CALIBRATE = 2;
var NAVIGATE = 3;
var DELTA = [[-1, 0], [1, 0], [0, -1], [0, 1]];
var frontier = [[0, 0, 0, 0]];
var explored = [];
var predecessors = [];
var path = [];
var smoothPath = [];
var mode = PLAN;
var index = 0;
var cte = 0;
var sigma = 0;
angleMode = "radians";
frameRate(60);
// Initialize world
var world = [];
for (var i = 0; i < NUM_BLOCKS; i++) {
var row = [];
for (var j = 0; j < NUM_BLOCKS; j++) {
var r = random();
if (r < OBSTACLE_PROBABILITY) {
row.push(1);
}
else {
row.push(0);
}
}
world.push(row);
}
world[0][0] = START;
world[GOAL_Y][GOAL_X] = GOAL;
for (var i = 0; i < NUM_BLOCKS; i++) {
var row = [];
for (var j = 0; j < NUM_BLOCKS; j++) {
row.push(false);
}
explored.push(row);
}
explored[0][0] = true;
for (var i = 0; i < NUM_BLOCKS; i++) {
var row = [];
for (var j = 0; j < NUM_BLOCKS; j++) {
row.push(null);
}
predecessors.push(row);
}
var Robot = function(x, y, size) {
this.x = x;
this.y = y;
this.vx = 0;
this.vy = 0;
this.orientation = 0;
this.size = size;
// Thanks to Sebastian Thrun for this code:
// https://www.udacity.com/course/viewer#!/c-cs373/l-48696626/e-48403941/m-48729137
// My code for this movement can be found at:
// https://www.khanacademy.org/computer-programming/bicycle-model/5496951953031168
this.move = function(d, theta) {
var generator = new Random(millis());
var moveDistance = (generator.nextGaussian() * MOVE_NOISE) + d;
var turnAngle = (generator.nextGaussian() * STEERING_NOISE) + theta;
turnAngle = min(turnAngle, MAX_STEERING_ANGLE);
turnAngle = max(turnAngle, -MAX_STEERING_ANGLE);
var turn = tan(turnAngle)*moveDistance/this.size;
// Approximately straight motion
if (abs(turn) < 0.001) {
this.x += moveDistance*cos(this.orientation);
this.y += moveDistance*sin(this.orientation);
this.orientation = (this.orientation+turn)%(2.0*Math.PI);
}
// Move using the bicyle model
else {
var radius = moveDistance/turn;
var cx = this.x-(sin(this.orientation)*radius);
var cy = this.y+(cos(this.orientation)*radius);
this.orientation = (this.orientation+turn)%(2.0*Math.PI);
this.x = cx + (sin(this.orientation)*radius);
this.y = cy - (cos(this.orientation)*radius);
}
};
this.draw = function() {
pushMatrix();
translate(this.x, this.y);
rotate(this.orientation);
fill(128, 27, 27);
stroke(255, 0, 0);
rect(-this.size/2, -(this.size*0.75*0.5), this.size, this.size*0.75);
popMatrix();
};
};
var robot;
var addToFrontier = function(node) {
// Insert the node into the frontier
// Order by lowest cost
var i = frontier.length-1;
if (SEARCH_MODE === A_STAR) {
while (i > 0 && node[2]+node[3] < frontier[i][2]+frontier[i][3]) {
i--;
}
}
else if (SEARCH_MODE === GREEDY) {
while (i > 0 && node[3] < frontier[i][3]) {
i--;
}
}
else if (SEARCH_MODE === BREADTH_FIRST) {
frontier.push(node);
}
else if (SEARCH_MODE === DEPTH_FIRST) {
frontier.splice(0, 0, node);
}
frontier.splice(i+1, 0, node);
};
var distance = function(x1, y1, x2, y2) {
return sqrt(pow(x1-x2, 2) + pow(y1-y2, 2));
};
var manhattanDistance = function(x1, y1, x2, y2) {
