I'm studying the following canvas animation by Matei Copot.
Can someone explain how the "impulse"/shooting effect works, and how, say I can simplify the code to only have 3 stationary dots a, b, and c (while showing the impulse effect between a-> b and between b -> c)?
var w = c.width = window.innerWidth,
h = c.height = window.innerHeight,
ctx = c.getContext( '2d' ),
opts = {
range: 180,
baseConnections: 3,
addedConnections: 5,
baseSize: 5,
minSize: 1,
dataToConnectionSize: .4,
sizeMultiplier: .7,
allowedDist: 40,
baseDist: 40,
addedDist: 30,
connectionAttempts: 100,
dataToConnections: 1,
baseSpeed: .04,
addedSpeed: .05,
baseGlowSpeed: .4,
addedGlowSpeed: .4,
rotVelX: .003,
rotVelY: .002,
repaintColor: '#111',
connectionColor: 'hsla(200,60%,light%,alp)',
rootColor: 'hsla(0,60%,light%,alp)',
endColor: 'hsla(160,20%,light%,alp)',
dataColor: 'hsla(40,80%,light%,alp)',
wireframeWidth: .1,
wireframeColor: '#88f',
depth: 250,
focalLength: 250,
vanishPoint: {
x: w / 2,
y: h / 2
}
},
squareRange = opts.range * opts.range,
squareAllowed = opts.allowedDist * opts.allowedDist,
mostDistant = opts.depth + opts.range,
sinX = sinY = 0,
cosX = cosY = 0,
connections = [],
toDevelop = [],
data = [],
all = [],
tick = 0,
totalProb = 0,
animating = false,
Tau = Math.PI * 2;
ctx.fillStyle = '#222';
ctx.fillRect( 0, 0, w, h );
ctx.fillStyle = '#ccc';
ctx.font = '50px Verdana';
ctx.fillText( 'Calculating Nodes', w / 2 - ctx.measureText( 'Calculating Nodes' ).width / 2, h / 2 - 15 );
window.setTimeout( init, 4 ); // to render the loading screen
function init(){
connections.length = 0;
data.length = 0;
all.length = 0;
toDevelop.length = 0;
var connection = new Connection( 0, 0, 0, opts.baseSize );
connection.step = Connection.rootStep;
connections.push( connection );
all.push( connection );
connection.link();
while( toDevelop.length > 0 ){
toDevelop[ 0 ].link();
toDevelop.shift();
}
if( !animating ){
animating = true;
anim();
}
}
function Connection( x, y, z, size ){
this.x = x;
this.y = y;
this.z = z;
this.size = size;
this.screen = {};
this.links = [];
this.probabilities = [];
this.isEnd = false;
this.glowSpeed = opts.baseGlowSpeed + opts.addedGlowSpeed * Math.random();
}
Connection.prototype.link = function(){
if( this.size < opts.minSize )
return this.isEnd = true;
var links = [],
connectionsNum = opts.baseConnections + Math.random() * opts.addedConnections |0,
attempt = opts.connectionAttempts,
alpha, beta, len,
cosA, sinA, cosB, sinB,
pos = {},
passedExisting, passedBuffered;
while( links.length < connectionsNum && --attempt > 0 ){
alpha = Math.random() * Math.PI;
beta = Math.random() * Tau;
len = opts.baseDist + opts.addedDist * Math.random();
cosA = Math.cos( alpha );
sinA = Math.sin( alpha );
cosB = Math.cos( beta );
sinB = Math.sin( beta );
pos.x = this.x + len * cosA * sinB;
pos.y = this.y + len * sinA * sinB;
pos.z = this.z + len * cosB;
if( pos.x*pos.x + pos.y*pos.y + pos.z*pos.z < squareRange ){
passedExisting = true;
passedBuffered = true;
for( var i = 0; i < connections.length; ++i )
if( squareDist( pos, connections[ i ] ) < squareAllowed )
passedExisting = false;
if( passedExisting )
for( var i = 0; i < links.length; ++i )
if( squareDist( pos, links[ i ] ) < squareAllowed )
passedBuffered = false;
if( passedExisting && passedBuffered )
links.push( { x: pos.x, y: pos.y, z: pos.z } );
}
}
if( links.length === 0 )
this.isEnd = true;
else {
for( var i = 0; i < links.length; ++i ){
var pos = links[ i ],
connection = new Connection( pos.x, pos.y, pos.z, this.size * opts.sizeMultiplier );
this.links[ i ] = connection;
all.push( connection );
connections.push( connection );
}
for( var i = 0; i < this.links.length; ++i )
toDevelop.push( this.links[ i ] );
}
}
Connection.prototype.step = function(){
this.setScreen();
this.screen.color = ( this.isEnd ? opts.endColor : opts.connectionColor ).replace( 'light', 30 + ( ( tick * this.glowSpeed ) % 30 ) ).replace( 'alp', .2 + ( 1 - this.screen.z / mostDistant ) * .8 );
for( var i = 0; i < this.links.length; ++i ){
ctx.moveTo( this.screen.x, this.screen.y );
ctx.lineTo( this.links[ i ].screen.x, this.links[ i ].screen.y );
}
}
Connection.rootStep = function(){
this.setScreen();
this.screen.color = opts.rootColor.replace( 'light', 30 + ( ( tick * this.glowSpeed ) % 30 ) ).replace( 'alp', ( 1 - this.screen.z / mostDistant ) * .8 );
for( var i = 0; i < this.links.length; ++i ){
ctx.moveTo( this.screen.x, this.screen.y );
ctx.lineTo( this.links[ i ].screen.x, this.links[ i ].screen.y );
}
}
Connection.prototype.draw = function(){
ctx.fillStyle = this.screen.color;
ctx.beginPath();
ctx.arc( this.screen.x, this.screen.y, this.screen.scale * this.size, 0, Tau );
ctx.fill();
}
function Data( connection ){
this.glowSpeed = opts.baseGlowSpeed + opts.addedGlowSpeed * Math.random();
this.speed = opts.baseSpeed + opts.addedSpeed * Math.random();
this.screen = {};
this.setConnection( connection );
}
Data.prototype.reset = function(){
this.setConnection( connections[ 0 ] );
this.ended = 2;
}
Data.prototype.step = function(){
this.proportion += this.speed;
if( this.proportion < 1 ){
this.x = this.ox + this.dx * this.proportion;
this.y = this.oy + this.dy * this.proportion;
this.z = this.oz + this.dz * this.proportion;
this.size = ( this.os + this.ds * this.proportion ) * opts.dataToConnectionSize;
} else
this.setConnection( this.nextConnection );
this.screen.lastX = this.screen.x;
this.screen.lastY = this.screen.y;
this.setScreen();
this.screen.color = opts.dataColor.replace( 'light', 40 + ( ( tick * this.glowSpeed ) % 50 ) ).replace( 'alp', .2 + ( 1 - this.screen.z / mostDistant ) * .6 );
}
Data.prototype.draw = function(){
if( this.ended )
return --this.ended; // not sre why the thing lasts 2 frames, but it does
ctx.beginPath();
ctx.strokeStyle = this.screen.color;
ctx.lineWidth = this.size * this.screen.scale;
ctx.moveTo( this.screen.lastX, this.screen.lastY );
ctx.lineTo( this.screen.x, this.screen.y );
ctx.stroke();
}
Data.prototype.setConnection = function( connection ){
if( connection.isEnd )
this.reset();
else {
this.connection = connection;
this.nextConnection = connection.links[ connection.links.length * Math.random() |0 ];
this.ox = connection.x; // original coordinates
this.oy = connection.y;
this.oz = connection.z;
this.os = connection.size; // base size
this.nx = this.nextConnection.x; // new
this.ny = this.nextConnection.y;
this.nz = this.nextConnection.z;
this.ns = this.nextConnection.size;
this.dx = this.nx - this.ox; // delta
this.dy = this.ny - this.oy;
this.dz = this.nz - this.oz;
this.ds = this.ns - this.os;
this.proportion = 0;
}
}
Connection.prototype.setScreen = Data.prototype.setScreen = function(){
var x = this.x,
y = this.y,
z = this.z;
// apply rotation on X axis
