Increase Contrast 50% by using vanilla javascript [duplicate] - javascript

I've been writing an image processing program which applies effects through HTML5 canvas pixel processing. I've achieved Thresholding, Vintaging, and ColorGradient pixel manipulations but unbelievably I cannot change the contrast of the image!
I've tried multiple solutions but I always get too much brightness in the picture and less of a contrast effect and I'm not planning to use any Javascript libraries since I'm trying to achieve these effects natively.
The basic pixel manipulation code:
var data = imageData.data;
for (var i = 0; i < data.length; i += 4) {
//Note: data[i], data[i+1], data[i+2] represent RGB respectively
data[i] = data[i];
data[i+1] = data[i+1];
data[i+2] = data[i+2];
}
Pixel manipulation example
Values are in RGB mode which means data[i] is the Red color. So if data[i] = data[i] * 2; the brightness will be increased to twice for the Red channel of that pixel. Example:
var data = imageData.data;
for (var i = 0; i < data.length; i += 4) {
//Note: data[i], data[i+1], data[i+2] represent RGB respectively
//Increases brightness of RGB channel by 2
data[i] = data[i]*2;
data[i+1] = data[i+1]*2;
data[i+2] = data[i+2]*2;
}
*Note: I'm not asking you guys to complete the code! That would just be a favor! I'm asking for an algorithm (even Pseudo code) that shows how Contrast in pixel manipulation is possible!
I would be glad if someone can provide a good algorithm for Image Contrast in HTML5 canvas.