return abs(x1-x2) + abs(y1-y2);
};
var drawWorld = function() {
background(255, 255, 255);
for (var i = 0; i < world.length; i++) {
for (var j = 0; j < world[0].length; j++) {
if (world[i][j] === 1) {
stroke(0, 0, 0);
fill(0, 0, 0);
}
else if (world[i][j] === START) {
fill(START_COLOR);
stroke(START_COLOR);
}
else if (world[i][j] === GOAL) {
fill(GOAL_COLOR);
stroke(GOAL_COLOR);
}
else {
fill(255, 255, 255);
noStroke();
}
rect(j*BLOCK_SIZE, i*BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE);
}
}
};
var simulate = function(steps) {
var error = 0;
var crosstrackError = 0;
var r = new Robot(0, 1, BLOCK_SIZE/2);
var sigma = 0;
var diff = 0;
for (var i = 0; i < steps*2; i++) {
// Compute cte
diff = r.y-crosstrackError;
crosstrackError = r.y;
sigma += crosstrackError;
if (i > steps) {
error += pow(crosstrackError, 2);
}
// Update robot
r.move(ROBOT_SPEED, -tP*crosstrackError - tD*diff - tI*sigma);
}
return error;
};
draw = function() {
drawWorld();
// Use A* to find a path to the goal
if (mode === PLAN) {
// Draw explored
fill(EXPLORED_COLOR);
noStroke();
for (var i = 0; i < explored.length; i++) {
for (var j = 0; j < explored[0].length; j++) {
if (explored[i][j]) {
rect(j*BLOCK_SIZE, i*BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE);
}
}
}
// Draw frontier
fill(FRONTIER_COLOR);
noStroke();
for (var i = 0; i < frontier.length; i++) {
rect(frontier[i][0]*BLOCK_SIZE, frontier[i][1]*BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE);
}
// A*
if (frontier.length > 0) {
// Remove a node from the frontier
var x = frontier[0][0];
var y = frontier[0][1];
var cost = frontier[0][2];
//println(cost + ", " + frontier[0][3]);
frontier.splice(0, 1);
// Goal check
if (world[y][x] === GOAL) {
mode = SMOOTH;
}
else {
// Add all adjacent unexplored nodes
for (var i = 0; i < DELTA.length; i++) {
// If the new position is in the world
var x2 = x + DELTA[i][0];
var y2 = y + DELTA[i][1];
if (x2 >= 0 && x2 < world[0].length && y2 >= 0 && y2 < world.length) {
// If the position is unexplored
if (!explored[y2][x2] && world[y2][x2] !== 1) {
explored[y2][x2] = true;
predecessors[y2][x2] = [x, y];
addToFrontier([x2, y2, cost+1, dist(x2, y2, GOAL_X, GOAL_Y)]);
}
}
}
}
}
else {
mode = -1;
println("No possible path to goal.");
}
}
// Smooth the path
else if (mode === SMOOTH) {
// Build path
if (path.length === 0) {
var x = GOAL_X;
var y = GOAL_Y;
path.splice(0, 0, [x, y]);
smoothPath.splice(0, 0, [x, y]);
while (x !== 0 || y !== 0) {
var newX = predecessors[y][x][0];
var newY = predecessors[y][x][1];
x = newX;
y = newY;
path.splice(0, 0, [x, y]);
smoothPath.splice(0, 0, [x, y]);
}
}
// Draw the original path
stroke(PATH_COLOR);
strokeWeight(5);
for (var i = 0; i < path.length; i++) {
point(BLOCK_SIZE*path[i][0]+BLOCK_SIZE/2, BLOCK_SIZE*path[i][1]+BLOCK_SIZE/2);
}
strokeWeight(1);
for (var i = 0; i < path.length-1; i++) {
line(BLOCK_SIZE*path[i][0]+BLOCK_SIZE/2, BLOCK_SIZE*path[i][1]+BLOCK_SIZE/2, BLOCK_SIZE*path[i+1][0]+BLOCK_SIZE/2, BLOCK_SIZE*path[i+1][1]+BLOCK_SIZE/2);
}
