Draw a polygon between coordinates, preventing intersects - javascript

JS fiddle
I have a coordinates array populated by mouse clicks on a canvas.
var pointsArray = [];
This array is pushed x and y values using a click event.
pointsArray.push({x: xVal, y: yVal});
I iterate the points array and draw a line between the current point, and the previous point.
function drawPolygon(points) {
//check arguments for null values
if(!points)
return false;
var i;
for(i = 0; i < points.length; i++)
drawLine(points[i-1], points[i]);
//draw the final line
drawLine(points[i-1], points[0]);
}
drawLine looks like this:
function drawLine(point1, point2) {
//check arguments for null values
if(!point1 || !point2)
return false;
context.beginPath();
context.moveTo(point1.x, point1.y);
context.lineTo(point2.x, point2.y);
context.stroke();
}
Unfortunately, depending on what order the users click, I can have the lines intersect, which I don't want: http://i.imgur.com/3gaHRTa.png How would I solve for this? My first instinct tells me to order the points top-to-bottom, left-to-right in the array then draw.

Step 1: Find center of polygon using average position of points
This function will find the center given all the points in the drawing, independent of order:
function findCenter(points) {
var x = 0, y = 0, i, len = points.length;
for (i = 0; i < len; i++) {
x += points[i].x;
y += points[i].y;
}
return {x: x / len, y: y / len}; // return average position
}
Demo showing center point in polygon
/**
* Created by knguyen on 4/13/2015.
*/
var pointsArray = [];
var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
function Point(x, y) {
this.x = x;
this.y = y;
}
function drawDot(e) {
var position = getMousePosition(canvas, e);
posx = position.x;
posy = position.y;
storeCoordinate(posx, posy);
context.fillStyle = "#F00";
context.fillRect(posx, posy, 6, 6);
}
function getMousePosition(c, e) {
var rect = canvas.getBoundingClientRect();
return {x: e.clientX - rect.left, y: e.clientY - rect.top}
}
function storeCoordinate(xVal, yVal) {pointsArray.push(new Point(xVal, yVal))}
$("#solve").click(
function() {
var p = findCenter(pointsArray);
context.fillStyle = "green";
context.fillRect(p.x, p.y, 4, 4);
}
);
function findCenter(points) {
var x = 0, y = 0, i, len = points.length;
for (i = 0; i < len; i++) {
x += points[i].x;
y += points[i].y;
}
return {x: x / len, y: y / len}; // return average position
}
#myCanvas {border: 1px solid #000}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<canvas id="myCanvas" width="400" height="300" onclick="drawDot(event)"></canvas>
<div>
<button type="button" class="btn btn-default" id="solve">Show center point</button>
</div>
Step 2: Sort points based on angle
Extend the point object to also take an angle argument.
Iterate trough the point array
Calculate the angle relative to the center point
Sort array based on angle
To find the angles just calculate the angle relative to the center point.
Here is how:
function findAngles(c, points) {
var i, len = points.length, p, dx, dy;
for (i = 0; i < len; i++) {
p = points[i];
dx = p.x - c.x;
dy = p.y - c.y;
p.angle = Math.atan2(dy, dx);
}
}
Then you have to sort the points based on angle using a custom sort function. Just use the standard sort() method on the array and supply your own function which will use the angle property of the point object:
pointsArray.sort(function(a, b) {
if (a.angle > b.angle) return 1;
else if (a.angle < b.angle) return -1;
return 0;
});
Then draw a line between all the points.
Working Demo
var pointsArray = [];
var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
function Point(x, y) {
this.x = x;
this.y = y;
this.angle = 0;
}
canvas.onclick = drawDot;
function drawDot(e) {
var position = getMousePosition(canvas, e);
posx = position.x;
posy = position.y;
storeCoordinate(posx, posy);
context.fillStyle = "#F00";
context.fillRect(posx-3, posy-3, 6, 6);
}
function getMousePosition(c, e) {
var rect = canvas.getBoundingClientRect();
return {x: e.clientX - rect.left, y: e.clientY - rect.top}
}
function storeCoordinate(xVal, yVal) {pointsArray.push(new Point(xVal, yVal))}
$("#solve").click(
function() {
// find center
var cent = findCenter(pointsArray);
context.fillStyle = "green";
context.fillRect(cent.x-3, cent.y-3, 6, 6);
// find angles
findAngles(cent, pointsArray);
// sort based on angle using custom sort
pointsArray.sort(function(a, b) {
return (a.angle >= b.angle) ? 1 : -1
});
// draw lines
context.beginPath();
context.moveTo(pointsArray[0].x, pointsArray[0].y);
for(var i = 0; i < pointsArray.length; i++) {
context.lineTo(pointsArray[i].x, pointsArray[i].y);
}
context.strokeStyle = "#00f";
context.closePath();
context.stroke();
}
);
function findCenter(points) {
var x = 0, y = 0, i, len = points.length;
for (i = 0; i < len; i++) {
x += points[i].x;
y += points[i].y;
}
return {x: x / len, y: y / len}; // return average position
}
function findAngles(c, points) {
var i, len = points.length, p, dx, dy;
for (i = 0; i < len; i++) {
p = points[i];
dx = p.x - c.x;
dy = p.y - c.y;
p.angle = Math.atan2(dy, dx);
}
}
$("#reset").click(
function() {
context.clearRect(0, 0, canvas.width, canvas.height); //clear the canvas
pointsArray = []; //clear the array
}
);
#myCanvas {border: 1px solid #000}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<canvas id="myCanvas" width="400" height="300"></canvas>
<div><button id="solve">Draw Polygon</button><button id="reset">Reset</button></div>

Polygons are said to be defined clockwise or counter-clockwise manner.