A faster option (based on Escher's approach) is:
function contrastImage(imgData, contrast){ //input range [-100..100]
var d = imgData.data;
contrast = (contrast/100) + 1; //convert to decimal & shift range: [0..2]
var intercept = 128 * (1 - contrast);
for(var i=0;i<d.length;i+=4){ //r,g,b,a
d[i] = d[i]*contrast + intercept;
d[i+1] = d[i+1]*contrast + intercept;
d[i+2] = d[i+2]*contrast + intercept;
}
return imgData;
}
Derivation similar to the below; this version is mathematically the same, but runs much faster.
Original answer
Here is a simplified version with explanation of an approach already discussed (which was based on this article):
function contrastImage(imageData, contrast) { // contrast as an integer percent
var data = imageData.data; // original array modified, but canvas not updated
contrast *= 2.55; // or *= 255 / 100; scale integer percent to full range
var factor = (255 + contrast) / (255.01 - contrast); //add .1 to avoid /0 error
for(var i=0;i<data.length;i+=4) //pixel values in 4-byte blocks (r,g,b,a)
{
data[i] = factor * (data[i] - 128) + 128; //r value
data[i+1] = factor * (data[i+1] - 128) + 128; //g value
data[i+2] = factor * (data[i+2] - 128) + 128; //b value
}
return imageData; //optional (e.g. for filter function chaining)
}
Notes
I have chosen to use a contrast range of +/- 100 instead of the original +/- 255. A percentage value seems more intuitive for users, or programmers who don't understand the underlying concepts. Also, my usage is always tied to UI controls; a range from -100% to +100% allows me to label and bind the control value directly instead of adjusting or explaining it.
This algorithm doesn't include range checking, even though the calculated values can far exceed the allowable range - this is because the array underlying the ImageData object is a Uint8ClampedArray. As MSDN explains, with a Uint8ClampedArray the range checking is handled for you:
"if you specified a value that is out of the range of [0,255], 0 or 255 will be set instead."
Usage
Note that while the underlying formula is fairly symmetric (allows round-tripping), data is lost at high levels of filtering because pixels only allow integer values. For example, by the time you de-saturate an image to extreme levels (>95% or so), all the pixels are basically a uniform medium gray (within a few digits of the average possible value of 128). Turning the contrast back up again results in a flattened color range.
Also, order of operations is important when applying multiple contrast adjustments - saturated values "blow out" (exceed the clamped max value of 255) quickly, meaning highly saturating and then de-saturating will result in a darker image overall. De-saturating and then saturating however doesn't have as much data loss, because the highlight and shadow values get muted, instead of clipped (see explanation below).
Generally speaking, when applying multiple filters it's better to start each operation with the original data and re-apply each adjustment in turn, rather than trying to reverse a previous change - at least for image quality. Performance speed or other demands may dictate differently for each situation.
Code Example:
function contrastImage(imageData, contrast) { // contrast input as percent; range [-1..1]
var data = imageData.data; // Note: original dataset modified directly!
contrast *= 255;
var factor = (contrast + 255) / (255.01 - contrast); //add .1 to avoid /0 error.
for(var i=0;i<data.length;i+=4)
{
data[i] = factor * (data[i] - 128) + 128;
data[i+1] = factor * (data[i+1] - 128) + 128;
data[i+2] = factor * (data[i+2] - 128) + 128;
}
return imageData; //optional (e.g. for filter function chaining)
}
$(document).ready(function(){
var ctxOrigMinus100 = document.getElementById('canvOrigMinus100').getContext("2d");
var ctxOrigMinus50 = document.getElementById('canvOrigMinus50').getContext("2d");
var ctxOrig = document.getElementById('canvOrig').getContext("2d");
var ctxOrigPlus50 = document.getElementById('canvOrigPlus50').getContext("2d");
var ctxOrigPlus100 = document.getElementById('canvOrigPlus100').getContext("2d");
var ctxRoundMinus90 = document.getElementById('canvRoundMinus90').getContext("2d");
var ctxRoundMinus50 = document.getElementById('canvRoundMinus50').getContext("2d");
var ctxRound0 = document.getElementById('canvRound0').getContext("2d");
var ctxRoundPlus50 = document.getElementById('canvRoundPlus50').getContext("2d");
var ctxRoundPlus90 = document.getElementById('canvRoundPlus90').getContext("2d");
var img = new Image();
img.onload = function() {
//draw orig
ctxOrig.drawImage(img, 0, 0, img.width, img.height, 0, 0, 100, 100); //100 = canvas width, height
//reduce contrast
var origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, -.98);
ctxOrigMinus100.putImageData(origBits, 0, 0);
var origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, -.5);
ctxOrigMinus50.putImageData(origBits, 0, 0);
// add contrast
var origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, .5);
ctxOrigPlus50.putImageData(origBits, 0, 0);
var origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, .98);
ctxOrigPlus100.putImageData(origBits, 0, 0);
//round-trip, de-saturate first
origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, -.98);
contrastImage(origBits, .98);
ctxRoundMinus90.putImageData(origBits, 0, 0);
origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, -.5);
contrastImage(origBits, .5);
ctxRoundMinus50.putImageData(origBits, 0, 0);
//do nothing 100 times
origBits = ctxOrig.getImageData(0, 0, 100, 100);
for(i=0;i<100;i++){
contrastImage(origBits, 0);
}
ctxRound0.putImageData(origBits, 0, 0);
//round-trip, saturate first
origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, .5);
contrastImage(origBits, -.5);
ctxRoundPlus50.putImageData(origBits, 0, 0);
origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, .98);
contrastImage(origBits, -.98);
ctxRoundPlus90.putImageData(origBits, 0, 0);
};
img.src = "";
});
canvas {width: 100px; height: 100px}
div {text-align:center; width:120px; float:left}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div>
<canvas id="canvOrigMinus100" width="100" height="100"></canvas>
-98%
</div>
<div>
<canvas id="canvOrigMinus50" width="100" height="100"></canvas>
-50%
</div>
<div>
<canvas id="canvOrig" width="100" height="100"></canvas>
Original
</div>
<div>
<canvas id="canvOrigPlus50" width="100" height="100"></canvas>
+50%
</div>
<div>
<canvas id="canvOrigPlus100" width="100" height="100"></canvas>
+98%
</div>
<hr/>
<div style="clear:left">
<canvas id="canvRoundMinus90" width="100" height="100"></canvas>
Round-trip <br/> (-98%, +98%)
</div>
<div>
<canvas id="canvRoundMinus50" width="100" height="100"></canvas>
Round-trip <br/> (-50%, +50%)
</div>
<div>
<canvas id="canvRound0" width="100" height="100"></canvas>
Round-trip <br/> (0% 100x)
</div>
<div>