// Draw the new path
stroke(SMOOTH_PATH_COLOR);
strokeWeight(5);
for (var i = 0; i < smoothPath.length; i++) {
point(BLOCK_SIZE*smoothPath[i][0]+BLOCK_SIZE/2, BLOCK_SIZE*smoothPath[i][1]+BLOCK_SIZE/2);
}
strokeWeight(1);
for (var i = 0; i < smoothPath.length-1; i++) {
line(BLOCK_SIZE*smoothPath[i][0]+BLOCK_SIZE/2, BLOCK_SIZE*smoothPath[i][1]+BLOCK_SIZE/2, BLOCK_SIZE*smoothPath[i+1][0]+BLOCK_SIZE/2,
BLOCK_SIZE*smoothPath[i+1][1]+BLOCK_SIZE/2);
}
// Perform gradient descent
var update;
var diff = 0;
for (var i = 1; i < smoothPath.length-1; i++) {
update = [0, 0];
for (var j = 0; j < smoothPath[0].length; j++) {
update[j] += weightData * (path[i][j] - smoothPath[i][j]);
update[j] += weightSmooth * (smoothPath[(i+1)%smoothPath.length][j] + smoothPath[(i-1+smoothPath.length)%smoothPath.length][j] - 2*smoothPath[i][j]);
}
// Simulataneous update
for (var j = 0; j < smoothPath[0].length; j++) {
smoothPath[i][j] += update[j];
diff += abs(update[j]);
}
}
if (diff < 0.000001) {
robot = new Robot(BLOCK_SIZE/2, BLOCK_SIZE/2, BLOCK_SIZE/2);
mode = NAVIGATE;
}
}
else if (mode === CALIBRATE) {
var steps = 100;
var error = simulate(steps);
var dp = [1.0, 1.0, 1.0];
var params = [0, 0, 0];
if (error/steps > 0.04) {
for (var i = 0; i < dp.length; i++) {
params[i] += dp[i];
var newError = simulate(steps);
if (newError < error) {
error = newError;
dp[i] *= 1.1;
}
else {
params[i] -= 2*dp[i];
newError = simulate(steps);
if (newError < error) {
error = newError;
dp[i] *= -1.1;
}
else {
params[i] += dp[i];
dp[i] *= 0.9;
}
}
}
tP = params[0];
tD = params[1];
tI = params[2];
println(error/steps);
}
else {
println(params);
tP = params[0];
tD = params[1];
tI = params[2];
mode = NAVIGATE;
}
}
// Use PID control to follow the path
else if (mode === NAVIGATE) {
// Draw path
stroke(SMOOTH_PATH_COLOR);
strokeWeight(5);
for (var i = 0; i < smoothPath.length; i++) {
point(BLOCK_SIZE*smoothPath[i][0]+BLOCK_SIZE/2, BLOCK_SIZE*smoothPath[i][1]+BLOCK_SIZE/2);
}
strokeWeight(1);
for (var i = 0; i < smoothPath.length-1; i++) {
line(BLOCK_SIZE*smoothPath[i][0]+BLOCK_SIZE/2, BLOCK_SIZE*smoothPath[i][1]+BLOCK_SIZE/2, BLOCK_SIZE*smoothPath[i+1][0]+BLOCK_SIZE/2,
BLOCK_SIZE*smoothPath[i+1][1]+BLOCK_SIZE/2);
}
// Draw robot
robot.draw();
// Compute cte
var diff = -cte;
var x1 = smoothPath[index][0]*BLOCK_SIZE+BLOCK_SIZE/2;
var y1 = smoothPath[index][1]*BLOCK_SIZE+BLOCK_SIZE/2;
var x2 = smoothPath[index+1][0]*BLOCK_SIZE+BLOCK_SIZE/2;
var y2 = smoothPath[index+1][1]*BLOCK_SIZE+BLOCK_SIZE/2;
var dx = x2-x1;
var dy = y2-y1;
var d = sqrt(pow(dx, 2) + pow(dy, 2));
var u = ((robot.x-x1)*dx + (robot.y-y1)*dy)/(pow(dx, 2) + pow(dy, 2));
var Px = x1 + d*u*cos(atan2(dy, dx));
var Py = y1 + d*u*sin(atan2(dy, dx));
cte = ((robot.y-y1)*dx-(robot.x-x1)*dy)/(pow(dx, 2) + pow(dy, 2));
sigma += cte;
diff += cte;
if (u > 1) {
index++;
index = min(index, smoothPath.length-2);
}
// Update robot
robot.move(ROBOT_SPEED, -tP*cte - tD*diff - tI*sigma);
//println(index);
}
};
but all that happens is that a grey screen shows up