var Y = y;
y = y * cosX - z * sinX;
z = z * cosX + Y * sinX;
// rot on Y
var Z = z;
z = z * cosY - x * sinY;
x = x * cosY + Z * sinY;
this.screen.z = z;
// translate on Z
z += opts.depth;
this.screen.scale = opts.focalLength / z;
this.screen.x = opts.vanishPoint.x + x * this.screen.scale;
this.screen.y = opts.vanishPoint.y + y * this.screen.scale;
}
function squareDist( a, b ){
var x = b.x - a.x,
y = b.y - a.y,
z = b.z - a.z;
return x*x + y*y + z*z;
}
function anim(){
window.requestAnimationFrame( anim );
ctx.globalCompositeOperation = 'source-over';
ctx.fillStyle = opts.repaintColor;
ctx.fillRect( 0, 0, w, h );
++tick;
var rotX = tick * opts.rotVelX,
rotY = tick * opts.rotVelY;
cosX = Math.cos( rotX );
sinX = Math.sin( rotX );
cosY = Math.cos( rotY );
sinY = Math.sin( rotY );
if( data.length < connections.length * opts.dataToConnections ){
var datum = new Data( connections[ 0 ] );
data.push( datum );
all.push( datum );
}
ctx.globalCompositeOperation = 'lighter';
ctx.beginPath();
ctx.lineWidth = opts.wireframeWidth;
ctx.strokeStyle = opts.wireframeColor;
all.map( function( item ){ item.step(); } );
ctx.stroke();
ctx.globalCompositeOperation = 'source-over';
all.sort( function( a, b ){ return b.screen.z - a.screen.z } );
all.map( function( item ){ item.draw(); } );
/*ctx.beginPath();
ctx.strokeStyle = 'red';
ctx.arc( opts.vanishPoint.x, opts.vanishPoint.y, opts.range * opts.focalLength / opts.depth, 0, Tau );
ctx.stroke();*/
}
window.addEventListener( 'resize', function(){
opts.vanishPoint.x = ( w = c.width = window.innerWidth ) / 2;
opts.vanishPoint.y = ( h = c.height = window.innerHeight ) / 2;
ctx.fillRect( 0, 0, w, h );
});
window.addEventListener( 'click', init );
canvas {
position: absolute;
top: 0;
left: 0;
}
<canvas id=c></canvas>
<!--
ALGORITHM:
structure:
- gen( x,y,z ):
- create node at x,y,z // blue
- append some children to list:
- within a certain distance to parent
- outside a certain distance from any node
- within a global distance
- if no children
- don't append any
- set as end node // green-ish
- gen( 0,0,0 ) // red
- while list has items
- gen( position of first item )
- remove first item
impulse behaviour:
- pick( node ):
- if node is end node
- pick( original node )
- else
- pick( random node from node children )
- pick( original node)
-->
I read the contents of a dxf-file (only 2D) in NodeJS with a dxf parser (https://github.com/bjnortier/dxf) and then i get an array with the following output:
LINE: start.x, start.y, end.x, end.y
CIRCLE: x, y, radius
ARC: x, y ,radius, startAngle, endAngle
I wrote 3 functions based on the Bresenham-Algorithm to set the needed pixels in an array, which i want to use later to draw an canvas.
The input-parameters are
data: the denorm dxf data in an array
coordSystem: the array where to set the needed pixels
module.exports: {
processLINE: function(data, coordSystem) {
var setPixel = function(x, y) {
x = Math.ceil(x);
y = Math.ceil(y);
coordSystem[x][y] = 1;
}
var line = function(x0, y0, x1, y1) {
var dx = Math.abs(x1-x0);
var dy = Math.abs(y1-y0);
var sx = (x0 < x1) ? 1 : -1;
var sy = (y0 < y1) ? 1 : -1;
var err = dx-dy;
var e2;
while(true) {
setPixel(x0,y0);
if ((x0===x1) && (y0===y1)) break;
e2 = 2*err;
if (e2 >-dy){ err -= dy; x0 += sx; }
if (e2 < dx){ err += dx; y0 += sy; }
}
}
line(Math.ceil(data.start.x), Math.ceil(data.start.y), Math.ceil(data.end.x), Math.ceil(data.end.y))
return coordSystem;
},
processCIRCLE: function(data, coordSystem) {
var setPixel = function(x, y) {
x = Math.ceil(x);
y = Math.ceil(y);
coordSystem[x][y] = 1;
}
var createCircle = function(x0, y0, radius)
{
var f = 1 - radius;
var ddF_x = 0;
var ddF_y = -2 * radius;
var x = 0;
var y = radius;
setPixel(x0, y0 + radius);
setPixel(x0, y0 - radius);
setPixel(x0 + radius, y0);
setPixel(x0 - radius, y0);
while(x < y)
{
if(f >= 0)
{
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x + 1;
setPixel(x0 + x, y0 + y);
setPixel(x0 - x, y0 + y);
setPixel(x0 + x, y0 - y);
setPixel(x0 - x, y0 - y);
setPixel(x0 + y, y0 + x);
setPixel(x0 - y, y0 + x);
setPixel(x0 + y, y0 - x);
setPixel(x0 - y, y0 - x);
}
}
createCircle(data.x, data.y, data.r);
return coordSystem;
},
processARC: function(data, coordSystem) {
var setPixel = function(x, y, coordinates) {
x = Math.ceil(x);
y = Math.ceil(y);
coordSystem[x][y] = 1;
}
var createPartialcircle = function()
{
startAngle = data.startAngle*180/Math.PI;
endAngle = data.endAngle*180/Math.PI;
if(startAngle>endAngle) {
for (var i=startAngle; i>endAngle; i--) {
var radians = i * Math.PI / 180;
var px = data.x - data.r * Math.cos(radians);
var py = data.y - data.r * Math.sin(radians);
setPixel(px, py, coordinates);
}
} else {
for (var i=startAngle; i<endAngle; i++) {
var radians = i * Math.PI / 180;
var px = data.x + data.r * Math.cos(radians);
var py = data.y + data.r * Math.sin(radians);
setPixel(px, py, coordinates);
}
}
}
createPartialcircle(data.x, data.y, data.r);
return coordSystem;
}
}
With this i get the following shape:
As you can see it works, but there are some "holes" and because of this my last function which should fill the hole shape (scan-line-algorithm), doesn't work well...
Here is how i fill the shape
I took this code from HERE and wrote it in JavaScript-Style.
function scanLineFill(config, data, x, y, fillColor) {
function getPixel(x,y) {
return data[x][y];
}
function setPixel(x,y) {
data[x][y] = fillColor;
}
// Config
var nMinX = 0;
var nMinY = 0;
var nMaxX = config.maxValues.x;
var nMaxY = config.maxValues.y;
var seedColor = getPixel(x,y);
function lineFill(x1, x2, y) {
var xL,xR;
if( y < nMinY || nMaxY < y || x1 < nMinX || nMaxX < x1 || x2 < nMinX || nMaxX < x2 )
return;
for( xL = x1; xL >= nMinX; --xL ) { // scan left
if( getPixel(xL,y) !== seedColor )
break;
setPixel(xL,y);
}
if( xL < x1 ) {
lineFill(xL, x1, y-1); // fill child
lineFill(xL, x1, y+1); // fill child
++x1;
}
for( xR = x2; xR <= nMaxX; ++xR ) { // scan right
console.log('FOR: xR --> ', xR)
if( getPixel(xR,y) !== seedColor )
break;
setPixel(xR,y);
}
if( xR > x2 ) {
lineFill(x2, xR, y-1); // fill child
lineFill(x2, xR, y+1); // fill child
--x2;
}
for( xR = x1; xR <= x2 && xR <= nMaxX; ++xR ) { // scan betweens
if( getPixel(xR,y) === seedColor )
setPixel(xR,y);
else {
if( x1 < xR ) {
// fill child
lineFill(x1, xR-1, y-1);
// fill child
lineFill(x1, xR-1, y+1);
x1 = xR;
}
// Note: This function still works if this step is removed.
for( ; xR <= x2 && xR <= nMaxX; ++xR) { // skip over border
if( getPixel(xR,y) === seedColor ) {
x1 = xR--;
break;
}
}
}
}
}
if( fillColor !== seedColor ) {
lineFill(x, x, y);
}
return data;
}
And the result is this:
I think if the shape has no holes, the fill-function would fill the shape correct. But how can i achieve this?