To sort your "random" clicks into clockwise order:
Find the "center" of your polygon. This is the arithmetic mean of the x's and y's.
Calculate all the angles from the centerpoint to each of your user's points. You can do this using Math.atan2(differenceInYs,differenceInXs);
Sort the points in ascending order by their angles calculated in #2.
Your points now form a clockwise polygon.

Related

rotation of a 3d cube relative to a specific point on the canvas

Using certain methods, I drew a 3D cube.
My task is to rotate it around the z axis. I also need to rotate the cube relative to the coordinates (0,0,0) (on my canvas, these will be the coordinates (150,150,0)). Now it rotates correctly, but only changes its angle relative to the 'top left corner of my canvas'.
I think the solution to my problem is as follows:
To rotate the cube relative to the given coordinates, the cube must first be translated to the negative coordinates of this point, and by changing the angle, it must be translated back, but only to the positive coordinates of this point.
In my case the pseudo code would be like this:
// if I want to flip the cube around the coordinates (150,150,0) (this is the center of my canvas), then I need to do the following
translate(-150,-150,0);
rotate();
translate(150,150,0);
In the commented parts of the code, I tried to do this, but when I translate the cube, it gets stuck somewhere in the corner and I don't know how to fix it.
function randInt(min, max) {
return Math.floor(Math.random() * (max - min + 1) ) + min;
}
function randomColor() {
return "rgb(" + randInt(0,255) + "," + randInt(0,255) + "," + randInt(0,255) + ")";
}
function ctg(x) {
return 1 / Math.tan(x);
}
function draw() {
let canvas = document.getElementById("canvas");
let context = canvas.getContext("2d");
let canvasWidth = 300;
canvas.width = canvas.height = canvasWidth;
function drawUW() {
context.lineWidth = 0.1;
context.beginPath();
context.moveTo(0,canvas.height/2);
context.lineTo(canvas.width,canvas.height/2);
context.moveTo(canvas.width/2,0);
context.lineTo(canvas.width/2,canvas.height);
context.stroke();
}
function updateCanvas() {
context.clearRect(0,0,canvas.width,canvas.height);
drawUW();
}
let x = 50, y = 50, z = 50;
let d = 100;
let x0 = canvas.width/2;
let y0 = canvas.height/2;
let x1 = x0+x;
let y1 = y0;
let x2 = x0;
let y2 = y0-y;
let x3 = x0+x;
let y3 = y0-y;
// x' = xd/(z+d)
// y' = yd/(z+d)
let x0p=x0*d/(z+d);
let y0p=y0*d/(z+d);
let x1p=x1*d/(z+d);
let y1p=y1*d/(z+d);
let x2p=x2*d/(z+d);
let y2p=y2*d/(z+d);
let x3p=x3*d/(z+d);
let y3p=y3*d/(z+d);
function getWalls() {
wall01 = [[x0,x2,x3,x1],[y0,y2,y3,y1]];
wall02 = [[x0p,x2p,x2,x0],[y0p,y2p,y2,y0]];
wall03 = [[x0p,x2p,x3p,x1p],[y0p,y2p,y3p,y1p]];
wall04 = [[x1p,x3p,x3,x1],[y1p,y3p,y3,y1]];
wall05 = [[x2,x2p,x3p,x3],[y2,y2p,y3p,y3]];
wall06 = [[x0,x0p,x1p,x1],[y0,y0p,y1p,y1]];
}
function drawWall(wall) {
context.fillStyle = randomColor();
context.strokeStyle = "black";
context.lineWidth = 0.5;
context.beginPath();
context.moveTo(wall[0][0],wall[1][0]);
context.lineTo(wall[0][1],wall[1][1]);
context.lineTo(wall[0][2],wall[1][2]);
context.lineTo(wall[0][3],wall[1][3]);
context.lineTo(wall[0][0],wall[1][0]);
context.fill();
context.stroke();
}
function rotatePoint(x,y,z,fi) {
fi*=Math.PI/180;
arr = [x,y,z,1];
newX = 0;
newY = 0;
newZ = 0;
tx = -150, ty = -150, tz = -150;
arrTranslate = [
[1,0,0,tx],