<canvas id="canvRoundPlus50" width="100" height="100"></canvas>
Round-trip <br/> (+50%, -50%)
</div>
<div>
<canvas id="canvRoundPlus90" width="100" height="100"></canvas>
Round-trip <br/> (+98%, -98%)
</div>
Explanation
(Disclaimer - I am not an image specialist or a mathematician. I am trying to provide a common-sense explanation with minimal technical details. Some hand-waving below, e.g. 255=256 to avoid indexing issues, and 127.5=128, for simplifying the numbers.)
Since, for a given pixel, the possible number of non-zero values for a color channel is 255, the "no-contrast", average value of a pixel is 128 (or 127, or 127.5 if you want argue, but the difference is negligible). For purposed of this explanation, the amount of "contrast" is the distance from the current value to the average value (128). Adjusting the contrast means increasing or decreasing the difference between the current value and the average value.
The problem the algorithm solves then is to:
Chose a constant factor to adjust contrast by
For each color channel of each pixel, scale "contrast" (distance from average) by that constant factor
Or, as hinted at in the CSS spec, simply choosing the slope and intercept of a line:
<feFuncR type="linear" slope="[amount]" intercept="-(0.5 * [amount]) + 0.5"/>
Note the term type='linear'; we are doing linear contrast adjustment in RGB color space, as opposed to a quadratic scaling function, luminence-based adjustment, or histogram matching.
If you recall from geometry class, the formula for a line is y=mx+b. y is the final value we are after, the slope m is the contrast (or factor), x is the initial pixel value, and b is the intercept of the y-axis (x=0), which shifts the line vertically. Recall also that since the y-intercept is not at the origin (0,0), the formula can also be represented as y=m(x-a)+b, where a is the x-offset shifting the line horizontally.
For our purposes, this graph represents the input value (x-axis) and the result (y-axis). We already know that b, the y-intercept (for m=0, no contrast) must be 128 (which we can check against the 0.5 from the spec - 0.5 * the full range of 256 = 128). x is our original value, so all we need is to figure out the slope m and x-offset a.
First, the slope m is "rise over run", or (y2-y1)/(x2-x1) - so we need 2 points known to be on the desired line. Finding these points requires bringing a few things together:
Our function takes the shape of a line-intercept graph
The y-intercept is at b = 128 - regardless of the slope (contrast).
The maximum expected 'y' value is 255, and the minimum is 0
The range of possible 'x' values is 256
A neutral value should always stay neutral: 128 => 128 regardless of slope
A contrast adjustment of 0 should result in no change between input and output; that is, a 1:1 slope.
Taking all these together, we can deduce that regardless of the contrast (slope) applied, our resulting line will be centered at (and pivot around) 128,128. Since our y-intercept is non-zero, the x-intercept is also non-zero; we know the x-range is 256 wide and is centered in the middle, so it must be offset by half of the possible range: 256 / 2 = 128.
So now for y=m(x-a)+b, we know everything except m. Recall two more important points from geometry class:
Lines have the same slope even if their location changes; that is, m stays the same regardless of the values of a and b.
The slope of a line can be found using any 2 points on the line
To simplify the slope discussion, let's move the coordinate origin to the x-intercept (-128) and ignore a and b for a moment. Our original line will now pivot through (0,0), and we know a second point on the line lies away the full range of both x (input) and y (output) at (255,255).
We'll let the new line pivot at (0,0), so we can use that as one of the points on the new line that will follow our final contrast slope m. The second point can be determined by moving the current end at (255,255) by some amount; since we are limited to a single input (contrast) and using a linear function, this second point will be moved equally in the x and y directions on our graph.
The (x,y) coordinates of the 4 possible new points will be 255 +/- contrast. Since increasing or decreasing both x and y would keep us on the original 1:1 line, let's just look at +x, -y and -x, +y as shown.
The steeper line (-x, +y) is associated with a positive contrast adjustment; it's (x,y) coordinates are (255 - contrast,255 + contrast). The coordinates of the shallower line (negative contrast) are found the same way. Notice that the biggest meaningful value of contrast will be 255 - the most that the initial point of (255,255) can be translated before resulting in a vertical line (full contrast, all black or white) or a horizontal line (no contrast, all gray).
So now we have the coordinates of two points on our new line - (0,0) and (255 - contrast,255 + contrast). We plug this into the slope equation, and then plug that into the full line equation, using all the parts from before:
y = m(x-a) + b
m = (y2-y1)/(x2-x1) =>
((255 + contrast) - 0)/((255 - contrast) - 0) =>
(255 + contrast)/(255 - contrast)
a = 128
b = 128
y = (255 + contrast)/(255 - contrast) * (x - 128) + 128 QED
The math-minded will notice that the resulting m or factor is a scalar (unitless) value; you can use any range you want for contrast as long as it matches the constant (255) in the factor calculation. For example, a contrast range of +/-100 and factor = (100 + contrast)/(100.01 - contrast), which is was I really use to eliminate the step of scaling to 255; I just left 255 in the code at the top to simplify the explanation.
Note about the "magic" 259
The source article uses a "magic" 259, although the author admits he doesn't remember why:
"I can’t remember if I had calculated this myself or if I’ve read it in a book or online.".
259 should really be 255 or perhaps 256 - the number of possible non-zero values for each channel of each pixel. Note that in the original factor calculation, 259/255 cancels out - technically 1.01, but final values are whole integers so 1 for all practical purposes. So this outer term can be discarded. Actually using 255 for the constant in the denominator, though, introduces the possibility of a Divide By Zero error in the formula; adjusting to a slightly larger value (say, 259) avoids this issue without introducing significant error to the results. I chose to use 255.01 instead as the error is lower and it (hopefully) seems less "magic" to a newcomer.
As far as I can tell though, it doesn't make much difference which you use - you get identical values except for minor, symmetric differences in a narrow band of low contrast values with a low positive contrast increase. I'd be curious to round-trip both versions repeatedly and compare to the original data, but this answer already took way too long. :)