Need to create simple line of sight from point. Length of this line would be adapt to the size of canvas. If line directed to any object (circle, rectangle etc) it must be interrupted after this. I don't know exactly how to describe this, but behavior should be something like this. It's like laser aim in video-games.
Demo jsfiddle. Target line has red color. I think that line must have dynamic length depending on where I will direct it.
var canvas = document.querySelector("canvas");
canvas.width = 500;
canvas.height = 300;
var ctx = canvas.getContext("2d"),
line = {
x1: 190, y1: 170,
x2: 0, y2: 0,
x3: 0, y3: 0
};
var length = 100;
var circle = {
x: 400,
y: 70
};
window.onmousemove = function(e) {
//get correct mouse pos
var rect = ctx.canvas.getBoundingClientRect(),
x = e.clientX - rect.left,
y = e.clientY - rect.top;
// calc line angle
var dx = x - line.x1,
dy = y - line.y1,
angle = Math.atan2(dy, dx);
//Then render the line using 100 pixel radius:
line.x2 = line.x1 - length * Math.cos(angle);
line.y2 = line.y1 - length * Math.sin(angle);
line.x3 = line.x1 + canvas.width * Math.cos(angle);
line.y3 = line.y1 + canvas.width * Math.sin(angle);
// render
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
ctx.moveTo(line.x1, line.y1);
ctx.lineTo(line.x2, line.y2);
ctx.strokeStyle = '#333';
ctx.stroke();
ctx.beginPath();
ctx.moveTo(line.x1, line.y1);
ctx.lineTo(line.x3, line.y3);
ctx.strokeStyle = 'red';
ctx.stroke();
ctx.beginPath();
ctx.arc(circle.x, circle.y, 20, 0, Math.PI * 2, true);
ctx.fillStyle = '#333';
ctx.fill();
}
<canvas></canvas>
Ray casting
The given answer is a good answer but this problem is better suited to a ray casting like solution where we are only interested in the distance to an intercept rather than the actual point of interception. We only need one point per cast ray so not calculating points will reduce the math and hence the CPU load giving more rays and objects per second.
A ray is a point that defines the start and a normalised vector that represents the direction of the ray. Because the ray uses a normalised vector that is a unit length many calculations are simplified because 1 * anything changes nothing.
Also the problem is about looking for the closest intercept so the intercept functions return a distance from the ray's origin. If no intercept is found then Infinity is returned to allow a valid distance comparison to be made. Every number is less than Infinity.
A nice feature of JavaScript is that it allows divide by zero and returns Infinity if that happens, this further reduces the complexity of the solution. Also if the intercept finds a negative intercept that means the object is behind that raycast origin and thus will return infinity as well.
So first let's define our objects by creating functions to make them. They are all ad hoc objects.
The Ray
// Ad Hoc method for ray to set the direction vector
var updateRayDir = function(dir){
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
// Creates a ray objects from
// x,y start location
// dir the direction in radians
// len the rays length
var createRay = function(x,y,dir,len){
return ({
x : x,
y : y,
len : len,
setDir : updateRayDir, // add function to set direction
}).setDir(dir);
}
A circle
// returns a circle object
// x,y is the center
// radius is the you know what..
// Note r2 is radius squared if you change the radius remember to set r2 as well
var createCircle = function(x , y, radius){
return {
x : x,
y : y,
rayDist : rayDist2Circle, // add ray cast method
radius : radius,
r2 : radius * radius, // ray caster needs square of radius may as well do it here
};
}
A wall
Note I changed the wall code in the demo
// Ad Hoc function to change the wall position
// x1,y1 are the start coords
// x2,y2 are the end coords
changeWallPosition = function(x1, y1, x2, y2){
this.x = x1;
this.y = y1;
this.vx = x2 - x1;
this.vy = y2 - y1;
this.len = Math.hypot(this.vx,this.vy);
this.nx = this.vx / this.len;
this.ny = this.vy / this.len;
return this;
}
// returns a wall object
// x1,y1 are the star coords
// x2,y2 are the end coords
var createWall = function(x1, y1, x2, y2){
return({
x : x1, y : y1,
vx : x2 - x1,
vy : y2 - y1,
rayDist : rayDist2Wall, // add ray cast method
setPos : changeWallPosition,
}).setPos(x1, y1, x2, y2);
}
So those are the objects, they can be static or moving through the circle should have a setRadius function because I have added a property that holds the square of the radius but I will leave that up to you if you use that code.
Now the intercept functions.
Ray Intercepts
The stuff that matters. In the demo these functions are bound to the objects so that the ray casting code need not have to know what type of object it is checking.
Distance to circle.
// Self evident
// returns a distance or infinity if no valid solution
var rayDist2Circle = function(ray){
var vcx, vcy, v;
vcx = ray.x - this.x; // vector from ray to circle
vcy = ray.y - this.y;
v = -2 * (vcx * ray.nx + vcy * ray.ny);
v -= Math.sqrt(v * v - 4 * (vcx * vcx + vcy * vcy - this.r2)); // this.r2 is the radius squared
// If there is no solution then Math.sqrt returns NaN we should return Infinity
// Not interested in intercepts in the negative direction so return infinity
return isNaN(v) || v < 0 ? Infinity : v / 2;
}
Distance to wall
// returns the distance to the wall
// if no valid solution then return Infinity
var rayDist2Wall = function(ray){
var x,y,u;
rWCross = ray.nx * this.ny - ray.ny * this.nx;
if(!rWCross) { return Infinity; } // Not really needed.
x = ray.x - this.x; // vector from ray to wall start
y = ray.y - this.y;
u = (ray.nx * y - ray.ny * x) / rWCross; // unit distance along normalised wall
// does the ray hit the wall segment
if(u < 0 || u > this.len){ return Infinity;} /// no
// as we use the wall normal and ray normal the unit distance is the same as the
u = (this.nx * y - this.ny * x) / rWCross;
return u < 0 ? Infinity : u; // if behind ray return Infinity else the dist
}
That covers the objects. If you need to have a circle that is inside out (you want the inside surface then change the second last line of the circle ray function to v += rather than v -=
The ray casting
Now it is just a matter of iterating all the objects against the ray and keeping the distant to the closest object. Set the ray to that distance and you are done.
// Does a ray cast.