[0,1,0,ty],
[0,0,1,tz],
[0,0,0,1]
];
// z
arrRotate = [
[Math.cos(fi),-Math.sin(fi),0,0],
[Math.sin(fi),Math.cos(fi),0,0],
[0,0,1,0],
[0,0,0,1]
];
// translate
// for (let i = 0; i < arr.length; i++) {
// newX += arr[i] * arrTranslate[0][i];
// newY += arr[i] * arrTranslate[1][i];
// newZ += arr[i] * arrTranslate[2][i];
// }
//rotate
for (let i = 0; i < arr.length; i++) {
newX += arr[i] * arrRotate[0][i];
newY += arr[i] * arrRotate[1][i];
newZ += arr[i] * arrRotate[2][i];
}
tx = 150, ty = 150, tz = 150;
// translate
// for (let i = 0; i < arr.length; i++) {
// newX += arr[i] * arrTranslate[0][i];
// newY += arr[i] * arrTranslate[1][i];
// newZ += arr[i] * arrTranslate[2][i];
// }
x = newX;
y = newY;
z = newZ;
return [newX,newY,newZ];
}
function rotatePoints(fi) {
x0 = rotatePoint(x0,y0,z,fi)[0];
y0 = rotatePoint(x0,y0,z,fi)[1];
x1 = rotatePoint(x1,y1,z,fi)[0];
y1 = rotatePoint(x1,y1,z,fi)[1];
x2 = rotatePoint(x2,y2,z,fi)[0];
y2 = rotatePoint(x2,y2,z,fi)[1];
x3 = rotatePoint(x3,y3,z,fi)[0];
y3 = rotatePoint(x3,y3,z,fi)[1];
x0p = rotatePoint(x0p,y0p,z,fi)[0];
y0p = rotatePoint(x0p,y0p,z,fi)[1];
x1p = rotatePoint(x1p,y1p,z,fi)[0];
y1p = rotatePoint(x1p,y1p,z,fi)[1];
x2p = rotatePoint(x2p,y2p,z,fi)[0];
y2p = rotatePoint(x2p,y2p,z,fi)[1];
x3p = rotatePoint(x3p,y3p,z,fi)[0];
y3p = rotatePoint(x3p,y3p,z,fi)[1];
}
let inFi = document.getElementById("fi");
inFi.addEventListener("change", updateImage);
function updateImage() {
rotatePoints(inFi.value);
getWalls();
updateCanvas();
drawWall(wall06);
drawWall(wall04);
drawWall(wall03);
drawWall(wall02);
drawWall(wall05);
drawWall(wall01);
}
updateImage();
}
<body onload="draw();">
<canvas id="canvas"></canvas>
<div><input type="number" id="fi" value="0"></div>
</body>

Fill in shape with lines at a specified angle

I need to create line segments within a shape and not just a visual pattern - I need to know start and end coordinates for those lines that are within a given boundary (shape). I'll go through what I have and explain the issues I'm facing
I have a closed irregular shape (can have dozens of sides) defined by [x, y] coordinates
shape = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
];
I calculate and draw the bounding box of this shape
I then draw my shape on the canvas
Next, I cast rays within the bounding box with a set spacing between each ray. The ray goes from left to right incrementing by 1 pixel.
Whenever a cast ray gets to a pixel with RGB values of 100, 255, 100 I then know it has entered the shape. I know when it exits the shape if the pixel value is not 100, 255, 100. Thus I know start and end coordinates for each line within my shape and if one ray enters and exits the shape multiple times - this will generate all line segments within that one ray cast.
For the most part it works but there are issues:
It's very slow. Perhaps there is a better way than casting rays? Or perhaps there is a way to optimize the ray logic? Perhaps something more intelligent than just checking for RGB color values?
How do I cast rays at a different angle within the bounding box? Now it's going left to right, but how would I fill my bounding box with rays cast at any specified angle? i.e.:
I don't care about holes or curves. The shapes will all be made of straight line segments and won't have any holes inside them.
Edit: made changes to the pixel RGB sampling that improve performance.