After trying the answer by Schahriar SaffarShargh, it wasn't behaving like contrast should behave. I finally came across this algorithm, and it works like a charm!
For additional information about the algorithm, read this article and it's comments section.
function contrastImage(imageData, contrast) {
var data = imageData.data;
var factor = (259 * (contrast + 255)) / (255 * (259 - contrast));
for(var i=0;i<data.length;i+=4)
{
data[i] = factor * (data[i] - 128) + 128;
data[i+1] = factor * (data[i+1] - 128) + 128;
data[i+2] = factor * (data[i+2] - 128) + 128;
}
return imageData;
}
Usage:
var newImageData = contrastImage(imageData, 30);
Hopefully this will be a time-saver for someone. Cheers!

This javascript implementation complies with the SVG/CSS3 definition of "contrast" (and the following code will render your canvas image identically):
/*contrast filter function*/
//See definition at https://drafts.fxtf.org/filters/#contrastEquivalent
//pixels come from your getImageData() function call on your canvas image
contrast = function(pixels, value){
var d = pixels.data;
var intercept = 255*(-value/2 + 0.5);
for(var i=0;i<d.length;i+=4){
d[i] = d[i]*value + intercept;
d[i+1] = d[i+1]*value + intercept;
d[i+2] = d[i+2]*value + intercept;
//implement clamping in a separate function if using in production
if(d[i] > 255) d[i] = 255;
if(d[i+1] > 255) d[i+1] = 255;
if(d[i+2] > 255) d[i+2] = 255;
if(d[i] < 0) d[i] = 0;
if(d[i+1] < 0) d[i+1] = 0;
if(d[i+2] < 0) d[i+2] = 0;
}
return pixels;
}

I found out that you have to use the effect by separating the darks and lights or technically anything that is less than 127 (average of R+G+B / 3) in rgb scale is a black and more than 127 is a white, therefore by your level of contrast you minus a value say 10 contrast from the blacks and add the same value to the whites!
Here is an example:
I have two pixels with RGB colors, [105,40,200] | [255,200,150]
So I know that for my first pixel 105 + 40 + 200 = 345, 345/3 = 115
and 115 is less than my half of 255 which is 127 so I consider the pixel closer to [0,0,0] therefore if I want to minus 10 contrast then I take away 10 from each color on it's average
Thus I have to divide each color's value by the total's average which was 115 for this case and times it by my contrast and minus out the final value from that specific color:
For example I'll take 105 (red) from my pixel, so I divide it by total RGB's avg. which is 115 and times it by my contrast value of 10, (105/115)*10 which gives you something around 9 (you have to round it up!) and then take that 9 away from 105 so that color becomes 96 so my red after having a 10 contrast on a dark pixel.
So if I go on my pixel's values become [96,37,183]! (note: the scale of contrast is up to you! but my in the end you should convert it to some scale like from 1 to 255)
For the lighter pixels I also do the same except instead of subtracting the contrast value I add it! and if you reach the limit of 255 or 0 then you stop your addition and subtraction for that specific color! therefore my second pixel which is a lighter pixel becomes [255,210,157]
As you add more contrast it will lighten the lighter colors and darken the darker and therefore adds contrast to your picture!
Here is a sample Javascript code ( I haven't tried it yet ) :
var data = imageData.data;
for (var i = 0; i < data.length; i += 4) {
var contrast = 10;
var average = Math.round( ( data[i] + data[i+1] + data[i+2] ) / 3 );
if (average > 127){
data[i] += ( data[i]/average ) * contrast;
data[i+1] += ( data[i+1]/average ) * contrast;
data[i+2] += ( data[i+2]/average ) * contrast;
}else{
data[i] -= ( data[i]/average ) * contrast;
data[i+1] -= ( data[i+1]/average ) * contrast;
data[i+2] -= ( data[i+2]/average ) * contrast;
}
}

You can take a look at the OpenCV docs to see how you could accomplish this: Brightness and contrast adjustments.
Then there's the demo code:
double alpha; // Simple contrast control: value [1.0-3.0]
int beta; // Simple brightness control: value [0-100]
for( int y = 0; y < image.rows; y++ )
{
for( int x = 0; x < image.cols; x++ )
{
for( int c = 0; c < 3; c++ )
{
new_image.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
}
}
}
which I imagine you are capable of translating to javascript.