// ray the ray to cast
// objects an array of objects
var castRay = function(ray,objects)
var i,minDist;
minDist = ray.len; // set the min dist to the rays length
i = objects.length; // number of objects to check
while(i > 0){
i -= 1;
minDist = Math.min(objects[i].rayDist(ray),minDist);
}
ray.len = minDist;
}
A demo
And a demo of all the above in action. THere are some minor changes (drawing). The important stuff is the two intercept functions. The demo creates a random scene each time it is resized and cast 16 rays from the mouse position. I can see in your code you know how to get the direction of a line so I made the demo show how to cast multiple rays that you most likely will end up doing
const COLOUR = "BLACK";
const RAY_COLOUR = "RED";
const LINE_WIDTH = 4;
const RAY_LINE_WIDTH = 2;
const OBJ_COUNT = 20; // number of object in the scene;
const NUMBER_RAYS = 16; // number of rays
const RAY_DIR_SPACING = Math.PI / (NUMBER_RAYS / 2);
const RAY_ROTATE_SPEED = Math.PI * 2 / 31000;
if(typeof Math.hypot === "undefined"){ // poly fill for Math.hypot
Math.hypot = function(x, y){
return Math.sqrt(x * x + y * y);
}
}
var ctx, canvas, objects, ray, w, h, mouse, rand, ray, rayMaxLen, screenDiagonal;
// create a canvas and add to the dom
var canvas = document.createElement("canvas");
canvas.width = w = window.innerWidth;
canvas.height = h = window.innerHeight;
canvas.style.position = "absolute";
canvas.style.left = "0px";
canvas.style.top = "0px";
document.body.appendChild(canvas);
// objects to ray cast
objects = [];
// mouse object
mouse = {x :0, y: 0};
//========================================================================
// random helper
rand = function(min, max){
return Math.random() * (max - min) + min;
}
//========================================================================
// Ad Hoc draw line method
// col is the stroke style
// width is the storke width
var drawLine = function(col,width){
ctx.strokeStyle = col;
ctx.lineWidth = width;
ctx.beginPath();
ctx.moveTo(this.x,this.y);
ctx.lineTo(this.x + this.nx * this.len, this.y + this.ny * this.len);
ctx.stroke();
}
//========================================================================
// Ad Hoc draw circle method
// col is the stroke style
// width is the storke width
var drawCircle = function(col,width){
ctx.strokeStyle = col;
ctx.lineWidth = width;
ctx.beginPath();
ctx.arc(this.x , this.y, this.radius, 0 , Math.PI * 2);
ctx.stroke();
}
//========================================================================
// Ad Hoc method for ray to set the direction vector
var updateRayDir = function(dir){
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
//========================================================================
// Creates a ray objects from
// x,y start location
// dir the direction in radians
// len the rays length
var createRay = function(x,y,dir,len){
return ({
x : x,
y : y,
len : len,
draw : drawLine,
setDir : updateRayDir, // add function to set direction
}).setDir(dir);
}
//========================================================================
// returns a circle object
// x,y is the center
// radius is the you know what..
// Note r2 is radius squared if you change the radius remember to set r2 as well
var createCircle = function(x , y, radius){
return {
x : x,
y : y,
draw : drawCircle, // draw function
rayDist : rayDist2Circle, // add ray cast method
radius : radius,
r2 : radius * radius, // ray caster needs square of radius may as well do it here
};
}
//========================================================================
// Ad Hoc function to change the wall position
// x1,y1 are the start coords
// x2,y2 are the end coords
changeWallPosition = function(x1, y1, len, dir){
this.x = x1;
this.y = y1;
this.len = len;
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
//========================================================================
// returns a wall object
// x1,y1 are the star coords
// len is the length
// dir is the direction
var createWall = function(x1, y1, len, dir){
return({
x : x1, y : y1,
rayDist : rayDist2Wall, // add ray cast method
draw : drawLine,
setPos : changeWallPosition,
}).setPos(x1, y1, len, dir);
}
//========================================================================
// Self evident
// returns a distance or infinity if no valid solution
var rayDist2Circle = function(ray){
var vcx, vcy, v;
vcx = ray.x - this.x; // vector from ray to circle
vcy = ray.y - this.y;
v = -2 * (vcx * ray.nx + vcy * ray.ny);
v -= Math.sqrt(v * v - 4 * (vcx * vcx + vcy * vcy - this.r2)); // this.r2 is the radius squared
// If there is no solution then Math.sqrt returns NaN we should return Infinity
// Not interested in intercepts in the negative direction so return infinity
return isNaN(v) || v < 0 ? Infinity : v / 2;
}
//========================================================================
// returns the distance to the wall
// if no valid solution then return Infinity
var rayDist2Wall = function(ray){
var x,y,u;
rWCross = ray.nx * this.ny - ray.ny * this.nx;
if(!rWCross) { return Infinity; } // Not really needed.
x = ray.x - this.x; // vector from ray to wall start
y = ray.y - this.y;
u = (ray.nx * y - ray.ny * x) / rWCross; // unit distance along normal of wall
// does the ray hit the wall segment
if(u < 0 || u > this.len){ return Infinity;} /// no
// as we use the wall normal and ray normal the unit distance is the same as the
u = (this.nx * y - this.ny * x) / rWCross;
return u < 0 ? Infinity : u; // if behind ray return Infinity else the dist
}
//========================================================================
// does a ray cast
// ray the ray to cast
// objects an array of objects
var castRay = function(ray,objects){
var i,minDist;
minDist = ray.len; // set the min dist to the rays length
i = objects.length; // number of objects to check
while(i > 0){
i -= 1;
minDist = Math.min(objects[i].rayDist(ray), minDist);
}
ray.len = minDist;
}
//========================================================================
// Draws all objects
// objects an array of objects
var drawObjects = function(objects){
var i = objects.length; // number of objects to check
while(i > 0){
objects[--i].draw(COLOUR, LINE_WIDTH);
}
}
//========================================================================
// called on start and resize
// creats a new scene each time
// fits the canvas to the avalible realestate
function reMakeAll(){
w = canvas.width = window.innerWidth;
h = canvas.height = window.innerHeight;
ctx = canvas.getContext("2d");
screenDiagonal = Math.hypot(window.innerWidth,window.innerHeight);
if(ray === undefined){
ray = createRay(0,0,0,screenDiagonal);
}
objects.length = 0;
var i = OBJ_COUNT;
while( i > 0 ){
if(Math.random() < 0.5){ // half circles half walls
objects.push(createWall(rand(0, w), rand(0, h), rand(screenDiagonal * 0.1, screenDiagonal * 0.2), rand(0, Math.PI * 2)));
}else{
objects.push(createCircle(rand(0, w), rand(0, h), rand(screenDiagonal * 0.02, screenDiagonal * 0.05)));
}
i -= 1;
}
}
//========================================================================
function mouseMoveEvent(event){
mouse.x = event.clientX;
mouse.y = event.clientY;
}
//========================================================================
// updates all that is needed when needed
function updateAll(time){
var i;
ctx.clearRect(0,0,w,h);
ray.x = mouse.x;
ray.y = mouse.y;
drawObjects(objects);
i = 0;
while(i < NUMBER_RAYS){
ray.setDir(i * RAY_DIR_SPACING + time * RAY_ROTATE_SPEED);
ray.len = screenDiagonal;
castRay(ray,objects);
ray.draw(RAY_COLOUR, RAY_LINE_WIDTH);
i ++;
}
requestAnimationFrame(updateAll);
}
// add listeners
window.addEventListener("resize",reMakeAll);
canvas.addEventListener("mousemove",mouseMoveEvent);
// set it all up
reMakeAll();
// start the ball rolling
requestAnimationFrame(updateAll);
An alternative use of above draws a polygon using the end points of the cast rays can be seen at codepen
For this you would need a line to circle intersection algorithm for the balls as well as line to line intersection for the walls.
For the ball you can use this function - I made this to return arrays being empty if no intersection, one point if tangent or two points if secant.