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 15;
shape = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
];
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
// display bounding box
ctx.fillStyle = 'rgba(255,0,0,.2)';
ctx.fillRect(boundingBox[0][0], boundingBox[0][1], boundingBox[1][0]-boundingBox[0][0], boundingBox[1][1]-boundingBox[0][1]);
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
canvasData = ctx.getImageData(0, 0, canvas.width, canvas.height).data;
// loop through the shape in vertical slices
for(var i = boundingBox[0][1]+lineSpacing; i <= boundingBox[1][1]; i += lineSpacing) {
// send ray from left to right
for(var j = boundingBox[0][0], start = false; j <= boundingBox[1][0]; j++) {
x = j, y = i;
pixel = y * (canvas.width * 4) + x * 4;
// if pixel is within boundary (shape)
if(canvasData[pixel] == 100 && canvasData[pixel+1] == 255 && canvasData[pixel+2] == 100) {
// arrived at start of boundary
if(start === false) {
start = [x,y]
}
} else {
// arrived at end of boundary
if(start !== false) {
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.beginPath();
ctx.moveTo(start[0], start[1]);
ctx.lineTo(x, y);
ctx.closePath();
ctx.stroke();
start = false;
}
}
}
// show entire cast ray for debugging purposes
ctx.strokeStyle = 'rgba(0,0,0,.2)';
ctx.beginPath();
ctx.moveTo(boundingBox[0][0], i);
ctx.lineTo(boundingBox[1][0], i);
ctx.closePath();
ctx.stroke();
}
<canvas id="canvas" width="350" height="350"></canvas>
This is a pretty complex problem that I am trying to simplify as much as possible. Using the line intersection formula we can determin where the ray intersects with the shape at every edge. What we can do is loop through each side of the shape while check every rays intersection. If they intersect we push those coordinates to an array.
I have tried to make this as dynamic as possible. You can pass the shape and change the number of rays and the angle. As for the angle it doesn't take a specific degree (i.e. 45) but rather you change the start and stop y axis. I'm sure if you must have the ability to put in a degree we can do that.
It currently console logs the array of intersecting coordinates but you can output them however you see fit.
The mouse function is just to verify that the number match up. Also be aware I am using toFixed() to get rid of lots of decimals but it does convert to a string. If you need an integer you'll have to convert back.
let canvas = document.getElementById("canvas");
let ctx = canvas.getContext("2d")
canvas.width = 300;
canvas.height = 300;
ctx.fillStyle = "violet";
ctx.fillRect(0,0,canvas.width,canvas.height)
//Shapes
let triangleish = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
]
let star = [ [ 0, 85 ], [ 75, 75 ], [ 100, 10 ], [ 125, 75 ],
[ 200, 85 ], [ 150, 125 ], [ 160, 190 ], [ 100, 150 ],
[ 40, 190 ], [ 50, 125 ], [ 0, 85 ] ];
let coords = [];
//Class that draws the shape on canvas
function drawShape(arr) {
ctx.beginPath();
ctx.fillStyle = "rgb(0,255,0)";
ctx.moveTo(arr[0][0], arr[0][1]);
for (let i=1;i<arr.length;i++) {
ctx.lineTo(arr[i][0], arr[i][1]);
}
ctx.fill();
ctx.closePath();
}
//pass the shape in here to draw it
drawShape(star)
//Class to creat the rays.
class Rays {
constructor(x1, y1, x2, y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
this.w = canvas.width;
this.h = 1;
}
draw() {
ctx.beginPath();
ctx.strokeStyle = 'black';
ctx.moveTo(this.x1, this.y1)
ctx.lineTo(this.x2, this.y2)
ctx.stroke();
ctx.closePath();
}
}
let rays = [];
function createRays(angle) {
let degrees = angle * (Math.PI/180)
//I am currently creating an array every 10px on the Y axis
for (let i=0; i < angle + 45; i++) {
//The i will be your start and stop Y axis. This is where you can change the angle
let cx = canvas.width/2 + (angle*2);
let cy = i * 10;
let x1 = (cx - 1000 * Math.cos(degrees));
let y1 = (cy - 1000 * Math.sin(degrees));
let x2 = (cx + 1000 * Math.cos(degrees));
let y2 = (cy + 1000 * Math.sin(degrees));
rays.push(new Rays(x1, y1, x2, y2))
}
}
//enter angle here
createRays(40);
//function to draw the rays after crating them
function drawRays() {
for (let i=0;i<rays.length; i++) {
rays[i].draw();
}
}
drawRays();
//This is where the magic happens. Using the line intersect formula we can determine if the rays intersect with the objects sides
function intersectLines(coord1, coord2, rays) {
let x1 = coord1[0];
let x2 = coord2[0];
let y1 = coord1[1];
let y2 = coord2[1];
let x3 = rays.x1;
let x4 = rays.x2;
let y3 = rays.y1;
let y4 = rays.y2;
//All of this comes from Wikipedia on line intersect formulas
let d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) {
return
}
let t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
let u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
//if this statement is true then the lines intersect
if (t > 0 && t < 1 && u > 0) {
//I have currently set it to fixed but if a string does not work for you you can change it however you want.