By vintaging I assume your trying to apply LUTS..Recently I have been trying to add color treatments to canvas windows. If you want to actually apply "LUTS" to the canvas window I believe you need to actually map the array that imageData returns to the RGB array of the LUT.
(From Light illusion)
As an example the start of a 1D LUT could look something like this:
Note: strictly speaking this is 3x 1D LUTs, as each colour (R,G,B) is a 1D LUT
R, G, B
3, 0, 0
5, 2, 1
7, 5, 3
9, 9, 9
Which means that:
For an input value of 0 for R, G, and B, the output is R=3, G=0, B=0
For an input value of 1 for R, G, and B, the output is R=5, G=2, B=1
For an input value of 2 for R, G, and B, the output is R=7, G=5, B=3
For an input value of 3 for R, G, and B, the output is R=9, G=9, B=9
Which is a weird LUT, but you see that for a given value of R, G, or B input, there is a given value of R, G, and B output.
So, if a pixel had an input value of 3, 1, 0 for RGB, the output pixel would be 9, 2, 0.
During this I also realized after playing with imageData that it returns a Uint8Array and that the values in that array are decimal. Most 3D LUTS are Hex. So you first have to do some type of hex to dec conversion on the entire array before all this mapping.

This is the formula you are looking for ...
var data = imageData.data;
if (contrast > 0) {
for(var i = 0; i < data.length; i += 4) {
data[i] += (255 - data[i]) * contrast / 255; // red
data[i + 1] += (255 - data[i + 1]) * contrast / 255; // green
data[i + 2] += (255 - data[i + 2]) * contrast / 255; // blue
}
} else if (contrast < 0) {
for (var i = 0; i < data.length; i += 4) {
data[i] += data[i] * (contrast) / 255; // red
data[i + 1] += data[i + 1] * (contrast) / 255; // green
data[i + 2] += data[i + 2] * (contrast) / 255; // blue
}
}
Hope it helps!

Related

selecting alpha for a color to be layered for largest gamut

a is the alpha value for a grayscale color:
rgba(0,0,0,a)
I want to stack this color up to z times on a white rgb background.
Given z, how do I determine what a will create the widest gamut of resulting grayscale values?
I naively thought that I could solve with 255/z, but this results in my darkest grayscale values nowhere near 255. Here are three layers (z = 3), where I set a = 85. Alas! The darkest it gets is 180, so I could have increased a and ended up with a wider gamut. But how?
https://codepen.io/jedierikb/pen/JjRebjB?editors=1010
const $c = document.getElementById( 'c' );
$c.width = 200;
$c.height = 200;
const ctx = $c.getContext( '2d' );
const numLayers = 3;
const alpha = Math.round(255/numLayers);
ctx.fillStyle = '#000000' + intToHex( alpha );
for (var i=0; i<numLayers; ++i) {
ctx.fillRect( i*10, i*10, 100, 100 );
}
//let's get a pixel
var id = ctx.getImageData(numLayers*10, numLayers*10, 1, 1).data;
console.log( 'for ' + numLayers + ' layers, using alpha ' + alpha );
console.log( 'resulting in darkest alpha being', id[3] );
In your example (both the image and the CodePen) the alpha is 0.33.
The lightest color is 170, which is 67% of 255. So the first layer of black removed a measure of brightness equal to its alpha (0.33 = 33%).
Now, when the second layer is applied, the brigthness is substracted not from white but from the first layer. It had a brightness of 67%, so the second layer has a brightness of 67% * (1 - 0.33) = ~44%, which in RGB is 255 * 44% = ~112, equal to the color of the second layer.
The third layer will have a brightness of 44% * (1 - 0.33) = ~30%, which in RGB is 255 * 30% = ~75, equal to the color of the third layer.
Therefore, if you're applying black with alpha a to a white background z times, the z-th color will be
255 * (1 - a)^z
The range of values can be calculated using:
range = 255 * (1 - a) - 255 * (1 - a)^z
first color - last color
By graphing this function you can tell that, for example, for z = 3 the local maximum is at 0.4226. You can also solve the polynomial or just cheat, calculate the value for a in increments of 0.05 and pick the highest result.
function greatestGamutAlpha(layers, precision = 5) {
let maxRangeAlpha,
maxRange = 0;
for (let a = 0; a < 100; a += precision) {
const alpha = a / 100,
range = 255 * (1 - alpha) - 255 * (1 - alpha) ** layers;
if (range > maxRange) {
maxRange = range;
maxRangeAlpha = alpha;
}
}
return maxRangeAlpha;
}