Simply feed it start of line, line of sight end-point as well as the ball's center position and radius. In your case you will probably only need the first point:
function lineIntersectsCircle(x1, y1, x2, y2, cx, cy, r) {
x1 -= cx;
y1 -= cy;
x2 -= cx;
y2 -= cy;
// solve quadrant
var a = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1),
b = 2 * ((x2 - x1) * x1 + (y2 - y1) * y1),
c = x1 * x1 + y1 * y1 - r * r,
d = b * b - 4 * a * c,
dq, p1, p2, t1, t2;
if (d <= 0 || !a) return [];
dq = Math.sqrt(d);
t1 = (-b - dq) / (2 * a);
t2 = (-b + dq) / (2 * a);
// calculate actual intersection points
if (t1 >= 0 && t1 <= 1)
p1 = {
x: x1 + t1 * (x2 - x1) + cx,
y: y1 + t1 * (y2 - y1) + cy
};
if (t2 >= 0 && t2 <= 1)
p2 = {
x: x1 + t2 * (x2 - x1) + cx,
y: y1 + t2 * (y2 - y1) + cy
};
return p1 && p2 ? [p1, p2] : p1 ? [p1] : [p2]
};
Then for the walls you would need a line to line intersection - define one line for each side of the rectangle. If there is line overlap you may get hit for two intersection, just ignore the second.
This will return a single point for the intersection or null if no intersection:
function getLineIntersection(p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y) {
var d1x = p1x - p0x,
d1y = p1y - p0y,
d2x = p3x - p2x,
d2y = p3y - p2y,
d = d1x * d2y - d2x * d1y,
px, py, s, t;
if (Math.abs(d) < 1e-14) return null;
px = p0x - p2x;
py = p0y - p2y;
s = (d1x * py - d1y * px) / d;
if (s >= 0 && s <= 1) {
t = (d2x * py - d2y * px) / d;
if (t >= 0 && t <= 1) {
return {
x: p0x + (t * d1x),
y: p0y + (t * d1y)
}
}
}
return null
}
Then just iterate with the line through the ball array, if no hit, iterate through the wall array.
Modified fiddle
To utilize these you will have to run the line through these each time it is moved (or per frame update).
Tip: You can make the function recursive so that you can find the intersection point, calculate reflected vector based on the hit angle, then find next intersection for n number of times (or total length the shot can move) using the last intersecting point and new angle as start of next line. This way you can build the path the shot will follow.
var canvas = document.querySelector("canvas");
canvas.width = 500;
canvas.height = 300;
var ctx = canvas.getContext("2d"),
line = {
x1: 190, y1: 170,
x2: 0, y2: 0,
x3: 0, y3: 0
};
var length = 100;
var circle = {
x: 400,
y: 70
};
var wall = {
x1: 440, y1: 0,
x2: 440, y2: 100
};
window.onmousemove = function(e) {
//get correct mouse pos
var rect = ctx.canvas.getBoundingClientRect(),
x = e.clientX - rect.left,
y = e.clientY - rect.top;
// calc line angle
var dx = x - line.x1,
dy = y - line.y1,
angle = Math.atan2(dy, dx);
//Then render the line using length as pixel radius:
line.x2 = line.x1 - length * Math.cos(angle);
line.y2 = line.y1 - length * Math.sin(angle);
line.x3 = line.x1 + canvas.width * Math.cos(angle);
line.y3 = line.y1 + canvas.width * Math.sin(angle);
// does it intersect?
var pts = lineIntersectsCircle(line.x1, line.y1, line.x3, line.y3, circle.x, circle.y, 20);
if (pts.length) {
line.x3 = pts[0].x;
line.y3 = pts[0].y
}
else {
pts = getLineIntersection(line.x1, line.y1, line.x3, line.y3, wall.x1, wall.y1, wall.x2, wall.y2);
if (pts) {
line.x3 = pts.x;
line.y3 = pts.y
}
}
// render
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
ctx.moveTo(line.x1, line.y1);
ctx.lineTo(line.x2, line.y2);
ctx.strokeStyle = '#333';
ctx.stroke();
ctx.beginPath();
ctx.moveTo(line.x1, line.y1);
ctx.lineTo(line.x3, line.y3);
ctx.strokeStyle = 'red';
ctx.stroke();
ctx.beginPath();
ctx.arc(circle.x, circle.y, 20, 0, Math.PI * 2, true);
ctx.fillStyle = '#333';
ctx.fill();
// render example wall:
ctx.fillRect(wall.x1, wall.y1, 4, wall.y2-wall.y1);
}
function lineIntersectsCircle(x1, y1, x2, y2, cx, cy, r) {
x1 -= cx;
y1 -= cy;
x2 -= cx;
y2 -= cy;
// solve quadrant
var a = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1),
b = 2 * ((x2 - x1) * x1 + (y2 - y1) * y1),
c = x1 * x1 + y1 * y1 - r * r,
d = b * b - 4 * a * c,
dq, p1, p2, t1, t2;
if (d <= 0 || !a) return [];
dq = Math.sqrt(d);
t1 = (-b - dq) / (2 * a);
t2 = (-b + dq) / (2 * a);
// calculate actual intersection points
if (t1 >= 0 && t1 <= 1)
p1 = {
x: x1 + t1 * (x2 - x1) + cx,
y: y1 + t1 * (y2 - y1) + cy
};
if (t2 >= 0 && t2 <= 1)
p2 = {
x: x1 + t2 * (x2 - x1) + cx,
y: y1 + t2 * (y2 - y1) + cy
};
return p1 && p2 ? [p1, p2] : p1 ? [p1] : [p2]
};
function getLineIntersection(p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y) {
var d1x = p1x - p0x,
d1y = p1y - p0y,
d2x = p3x - p2x,
d2y = p3y - p2y,
d = d1x * d2y - d2x * d1y,
px, py, s, t;
if (Math.abs(d) < 1e-14) return null;
px = p0x - p2x;
py = p0y - p2y;
s = (d1x * py - d1y * px) / d;
if (s >= 0 && s <= 1) {
t = (d2x * py - d2y * px) / d;
if (t >= 0 && t <= 1) {
return {
x: p0x + (t * d1x),
y: p0y + (t * d1y)
}
}
}
return null
}
<canvas></canvas>
I don't have enough reputation to add this as a comment to Blindman67's solution, so i have to resort to adding this as an answer.
Blindman67's answer is great, but i needed support for polygons as well.
I am no math wizard so there may be a much better solution for polygons than this, but what i did was loop over all pairs of points from a polygon (so all sides of a polygon, really) and treat them as walls based on the code from Blindman67, then check the ray distance in the new rayDist2Polygon:
var rayDist2Polygon = function(ray){
let u,lineU;
const polLength = this.points.length;
const startX = this.x;
const startY = this.y;
// Loop over all lines of the polygon
for (i = 0; i < polLength; i++) {
const nextPoint = i === polLength - 1 ? this.points[0] : this.points[i + 1];
const x1 = startX + this.points[i].x;
const x2 = startX + nextPoint.x;
const y1 = startY + this.points[i].y;
const y2 = startY + nextPoint.y;
this.setupWall(x1, y1, x2, y2);
lineU = rayDist2Wall.bind(this)(ray);
if (!u) {
// If it's the first hit, assign it to `u`
u = lineU;
} else if (lineU < u) {
// If the current hit is smaller than anything we have so far, then this is the closest one, assign it to `u`
u = lineU;
}
}
// Reset positions after running this.setupWall;
this.x = startX;
this.y = startY;
return (!u || u < 0) ? Infinity : u; // if behind ray return Infinity else the dist
}
Then used the same logic to also support squares by converting a square's dimension/shape to points.
You can view it below, or fiddle with it at my codepen.
// Forked from https://stackoverflow.com/a/36566360/16956030
// All credits go to Blindman67
// All i did was add support for Polygons and Squares based on code from
// Blindman67, by treating each side of a polyon/square as a line/wall,
// then loop over each side and get the smallest result in rayDist2Polygon.