//the first formula is the X coord of the interect the second is the Y
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return
}
//function to call the intersect function by passing in the shapes sides and each ray
function callIntersect(shape) {
for (let i=0;i<shape.length;i++) {
for (let j=0;j<rays.length;j++) {
if (i < shape.length - 1) {
intersectLines(shape[i], shape[i+1], rays[j]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rays[j]);
}
}
}
}
callIntersect(star);
//just to sort them by the Y axis so they they show up as in-and-out
function sortCoords() {
coords.sort((a, b) => {
return a[1] - b[1];
});
}
sortCoords()
console.log(coords)
//This part is not needed only added to verify number matched the mouse posit
let mouse = {
x: undefined,
y: undefined
}
let canvasBounds = canvas.getBoundingClientRect();
addEventListener('mousemove', e => {
mouse.x = e.x - canvasBounds.left;
mouse.y = e.y - canvasBounds.top;
ctx.clearRect(0, 0, canvas.width, canvas.height)
drawCoordinates();
})
function drawCoordinates() {
ctx.font = '15px Arial';
ctx.fillStyle = 'black';
ctx.fillText('x: '+mouse.x+' y: '+mouse.y, mouse.x, mouse.y)
}
function animate() {
ctx.clearRect(0, 0, canvas.width, canvas.height)
ctx.fillStyle = "violet";
ctx.fillRect(0,0,canvas.width,canvas.height)
for (let i=0;i<rays.length; i++) {
rays[i].draw();
}
drawShape(star)
drawCoordinates();
requestAnimationFrame(animate)
}
animate()
<canvas id="canvas"></canvas>
I'm not an expert, but maybe you could do something like this:
Generate the points that constitute the borders.
Organize them in a convenient structure, e.g. an object with the y as key, and an array of x as values.
2.1. i.e. each item in the object would constitute all points of all borders in a single y.
Iterate over the object and generate the segments for each y.
3.1. e.g. if the array of y=12 contains [ 10, 20, 60, 80 ] then you would generate two segments: [ 10, 12 ] --> [ 20, 12 ] and [ 60, 12 ] --> [ 80, 12 ].
To generate the borders' points (and to answer your second question), you can use the line function y = a*x + b.
For example, to draw a line between [ 10, 30 ] and [ 60, 40 ], you would:
Solve a and b by substituting x and y for both points and combining these two formulas (with standard algebra):
For point #1: 30 = a*10 + b
For point #2: 40 = a*60 + b
b = 30 - a*10
40 = a*60 + (30 - a*10)
a*60 - a*10 = 40 - 30
50*a = 10
a = 0.2
30 = a*10 + b
30 = 0.2*10 + b
b = 30 - 2
b = 28
With a and b at hand, you get the function for your specific line:
y = 0.2*x + 28
With that, you can calculate the point of the line for any y. So, for example, the x of the point right under the first point ([ 10, 30 ]) would have a y of 31, and so: 31 = 0.2*x + 28, and so: x = 15. So you get: [ 15, 31 ].
You may need a bit of special handling for:
Vertical lines, because the slope is "infinite" and calculating it would cause division by zero.
Rounding issues. For some (probably most) pixels you will get real x values (i.e. non-integer). You can Math.round() them, but it can cause issues, like:
8.1. Diagonal rays may not actually hit a border point even when they go through a border. This will probably require additional handling (like checking points around and not just exactly the pixels the ray lies on).
8.2. The points your algorithm generate may (slightly) differ from the points that appear on the screen when you use libraries or built-in browser functionality to draw the shape (depending on the implementation of their drawing algorithms).
This is a mashup of Justin's answer and code from my proposed question.
One issue was generating rays at a set angle and a set distance from each other. To have rays be equal distances apart at any angle we can use a vector at a 90 degree angle and then place a new center point for the next line.
We can start at the exact midpoint of our boundary and then spread out on either side.
Red line is the center line, green dots are the vector offset points for the next line.
Next I modified Justin's intersect algorithm to iterate by ray and not side, that way I get interlaced coordinates where array[index] is the start point of a segment and array[index+1] is the end point.
And by connecting the lines we get a shape that is filled with lines inside its boundaries at set distances apart
Issues:
I had to inflate the boundary by 1 pixel otherwise certain shapes would fail to generate paths
I'd like rays to be some what aligned. It's hard to explain, but here's an example of 6 triangles rotated at 60 degree increments that form a hexagon with their inner lines also offset by 60 degree increments. The top and bottom triangle inner lines do not join those of the outside triangles. This is an issue with the cast rays. Ideally I'd like them to join and be aligned with the outer most edge if that makes sense. Surely there is a better way to cast rays than this...