Diamond Square Algorithm fixed size

I am trying to figure out a way to have a fixed scale for the:
https://en.wikipedia.org/wiki/Diamond-square_algorithm
I see that the algorithm requires a power of 2 (+1) size of the array.
The problem I am having is that I would like to have the same heightmap produced regardless of the resolution. So if I have a resolution of 512 it would look the same as with the resolution 256 but just have less detail. I just can't figure out how to do this with.
My initial thought was to always create the heightmap in a certain dimension e.g. 1024 and downsample to the res I would like. Problem is I would like the upper resolution to be quite high (say 4096) and this severely reduces the performance at lower resolutions as we have to run the algo at the highest possible resolution.
Currently the algorithm is in javascript here is a snippet:
function Advanced() {
var adv = {},
res, max, heightmap, roughness;
adv.heightmap = function() {
// heightmap has one extra pixel this is ot remove it.
var hm = create2DArray(res-1, res-1);
for(var x = 0;x< res-1;x++) {
for(var y = 0;y< res-1;y++) {
hm[x][y] = heightmap[x][y];
}
}
return hm;
}
adv.get = function(x,y) {
if (x < 0 || x > max || y < 0 || y > max) return -1;
return heightmap[x][y];
}
adv.set = function(x,y,val) {
if(val < 0) {
val = 0;
}
heightmap[x][y] = val;
}
adv.divide = function(size) {
var x, y, half = size / 2;
var scale = roughness * size;
if (half < 1) return;
for (y = half; y < max; y += size) {
for (x = half; x < max; x += size) {
adv.square(x, y, half, Math.random() * scale * 2 - scale);
}
}
for (y = 0; y <= max; y += half) {
for (x = (y + half) % size; x <= max; x += size) {
adv.diamond(x, y, half, Math.random() * scale * 2 - scale);
}
}
adv.divide(size / 2);
}
adv.average = function(values) {
var valid = values.filter(function(val) {
return val !== -1;
});
var total = valid.reduce(function(sum, val) {
return sum + val;
}, 0);
return total / valid.length;
}
adv.square = function(x, y, size, offset) {
var ave = adv.average([
adv.get(x - size, y - size), // upper left
adv.get(x + size, y - size), // upper right
adv.get(x + size, y + size), // lower right
adv.get(x - size, y + size) // lower left
]);
adv.set(x, y, ave + offset);
}
adv.diamond = function(x, y, size, offset) {
var ave = adv.average([
adv.get(x, y - size), // top
adv.get(x + size, y), // right
adv.get(x, y + size), // bottom
adv.get(x - size, y) // left
]);
adv.set(x, y, Math.abs(ave + offset));
}
adv.generate = function(properties, resolution) {
Math.seedrandom(properties.seed);
res = resolution + 1;
max = res - 1;
heightmap = create2DArray(res, res);
roughness = properties.roughness;
adv.set(0, 0, max);
adv.set(max, 0, max / 2);
adv.set(max, max, 0);
adv.set(0, max, max / 2);
adv.divide(max);
}
function create2DArray(d1, d2) {
var x = new Array(d1),
i = 0,
j = 0;
for (i = 0; i < d1; i += 1) {
x[i] = new Array(d2);
}
for (i=0; i < d1; i += 1) {
for (j = 0; j < d2; j += 1) {
x[i][j] = 0;
}
}
return x;
}
return adv;
}
Anyone ever done this before ?
Not quite sure if I understand your question yet but I'll provide further clarification if I can.
You've described a case where you want a diamond-square heightmap with a resolution of 256 to be used at a size of 512 without scaling it up. I'll go through an example using a 2x2 heightmap to a "size" of 4x4.
A diamond-square heightmap is really a set of vertices rather than tiles or squares, so a heightmap with a size of 2x2 is really a set of 3x3 vertices as shown:
You could either render this using the heights of the corners, or you might turn it into a 2x2 set of squares by taking the average of the four surrounding points - really this is just the "square" step of the algorithm without the displacement step.
So in this case the "height" of the top-left square would be the average of the (0, 0), (0, 1), (1, 1) and (1, 0) points.
If you wanted to draw this at a higher resolution, you could split each square up into a smaller set of 4 squares, adjusting the average based on how close it is to each point.
So now the value of the top-left-most square would be a sample of the 4 sub-points around it or a sample of its position relative to the points around it. But really this is just the diamond square algorithm applied again without any displacement (no roughness) so you may as well apply the algorithm again and go to the larger size.
You've said that going to the size you wish to go to would be too much for the processor to handle, so you may want to go with this sampling approach on the smaller size. An efficient way would be to render the heightmap to a texture and sample from it and the position required.
Properly implemented diamond & square algorithm has the same first N steps regardless of map resolution so the only thing to ensure the same look is use of some specified seed for pseudo random generator.
To make this work you need:
set seed
allocate arrays and set base randomness magnitude
Diamond
Square
lower base randomness magnitude
loop #3 until lowest resolution hit
If you are not lowering the randomness magnitude properly then the lower recursion/iteration layers can override the shape of the result of the upper layers making this not work.
Here see how I do it just add the seed:
Diamond-square algorithm not working
see the line:
r=(r*220)>>8; if (r<2) r=2;
The r is the base randomness magnitude. The way you are lowering it will determine the shape of the result as you can see I am not dividing it by two but multiplying by 220/256 instead so the lower resolution has bigger bumps which suite my needs.
Now if you want to use non 2^x+1 resolutions then choose the closer bigger resolution and then scale down to make this work for them too. The scaling down should be done carefully to preserve them main grid points of the first few recursion/iteration steps or use bi-cubic ...
If you're interested take a look on more up to date generator based on the linked one:
Diamond&Square Island generator