// I'm no math wizard and there may be a much better solution for these shapes,
// but this'll do for now.
console.clear();
const COLOUR = "BLACK";
const RAY_COLOUR = "RED";
const LINE_WIDTH = 4;
const RAY_LINE_WIDTH = 2;
const OBJ_COUNT = 20; // number of object in the scene;
const NUMBER_RAYS = 16; // number of rays
const RAY_DIR_SPACING = Math.PI / (NUMBER_RAYS / 2);
const RAY_ROTATE_SPEED = Math.PI * 2 / 31000;
if(typeof Math.hypot === "undefined"){ // poly fill for Math.hypot
Math.hypot = function(x, y){
return Math.sqrt(x * x + y * y);
}
}
var ctx, canvas, objects, ray, w, h, mouse, rand, ray, rayMaxLen, screenDiagonal;
// create a canvas and add to the dom
var canvas = document.createElement("canvas");
canvas.width = w = window.innerWidth;
canvas.height = h = window.innerHeight;
canvas.style.position = "absolute";
canvas.style.left = "0px";
canvas.style.top = "0px";
document.body.appendChild(canvas);
// objects to ray cast
objects = [];
// mouse object
mouse = {x :0, y: 0};
//========================================================================
// random helper
rand = function(min, max){
return Math.random() * (max - min) + min;
}
//========================================================================
// Ad Hoc draw line method
// col is the stroke style
// width is the storke width
var drawLine = function(col,width){
ctx.strokeStyle = col;
ctx.lineWidth = width;
ctx.beginPath();
ctx.moveTo(this.x,this.y);
ctx.lineTo(this.x + this.nx * this.len, this.y + this.ny * this.len);
ctx.stroke();
}
//========================================================================
// Ad Hoc draw circle method
// col is the stroke style
// width is the storke width
var drawCircle = function(col,width){
ctx.strokeStyle = col;
ctx.lineWidth = width;
ctx.beginPath();
ctx.arc(this.x , this.y, this.radius, 0 , Math.PI * 2);
ctx.stroke();
}
//========================================================================
// Ad Hoc draw square method
var drawSquare = function(){
ctx.beginPath();
ctx.rect(this.x, this.y, this.width, this.height);
ctx.stroke();
// Create array of points like a polygon based on the position & dimensions
// from this square, necessary for rayDist2Polygon
this.points = [
{ x: 0, y: 0},
{ x: this.width, y: 0},
{ x: this.width, y: this.height},
{ x: 0, y: this.height}
];
}
//========================================================================
// Ad Hoc draw [poligon] method
var drawPolygon = function(){
ctx.beginPath();
ctx.moveTo(this.x,this.y);
var polLength = this.points.length;
for(var i=0; i < polLength; ++i) {
ctx.lineTo(this.x + this.points[i].x, this.y + this.points[i].y);
}
ctx.closePath();
ctx.stroke();
}
//========================================================================
// Ad Hoc method for ray to set the direction vector
var updateRayDir = function(dir){
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
//========================================================================
// Creates a ray objects from
// x,y start location
// dir the direction in radians
// len the rays length
var createRay = function(x,y,dir,len){
return ({
x : x,
y : y,
len : len,
draw : drawLine,
setDir : updateRayDir, // add function to set direction
}).setDir(dir);
}
//========================================================================
// returns a circle object
// x,y is the center
// radius is the you know what..
// Note r2 is radius squared if you change the radius remember to set r2 as well
var createCircle = function(x , y, radius){
return {
x : x,
y : y,
draw : drawCircle, // draw function
rayDist : rayDist2Circle, // add ray cast method
radius : radius,
r2 : radius * radius, // ray caster needs square of radius may as well do it here
};
}
// Ad Hoc function to set the wall information
// x1,y1 are the start coords
// x2,y2 are the end coords
setupWallInformation = function(x1, y1, x2, y2){
this.x = x1;
this.y = y1;
this.vx = x2 - x1;
this.vy = y2 - y1;
this.len = Math.hypot(this.vx,this.vy);
this.nx = this.vx / this.len;
this.ny = this.vy / this.len;
return this;
}
//========================================================================
// returns a polygon object
// x,y are the start coords
// In this example the polygon always has the same shape
var createPolygon = function(x , y){
return {
x : x,
y : y,
points: [
{ x: 0, y: 0},
{ x: 100, y: 50},
{ x: 50, y: 100},
{ x: 0, y: 90}
],
draw : drawPolygon, // draw function
setupWall : setupWallInformation,
rayDist : rayDist2Polygon, // add ray cast method
};
}
//========================================================================
// returns a square object
// x,y are the start coords
// In this example the polygon always has the same shape
var createSquare = function(x , y, width, height){
return {
x : x,
y : y,
width: width,
height: height,
draw : drawSquare, // draw function
setupWall : setupWallInformation,
rayDist : rayDist2Polygon, // add ray cast method
};
}
//========================================================================
// Ad Hoc function to change the wall position
// x1,y1 are the start coords
// x2,y2 are the end coords
changeWallPosition = function(x1, y1, len, dir){
this.x = x1;
this.y = y1;
this.len = len;
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
//========================================================================
// returns a wall object
// x1,y1 are the star coords
// len is the length
// dir is the direction
var createWall = function(x1, y1, len, dir){
return({
x : x1, y : y1,
rayDist : rayDist2Wall, // add ray cast method
draw : drawLine,
setPos : changeWallPosition,
}).setPos(x1, y1, len, dir);
}
//========================================================================
// Self evident
// returns a distance or infinity if no valid solution
var rayDist2Circle = function(ray){
var vcx, vcy, v;
vcx = ray.x - this.x; // vector from ray to circle
vcy = ray.y - this.y;
v = -2 * (vcx * ray.nx + vcy * ray.ny);
v -= Math.sqrt(v * v - 4 * (vcx * vcx + vcy * vcy - this.r2)); // this.r2 is the radius squared
// If there is no solution then Math.sqrt returns NaN we should return Infinity
// Not interested in intercepts in the negative direction so return infinity
return isNaN(v) || v < 0 ? Infinity : v / 2;
}
//========================================================================
// returns the distance to the wall
// if no valid solution then return Infinity
var rayDist2Wall = function(ray){
var x,y,u;
rWCross = ray.nx * this.ny - ray.ny * this.nx;
if(!rWCross) { return Infinity; } // Not really needed.