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 12;
angle = 45;
shapes = [
[[143.7,134.2], [210.4,18.7], [77.1,18.7]],
[[143.7,134.2], [77.1,18.7], [10.4,134.2]],
[[143.7,134.2], [10.4,134.2], [77.1,249.7]],
[[143.7,134.2], [77.1,249.7], [210.4,249.7]],
[[143.7,134.2], [210.4,249.7], [277.1,134.2]],
[[143.7,134.2], [277.1,134.2], [210.4,18.7]]
];
for(var i in shapes) {
lines = getLineSegments(shapes[i], 90+(-60*i), lineSpacing);
for(var i = 0; i < lines.length; i += 2) {
start = lines[i];
end = lines[i+1];
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.moveTo(start[0], start[1]);
ctx.lineTo(end[0], end[1]);
ctx.closePath();
ctx.stroke();
}
}
function getLineSegments(shape, angle, lineSpacing) {
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
boundingBox[0][0] -= 1, boundingBox[0][1] -= 1;
boundingBox[1][0] += 1, boundingBox[1][1] += 1;
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
rayPaths = [];
path = getPathCoords(boundingBox, 0, 0, angle);
rayPaths.push(path);
/*ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'red';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
getPaths:
for(var i = 0, lastPaths = [path, path]; true; i++) {
for(var j = 0; j < 2; j++) {
pathMidX = (lastPaths[j][0][0] + lastPaths[j][1][0]) / 2;
pathMidY = (lastPaths[j][0][1] + lastPaths[j][1][1]) / 2;
pathVectorX = lastPaths[j][1][1] - lastPaths[j][0][1];
pathVectorY = lastPaths[j][1][0] - lastPaths[j][0][0];
pathLength = Math.sqrt(pathVectorX * pathVectorX + pathVectorY * pathVectorY);
pathOffsetPointX = pathMidX + ((j % 2 === 0 ? pathVectorX : -pathVectorX) / pathLength * lineSpacing);
pathOffsetPointY = pathMidY + ((j % 2 === 0 ? -pathVectorY : pathVectorY) / pathLength * lineSpacing);
offsetX = pathOffsetPointX-boundingMidX;
offsetY = pathOffsetPointY-boundingMidY;
path = getPathCoords(boundingBox, offsetX, offsetY, angle);
if(
path[0][0] < boundingBox[0][0] ||
path[1][0] > boundingBox[1][0] ||
path[0][0] > boundingBox[1][0] ||
path[1][0] < boundingBox[0][0]
) break getPaths;
/*ctx.fillStyle = 'green';
ctx.fillRect(pathOffsetPointX-2.5, pathOffsetPointY-2.5, 5, 5);
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'black';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
rayPaths.push(path);
lastPaths[j] = path;
}
}
coords = [];
function intersectLines(coord1, coord2, rays) {
x1 = coord1[0], x2 = coord2[0];
y1 = coord1[1], y2 = coord2[1];
x3 = rays[0][0], x4 = rays[1][0];
y3 = rays[0][1], y4 = rays[1][1];
d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) return;
t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
if (t > 0 && t < 1 && u > 0) {
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return;
}
function callIntersect(shape) {
for (var i = 0; i < rayPaths.length; i++) {
for (var j = 0; j< shape.length; j++) {
if (j < shape.length - 1) {
intersectLines(shape[j], shape[j+1], rayPaths[i]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rayPaths[i]);
}
}
}
}
callIntersect(shape);
return coords;
}
function getPathCoords(boundingBox, offsetX, offsetY, angle) {
coords = [];
// add decimal places otherwise can lead to Infinity, subtract 90 so 0 degrees is at the top
angle = angle + 0.0000000000001 - 90;
boundingBoxWidth = boundingBox[1][0] - boundingBox[0][0];
boundingBoxHeight = boundingBox[1][1] - boundingBox[0][1];
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
x = boundingMidX + offsetX, y = boundingMidY + offsetY;
dx = Math.cos(Math.PI * angle / 180);
dy = Math.sin(Math.PI * angle / 180);
for(var i = 0; i < 2; i++) {
bx = (dx > 0) ? boundingBoxWidth+boundingBox[0][0] : boundingBox[0][0];
by = (dy > 0) ? boundingBoxHeight+boundingBox[0][1] : boundingBox[0][1];
if(dx == 0) ix = x, iy = by;
if(dy == 0) iy = y, ix = bx;
tx = (bx - x) / dx;
ty = (by - y) / dy;
if(tx <= ty) {
ix = bx, iy = y + tx * dy;
} else {
iy = by, ix = x + ty * dx;
}
coords.push([ix, iy]);
dx = -dx;
dy = -dy;
}
return coords;
}
<canvas id="canvas" width="500" height="500"></canvas>
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 10;
angle = 45;
shape = [
[200,10], // x, y
[10,300],
[200,200],
[400,300]
];