Iterate through numbers between two set min and max values

I am making a javascript loop that makes certain elements change color very subtlely every time the loop runs. The value I am changing is the L value of an HSL color.
Right now I have this.
var h = 10,
s = 0.5,
l = 1 / ((i += 0.01) % 10);
color = hsl(h, s, l);
Right now this outputs colors going from light to dark, starting over whenever it hits black (because of the modulo operation).
The L value must be between 0 and 1, however I would like to cap the outputs of my operation to be between 0.1 and 0.9 to avoid the too dark and too bright colors.
Does anyone know how to tweak the operation to fit these requirements?
Also I would like to know if someone knows how to make the output reverse (instead of start over from the top) every time it hits min or max, meaning that it outputs numbers like this:
0.9...0.89...[...]...0.11...0..1...0.11...[...]...0.89...0.9...0.89 and so on
Thank you!
You can cap the output value between 0 and 1 to between 0.1 and 0.9 by:
cappedValue = 0.1 + 0.8 * uncappedValue
For bouncing the value between 0 and 1 you can use
boundcingValue = Math.abs(1 - 2 * valueBetween0and1)
so the resulting solution would be:
var h = 10,
s = 0.5,
l = 1 / ((i += 0.01) % 10);
lbouncing = Math.abs(1 - 2 * l);
lcapped = 0.1 + lbouncing * 0.8;
color = hsl(h, s, lcapped);
haven't tested it though...