x = ray.x - this.x; // vector from ray to wall start
y = ray.y - this.y;
u = (ray.nx * y - ray.ny * x) / rWCross; // unit distance along normal of wall
// does the ray hit the wall segment
if(u < 0 || u > this.len){ return Infinity;} /// no
// as we use the wall normal and ray normal the unit distance is the same as the
u = (this.nx * y - this.ny * x) / rWCross;
return u < 0 ? Infinity : u; // if behind ray return Infinity else the dist
}
//========================================================================
// returns the distance to the polygon
// if no valid solution then return Infinity
var rayDist2Polygon = function(ray){
let u,lineU;
const polLength = this.points.length;
const startX = this.x;
const startY = this.y;
// Loop over all lines of the polygon
for (i = 0; i < polLength; i++) {
const nextPoint = i === polLength - 1 ? this.points[0] : this.points[i + 1];
const x1 = startX + this.points[i].x;
const x2 = startX + nextPoint.x;
const y1 = startY + this.points[i].y;
const y2 = startY + nextPoint.y;
this.setupWall(x1, y1, x2, y2);
lineU = rayDist2Wall.bind(this)(ray);
if (!u) {
// If it's the first hit, assign it to `u`
u = lineU;
} else if (lineU < u) {
// If the current hit is smaller than anything we have so far, then this is the closest one, assign it to `u`
u = lineU;
}
}
// Reset positions after running this.setupWall;
this.x = startX;
this.y = startY;
return (!u || u < 0) ? Infinity : u; // if behind ray return Infinity else the dist
}
//========================================================================
// does a ray cast
// ray the ray to cast
// objects an array of objects
var castRay = function(ray,objects){
var i,minDist;
minDist = ray.len; // set the min dist to the rays length
i = objects.length; // number of objects to check
while(i > 0){
i -= 1;
minDist = Math.min(objects[i].rayDist(ray), minDist);
}
ray.len = minDist;
}
//========================================================================
// Draws all objects
// objects an array of objects
var drawObjects = function(objects){
var i = objects.length; // number of objects to check
while(i > 0){
objects[--i].draw(COLOUR, LINE_WIDTH);
}
}
//========================================================================
// called on start and resize
// creats a new scene each time
// fits the canvas to the avalible realestate
function reMakeAll(){
w = canvas.width = window.innerWidth;
h = canvas.height = window.innerHeight;
ctx = canvas.getContext("2d");
screenDiagonal = Math.hypot(window.innerWidth,window.innerHeight);
if(ray === undefined){
ray = createRay(0,0,0,screenDiagonal);
}
objects.length = 0;
var i = OBJ_COUNT;
while( i > 0 ){
var objectRandom = Math.floor(rand(0, 4));
if(objectRandom === 1){
objects.push(createWall(rand(0, w), rand(0, h), rand(screenDiagonal * 0.1, screenDiagonal * 0.2), rand(0, Math.PI * 2)));
}else if(objectRandom === 2){
objects.push(createPolygon(rand(0, w), rand(0, h)));
}else if(objectRandom === 3){
objects.push(createSquare(rand(0, w), rand(0, h), rand(screenDiagonal * 0.02, screenDiagonal * 0.05), rand(screenDiagonal * 0.02, screenDiagonal * 0.05)));
}else{
objects.push(createCircle(rand(0, w), rand(0, h), rand(screenDiagonal * 0.02, screenDiagonal * 0.05)));
}
i -= 1;
}
}
//========================================================================
function mouseMoveEvent(event){
mouse.x = event.clientX;
mouse.y = event.clientY;
}
//========================================================================
// updates all that is needed when needed
function updateAll(time){
var i;
ctx.clearRect(0,0,w,h);
ray.x = mouse.x;
ray.y = mouse.y;
drawObjects(objects);
i = 0;
while(i < NUMBER_RAYS){
ray.setDir(i * RAY_DIR_SPACING + time * RAY_ROTATE_SPEED);
ray.len = screenDiagonal;
castRay(ray,objects);
ray.draw(RAY_COLOUR, RAY_LINE_WIDTH);
i ++;
}
requestAnimationFrame(updateAll);
}
// add listeners
window.addEventListener("resize",reMakeAll);
canvas.addEventListener("mousemove",mouseMoveEvent);
// set it all up
reMakeAll();
// start the ball rolling
requestAnimationFrame(updateAll);
I'm trying to get my OVERLAY tag to appear on top of my canvas javascript. I've gone through all the questions on here but nothing has worked!
Please help! Code:
page.html
<!DOCTYPE html>
<html lang="en">
<head>
<link rel="stylesheet" href="style.css">
<meta charset="UTF-8">
<title>Document</title>
</head>
<body>
<div id='container'>
<canvas id='canvas'></canvas>
<script src="test-script.js"></script>
<div id='overlay'>OVERLAY
<br></br>
OVERLAY
<br></br>
OVERLAY
</div>
</div>
</body>
</html>
style.css
#canvas {position: fixed; z-index: -1;}
#overlay {margin-top: -50px; z-index:0; position: relative;}
test-script.js
var ns = ns || {};
(function draw() {
var c;
var ctx;
var trails = [];
document.body.onload = function() {
c = document.getElementById( 'canvas' );
c.width = 2000;
c.height = 2000;
document.body.appendChild( c );
ctx = c.getContext( "2d" );
trails.push( new ns.trailer( [990000, 990000, 990000, 600000, 600000 ]));
// trails.push( new ns.trailer( [ 600000,600000,600000,600000,600000,600000,600000 ] ));
trails.push( new ns.trailer( [ 8000000, 8000000, 8000000, 990000, 990000 ] ));
document.onmousedown = reset;
reset();
setInterval( compute, 0 );
}
function reset() {
ctx.fillStyle = "white";
ctx.fillRect( 0,0,c.width,c.height );
for( var i =0; i < trails.length; i++ ) {
trails[ i ].reset();
}
}
function compute() {
for( var i =0; i < trails.length; i++ ) {
trails[ i ].compute( ctx );
}
}
})();
ns.trailer = function( colors ) {
this.points = [];
this.stroke = new ns.stroke( null, 100, 10, colors[ 0 ] );
this.colorIterator = 10;
this.colors = colors;
}
ns.trailer.prototype = {
reset : function() {
this.points = [];
this.width = document.body.offsetWidth;
this.height = document.body.offsetHeight;
this.radius = Math.max( this.width, this.height );
this.center = new ns.point( this.width / 2, this.height / 2 );
this.a0 = Math.random() * Math.PI * 2;
this.a1 = Math.random() * Math.PI * 2;
this.a2 = Math.random() * Math.PI * 2;
var mul = 1 + Math.random() * 2;
if( Math.random() > .5 ) mul *= 5;
else mul /= 2;
this.s0 = ( Math.random() - .5 ) * mul / 180 * Math.PI;
this.s1 = ( Math.random() - .5 ) * mul / 180 * Math.PI;
this.s2 = ( Math.random() - .5 ) * mul / 180 * Math.PI;
},
compute : function( ctx ) {
with( this ) {
a0 += s0;
a1 += s1;
a2 += s2;
var c = Math.cos( a0 ) * Math.cos( a1 ) * Math.cos( a2 );
var s = Math.sin( a0 ) * Math.sin( a1 ) * Math.sin( a2 );
points.push( new ns.point( center.x + c * radius,
center.y + s * radius ) );
if( points.length > 10 ) points.shift();
stroke.anchors = points;
stroke.draw( ctx );
var t = .5 + (Math.sin( new Date().getTime() * .001 ) * .5 );
stroke.color = colors[ Math.floor( t * colors.length ) ];
stroke.width = 25 + ( 1 - t ) * 50;
//stroke.strokeCount = 5 + t * 5;
stroke.strokeCount = 5;
}
}
}
ns.point = function( x,y ) {
this.x = x;
this.y = y;
}
ns.point.prototype = {
add : function( p ) {
return new ns.point( this.x + p.x, this.y + p.y );
}.
sub : function( p ) {
return new ns.point( this.x - p.x, this.y - p.y );
},
negate : function() {
this.x *= -1;
this.y *= -1;
return this;
},
clone : function() {
return new ns.point( this.x, this.y );
},
length : function() {
return Math.sqrt( this.x * this.x + this.y * this.y );
},
normalize : function ( scale ) {
scale = scale || 1;
var l = this.length();
this.x /= l;
this.x *= scale;
this.y /= l;
this.y *= scale;
return this;
}
}
ns.stroke = function( anchors, width, strokeCount, color ) {
this.anchors = anchors;
this.width = width;
this.strokeCount = strokeCount;
this.color = color;
}
ns.stroke.prototype = {
normal : function( p0, p1 ){
return new ns.point( -( p1.y - p0.y ), ( p1.x - p0.x ) );
},
draw : function( ctx ) {
if( this.anchors == undefined ) return;
var half = this.height * .5;
var p, c, n, pnorm, pln, prn, cnorm, cln, crn;
with( this ) {
for( var j = 0; j < strokeCount; j++ ) {
half = width * .5 * Math.random();
var col = ns.variation( color, 35 );
ctx.lineWidth = .1 + Math.random() * 2;
for( var i = 0; i < anchors.length - 2; i++ ) {
p = anchors[ i ];
c = anchors[ i+1 ];
n = anchors[ i+2 ];
pnorm = normal( p, c );
cnorm = normal( c, n );
half += ( Math.random() - .5 );
pnorm.normalize( half );
pln = p.add( pnorm );
pnorm.normalize( -half );
prn = p.add( pnorm );
half += ( Math.random() - .5 );
cnorm.normalize( half );
cln = c.add( cnorm );
cnorm.normalize( -half );
crn = c.add( cnorm );
ctx.beginPath();
ctx.strokeStyle = col;
ctx.moveTo( prn.x, prn.y );
ctx.lineTo( crn.x, crn.y );
ctx.stroke();
ctx.closePath();
ctx.beginPath();
ctx.strokeStyle = col;
ctx.moveTo( pln.x, pln.y );
ctx.lineTo( cln.x, cln.y );
ctx.stroke();
ctx.closePath();
}
}
}
}
}
ns.variation = function( color, amount ) {
amount = amount || 25;
var r = color >> 16 & 0xFF;
var g = color >> 8 & 0xFF;
var b = color & 0xFF;
r += Math.floor( ( Math.random() - .5 ) * amount );
g += Math.floor( ( Math.random() - .5 ) * amount );
b += Math.floor( ( Math.random() - .5 ) * amount );
r = r > 0xFF ? 0xFF : r < 0 ? 0 : r;
g = g > 0xFF ? 0xFF : g < 0 ? 0 : g;
b = b > 0xFF ? 0xFF : b < 0 ? 0 : b;
return "rgba("+r+','+g+','+b+','+Math.random()+');';
}
**I've added my Javascript code
You need to use absolute position. Also mention width and height to 100%. z-index should be higher to place element over other elements.