lines = getLineSegments(shape, angle, lineSpacing);
for(var i = 0; i < lines.length; i += 2) {
start = lines[i];
end = lines[i+1];
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.moveTo(start[0], start[1]);
ctx.lineTo(end[0], end[1]);
ctx.closePath();
ctx.stroke();
}
function getLineSegments(shape, angle, lineSpacing) {
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
boundingBox[0][0] -= 1, boundingBox[0][1] -= 1;
boundingBox[1][0] += 1, boundingBox[1][1] += 1;
// display bounding box
ctx.fillStyle = 'rgba(255,0,0,.2)';
ctx.fillRect(boundingBox[0][0], boundingBox[0][1], boundingBox[1][0]-boundingBox[0][0], boundingBox[1][1]-boundingBox[0][1]);
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
rayPaths = [];
path = getPathCoords(boundingBox, 0, 0, angle);
rayPaths.push(path);
/*ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'red';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
getPaths:
for(var i = 0, lastPaths = [path, path]; true; i++) {
for(var j = 0; j < 2; j++) {
pathMidX = (lastPaths[j][0][0] + lastPaths[j][1][0]) / 2;
pathMidY = (lastPaths[j][0][1] + lastPaths[j][1][1]) / 2;
pathVectorX = lastPaths[j][1][1] - lastPaths[j][0][1];
pathVectorY = lastPaths[j][1][0] - lastPaths[j][0][0];
pathLength = Math.sqrt(pathVectorX * pathVectorX + pathVectorY * pathVectorY);
pathOffsetPointX = pathMidX + ((j % 2 === 0 ? pathVectorX : -pathVectorX) / pathLength * lineSpacing);
pathOffsetPointY = pathMidY + ((j % 2 === 0 ? -pathVectorY : pathVectorY) / pathLength * lineSpacing);
offsetX = pathOffsetPointX-boundingMidX;
offsetY = pathOffsetPointY-boundingMidY;
path = getPathCoords(boundingBox, offsetX, offsetY, angle);
if(
path[0][0] < boundingBox[0][0] ||
path[1][0] > boundingBox[1][0] ||
path[0][0] > boundingBox[1][0] ||
path[1][0] < boundingBox[0][0]
) break getPaths;
/*ctx.fillStyle = 'green';
ctx.fillRect(pathOffsetPointX-2.5, pathOffsetPointY-2.5, 5, 5);
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'black';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
rayPaths.push(path);
lastPaths[j] = path;
}
}
coords = [];
function intersectLines(coord1, coord2, rays) {
x1 = coord1[0], x2 = coord2[0];
y1 = coord1[1], y2 = coord2[1];
x3 = rays[0][0], x4 = rays[1][0];
y3 = rays[0][1], y4 = rays[1][1];
d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) return;
t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
if (t > 0 && t < 1 && u > 0) {
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return;
}
function callIntersect(shape) {
for (var i = 0; i < rayPaths.length; i++) {
for (var j = 0; j< shape.length; j++) {
if (j < shape.length - 1) {
intersectLines(shape[j], shape[j+1], rayPaths[i]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rayPaths[i]);
}
}
}
}
callIntersect(shape);
return coords;
}
function getPathCoords(boundingBox, offsetX, offsetY, angle) {
coords = [];
// add decimal places otherwise can lead to Infinity, subtract 90 so 0 degrees is at the top
angle = angle + 0.0000000000001 - 90;
boundingBoxWidth = boundingBox[1][0] - boundingBox[0][0];
boundingBoxHeight = boundingBox[1][1] - boundingBox[0][1];
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
x = boundingMidX + offsetX, y = boundingMidY + offsetY;
dx = Math.cos(Math.PI * angle / 180);
dy = Math.sin(Math.PI * angle / 180);
for(var i = 0; i < 2; i++) {
bx = (dx > 0) ? boundingBoxWidth+boundingBox[0][0] : boundingBox[0][0];
by = (dy > 0) ? boundingBoxHeight+boundingBox[0][1] : boundingBox[0][1];
if(dx == 0) ix = x, iy = by;
if(dy == 0) iy = y, ix = bx;
tx = (bx - x) / dx;
ty = (by - y) / dy;
if(tx <= ty) {
ix = bx, iy = y + tx * dy;
} else {
iy = by, ix = x + ty * dx;
}
coords.push([ix, iy]);
dx = -dx;
dy = -dy;
}
return coords;
}
<canvas id="canvas" width="500" height="500"></canvas>

How can I reshape polygon without change line lengths

I can reshape polygon with mouse by using code in snippet. After drawing polygon, users can change shape by moving points. But I want to modify shape without changing line lengths. The points will change as possible but length of the lines will remain the same.
How can I do this?