JS canvas implementation of Julia set

The problem is currently solved. In case some one wants to see the colored fractal, the code is here.
Here is the previous problem:
Nonetheless the algorithm is straight forward, I seems to have a small error (some fractals are drawing correctly and some are not). You can quickly check it in jsFiddle that c = -1, 1/4 the fractal is drawing correctly but if I will take c = i; the image is totally wrong.
Here is implementation.
HTML
<canvas id="a" width="400" height="400"></canvas>
JS
function point(pos, canvas){
canvas.fillRect(pos[0], pos[1], 1, 1); // there is no drawpoint in JS, so I simulate it
}
function conversion(x, y, width, R){ // transformation from canvas coordinates to XY plane
var m = R / width;
var x1 = m * (2 * x - width);
var y2 = m * (width - 2 * y);
return [x1, y2];
}
function f(z, c){ // calculate the value of the function with complex arguments.
return [z[0]*z[0] - z[1] * z[1] + c[0], 2 * z[0] * z[1] + c[1]];
}
function abs(z){ // absolute value of a complex number
return Math.sqrt(z[0]*z[0] + z[1]*z[1]);
}
function init(){
var length = 400,
width = 400,
c = [-1, 0], // all complex number are in the form of [x, y] which means x + i*y
maxIterate = 100,
R = (1 + Math.sqrt(1+4*abs(c))) / 2,
z;
var canvas = document.getElementById('a').getContext("2d");
var flag;
for (var x = 0; x < width; x++){
for (var y = 0; y < length; y++){ // for every point in the canvas plane
flag = true;
z = conversion(x, y, width, R); // convert it to XY plane
for (var i = 0; i < maxIterate; i++){ // I know I can change it to while and remove this flag.
z = f(z, c);
if (abs(z) > R){ // if during every one of the iterations we have value bigger then R, do not draw this point.
flag = false;
break;
}
}
// if the
if (flag) point([x, y], canvas);
}
}
}
Also it took me few minutes to write it, I spent much more time trying to find why does not it work for all the cases. Any idea where I screwed up?
Good news! (or bad news)
You're implementation is completely. correct. Unfortunately, with c = [0, 1], the Julia set has very few points. I believe it is measure zero (unlike say, the Mandelbrot set). So the probability of a random point being in that Julia set is 0.
If you reduce your iterations to 15 (JSFiddle), you can see the fractal. One hundred iterations is more "accurate", but as the number of iterations increase, the chance that a point on your 400 x 400 grid will be included in your fractal approximation decreases to zero.
Often, you will see the Julia fractal will multiple colors, where the color indicates how quickly it diverges (or does not diverge at all), like in this Flash demonstration. This allows the Julia fractal to be somewhat visible even in cases like c = i.
Your choices are
(1) Reduce your # of iterations, possibly depending on c.
(2) Increase the size of your sampling (and your canvas), possibly depending on c.
(3) Color the points of your canvas according to the iteration # at which R was exceeded.
The last option will give you the most robust result.

Determining a rule: relate integer value to color #RGB

I'd like to determine a background-color C depending on an integer X (number of positive votes)
OK, I could do
if(x==0) c = '#000';
else if(x > 0 && x < 5 ) c = '#001'
else if(X<=5 <= 20) c = '#002';
//and so on...
But, how can I do this to make it gradual? I mean from 0 to 500 votes -> 500 tones of blue colors? (if I'm not wrong its posible two digits for HEX (if not, 15*15 xD))
Any ideas?
Since you're just looking for ideas, here's one that nobody else will suggest. First, go look up "Catmull-Rom Spline" formulas. It boils down to a very simple matrix multiplication trick that gives you a formula for computing curves given a set of control points.
OK, so now that you know all about Catmull-Rom splines, you can write some code to do a curve in 3-space. Well, what's RGB if not a 3-dimensional space? So you pick a few good color control points (RGB colors), and then you use your handy Catmull-Rom implementation to generate a parametric curve through all those colors, with as many colors along the curve as you want.
The cool thing about the color progressions will be that they're really "smooth" across transitions.
I would probably use something like:
var blueness = x / 2;
if (blueness > 255) blueness = 255;
rgb(0, 0, blueness);
but you can use this sprintf implementation and use it like you would in any other language to convert to hex.
Include raphaeljs on your page and paste the functions estimateColorForValue() and toHex() somewhere in your code. estimateColorForValue(hue, value, darkestValue, brightestValue) computes a color for some value, interpolating the color by seeing where in the range [darkestValue-brightestValue] value is. hue is in the range [0-1]: 0.1 for orange-browny, 0.4 for green, 0.8 for pinkish, and many more colors in between. small changes in hue drastically change the visual color.
For example: estimateColorForValue(.1, 15, 1, 20), can be explained as, for data ranging 1 through 20, compute color for value 15, in the orangy space.
toHex(estimateColorForValue(.1, 15, 1, 20)) ==> "#cf8415"
Code:
<script src="https://raw.github.com/DmitryBaranovskiy/raphael/master/raphael.js"></script>
<script>
function toHex(hsb) {
return Raphael.hsb2rgb(hsb.h, hsb.s, hsb.b).hex;
}
function estimateColorForValue(hue, value, darkestValue, brightestValue) {
// Constants to determine saturation and brightness
var darkBrightness = 0.6;
var brightBrightness = 1;
var darkSaturation = 0.3;
var brightSaturation = 1;
// Compute saturation and brightness:
var gradient = (value - darkestValue) / (brightestValue - darkestValue);
var saturation = darkSaturation + gradient * (brightSaturation - darkSaturation);
var brightness = darkBrightness + gradient * (brightBrightness - darkBrightness);
return {h: hue, s:saturation, b:brightness};
}
</script>

Categories