#canvas {
position: fixed;
}
#overlay {
z-index: 9;
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(0, 0, 0, 0.3);
}
<div id='container'>
<canvas id='canvas'></canvas>
<div id='overlay'>OVERLAY
<br>OVERLAY
<br>OVERLAY
</div>
</div>
CSS
#container {
position: relative;
}
#overlay {
position:absolute;
top:50px;
left:150px;
z-index:10;
}
Adjust the "top" and "left" amounts to get OVERLAY positioned on top of the canvas.
It was the JavaScript.
Run my code snippet.
var ns = ns || {};
(function draw() {
var c;
var ctx;
var trails = [];
document.body.onload = function() {
c = document.getElementById( 'canvas' );
c.width = 2000;
c.height = 2000;
document.body.appendChild( c );
ctx = c.getContext( "2d" );
trails.push( new ns.trailer( [990000, 990000, 990000, 600000, 600000 ]));
// trails.push( new ns.trailer( [ 600000,600000,600000,600000,600000,600000,600000 ] ));
trails.push( new ns.trailer( [ 8000000, 8000000, 8000000, 990000, 990000 ] ));
document.onmousedown = reset;
reset();
setInterval( compute, 0 );
};
function reset() {
ctx.fillStyle = "white";
ctx.fillRect( 0,0,c.width,c.height );
for( var i =0; i < trails.length; i++ ) {
trails[ i ].reset();
}
}
function compute() {
for( var i =0; i < trails.length; i++ ) {
trails[ i ].compute( ctx );
}
}
})();
ns.trailer = function( colors ) {
this.points = [];
this.stroke = new ns.stroke( null, 100, 10, colors[ 0 ] );
this.colorIterator = 10;
this.colors = colors;
};
ns.trailer.prototype = {
reset : function() {
this.points = [];
this.width = document.body.offsetWidth;
this.height = document.body.offsetHeight;
this.radius = Math.max( this.width, this.height );
this.center = new ns.point( this.width / 2, this.height / 2 );
this.a0 = Math.random() * Math.PI * 2;
this.a1 = Math.random() * Math.PI * 2;
this.a2 = Math.random() * Math.PI * 2;
var mul = 1 + Math.random() * 2;
if( Math.random() > .5 ) mul *= 5;
else mul /= 2;
this.s0 = ( Math.random() - .5 ) * mul / 180 * Math.PI;
this.s1 = ( Math.random() - .5 ) * mul / 180 * Math.PI;
this.s2 = ( Math.random() - .5 ) * mul / 180 * Math.PI;
},
compute : function( ctx ) {
with( this ) {
a0 += s0;
a1 += s1;
a2 += s2;
var c = Math.cos( a0 ) * Math.cos( a1 ) * Math.cos( a2 );
var s = Math.sin( a0 ) * Math.sin( a1 ) * Math.sin( a2 );
points.push( new ns.point( center.x + c * radius,
center.y + s * radius ) );
if( points.length > 10 ) points.shift();
stroke.anchors = points;
stroke.draw( ctx );
var t = .5 + (Math.sin( new Date().getTime() * .001 ) * .5 );
stroke.color = colors[ Math.floor( t * colors.length ) ];
stroke.width = 25 + ( 1 - t ) * 50;
//stroke.strokeCount = 5 + t * 5;
stroke.strokeCount = 5;
}
}
};
ns.point = function( x,y ) {
this.x = x;
this.y = y;
};
ns.point.prototype = {
add : function( p ) {
return new ns.point( this.x + p.x, this.y + p.y );
},
sub : function( p ) {
return new ns.point( this.x - p.x, this.y - p.y );
},
negate : function() {
this.x *= -1;
this.y *= -1;
return this;
},
clone : function() {
return new ns.point( this.x, this.y );
},
length : function() {
return Math.sqrt( this.x * this.x + this.y * this.y );
},
normalize : function ( scale ) {
scale = scale || 1;
var l = this.length();
this.x /= l;
this.x *= scale;
this.y /= l;
this.y *= scale;
return this;
}
};
ns.stroke = function( anchors, width, strokeCount, color ) {
this.anchors = anchors;
this.width = width;
this.strokeCount = strokeCount;
this.color = color;
};
ns.stroke.prototype = {
normal : function( p0, p1 ){
return new ns.point( -( p1.y - p0.y ), ( p1.x - p0.x ) );
},
draw : function( ctx ) {
if( this.anchors === undefined ) return;
var half = this.height * .5;
var p, c, n, pnorm, pln, prn, cnorm, cln, crn;
with( this ) {
for( var j = 0; j < strokeCount; j++ ) {
half = width * .5 * Math.random();
var col = ns.variation( color, 35 );
ctx.lineWidth = .1 + Math.random() * 2;
for( var i = 0; i < anchors.length - 2; i++ ) {
p = anchors[ i ];
c = anchors[ i+1 ];
n = anchors[ i+2 ];
pnorm = normal( p, c );
cnorm = normal( c, n );
half += ( Math.random() - .5 );
pnorm.normalize( half );
pln = p.add( pnorm );
pnorm.normalize( -half );
prn = p.add( pnorm );
half += ( Math.random() - .5 );
cnorm.normalize( half );
cln = c.add( cnorm );
cnorm.normalize( -half );
crn = c.add( cnorm );
ctx.beginPath();
ctx.strokeStyle = col;
ctx.moveTo( prn.x, prn.y );
ctx.lineTo( crn.x, crn.y );
ctx.stroke();
ctx.closePath();
ctx.beginPath();
ctx.strokeStyle = col;
ctx.moveTo( pln.x, pln.y );
ctx.lineTo( cln.x, cln.y );
ctx.stroke();
ctx.closePath();
}
}
}
}
};
ns.variation = function( color, amount ) {
amount = amount || 25;
var r = color && 16 && 0xFF;
var g = color && 8 && 0xFF;
var b = color && 0xFF;
r += Math.floor( ( Math.random() - .5 ) * amount );
g += Math.floor( ( Math.random() - .5 ) * amount );
b += Math.floor( ( Math.random() - .5 ) * amount );
r = r > 0xFF ? 0xFF : r < 0 ? 0 : r;
g = g > 0xFF ? 0xFF : g < 0 ? 0 : g;
b = b > 0xFF ? 0xFF : b < 0 ? 0 : b;
return "rgba("+r+','+g+','+b+','+Math.random()+');';
};
#container {
position: relative;
}
#overlay {
position:absolute;
top:50px;
left:150px;
z-index:10;
}
<body>
<div id='container'>
<div id='overlay'>
<h1>
OVERLAY
</h1>
</div>
<canvas id='canvas'>
</canvas>
</div>
<!-- scripts -->
<script type="text/javascript" src="test-script.js"></script>
</body>