var canvas, ctx;
var canvasIsMouseDown = false;
var radius = 6;
var pointIndex = -1;
var points = [
{ x: 10, y: 10 },
{ x: 100, y: 50 },
{ x: 150, y: 100 },
{ x: 60, y: 110 },
{ x: 30, y: 160 }
];
function start() {
canvas = document.getElementById("cnPolygon");
ctx = canvas.getContext("2d");
canvas.addEventListener("mousemove", canvasMouseMove);
canvas.addEventListener("mousedown", canvasMouseDown);
canvas.addEventListener("mouseup", canvasMouseUp);
draw();
}
function canvasMouseMove(ev) {
if (!canvasIsMouseDown || pointIndex === -1) return;
points[pointIndex].x = ev.pageX - this.offsetLeft;
points[pointIndex].y = ev.pageY - this.offsetTop;
draw();
}
function canvasMouseDown(ev) {
canvasIsMouseDown = true;
var x = ev.pageX - this.offsetLeft;
var y = ev.pageY - this.offsetTop;
pointIndex = -1;
var dist;
for (var i = 0; i < points.length; i++) {
dist = Math.sqrt(Math.pow((x - points[i].x), 2) + Math.pow((y - points[i].y), 2));
if (dist <= radius) {
pointIndex = i;
break;
}
}
}
function canvasMouseUp(ev) {
canvasIsMouseDown = false;
}
function draw() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
ctx.moveTo(points[0].x, points[0].y);
for (var i = 0; i < points.length; i++) {
ctx.lineTo(points[i].x, points[i].y);
}
ctx.closePath();
ctx.stroke();
for (var i = 0; i < points.length; i++) {
ctx.beginPath();
ctx.arc(points[i].x, points[i].y, radius, 0, Math.PI * 2);
ctx.stroke();
}
}
document.addEventListener("DOMContentLoaded", start);
<canvas id="cnPolygon" width="200" height="200" style="border:solid 1px silver"></canvas>
Take a look at this
var canvas, ctx;
var canvasIsMouseDown = false;
var radius = 3;
var pointIndex = -1;
var points = [
{ x: 10, y: 10 },
{ x: 100, y: 50 },
{ x: 150, y: 100 },
{ x: 60, y: 110 },
{ x: 30, y: 160 }
];
// PHYSICS START ----------------
var stiffness = 0.25 // defines how elastic the contrainst should be
var oscillations = 10 // defines how many iterations should be made, more iterations mean higher precision
function getAngle(x1,y1,x2,y2){
return Math.atan2(y2-y1,x2-x1) + Math.PI/2
}
function getConstraintPos(tx,ty,ox,oy,dist){
var rot = getAngle(tx,ty,ox,oy)
var x = tx+Math.sin(rot)*dist
var y = ty-Math.cos(rot)*dist
return [x,y]
}
function applyContraintForce(point,pos){
point.x += (pos[0] - point.x)*stiffness
point.y += (pos[1] - point.y)*stiffness
}
function defineDistances(){
for (var i = 0; i < points.length; i++) {
var next_point = points[(i+1)%points.length]
points[i].distance = Math.sqrt(Math.pow((next_point.x - points[i].x), 2) + Math.pow((next_point.y - points[i].y), 2))
}
}
function updateContraints(){
// forward pass
for (var i=0;i<points.length;i++)
{
if(i==pointIndex) continue
var j = (+i+1)%points.length
var pos = getConstraintPos(points[j].x,points[j].y,points[i].x,points[i].y,points[i].distance)
applyContraintForce(points[i],pos)
}
//backward pass
for (var i=points.length-1;i>=0;i--)
{
if(i==pointIndex) continue
var j = (i-1)
j = j<0 ? points.length+j : j
var pos = getConstraintPos(points[j].x,points[j].y,points[i].x,points[i].y,points[j].distance)
applyContraintForce(points[i],pos)
}
}
// PHYSICS END ----------------
function start() {
canvas = document.getElementById("cnPolygon");
ctx = canvas.getContext("2d");
canvas.addEventListener("mousemove", canvasMouseMove);
canvas.addEventListener("mousedown", canvasMouseDown);
canvas.addEventListener("mouseup", canvasMouseUp);
defineDistances()
draw();
}
function canvasMouseMove(ev) {
if (!canvasIsMouseDown || pointIndex === -1) return;
points[pointIndex].x = ev.pageX - this.offsetLeft;
points[pointIndex].y = ev.pageY - this.offsetTop;
for(var i=0;i<oscillations;i++){
updateContraints()
}
draw();
}
function canvasMouseDown(ev) {
canvasIsMouseDown = true;
var x = ev.pageX - this.offsetLeft;
var y = ev.pageY - this.offsetTop;
pointIndex = -1;
var dist;
for (var i = 0; i < points.length; i++) {
dist = Math.abs(Math.sqrt(Math.pow((x - points[i].x), 2) + Math.pow((y - points[i].y), 2)));
if (dist <= radius) {
pointIndex = i;
break;
}
}
}
function canvasMouseUp(ev) {
canvasIsMouseDown = false;
}
function draw() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
ctx.moveTo(points[0].x, points[0].y);
for (var i = 0; i < points.length; i++) {
ctx.lineTo(points[i].x, points[i].y);
}
ctx.closePath();
ctx.stroke();
for (var i = 0; i < points.length; i++) {
ctx.beginPath();
ctx.arc(points[i].x, points[i].y, radius * 2, 0, Math.PI * 2);
ctx.stroke();
}
}
document.addEventListener("DOMContentLoaded", start);
<canvas id="cnPolygon" width="500" height="300" style="border:solid 1px silver"></canvas>
What this does is calculate the angle between two given points and applies a force based on that angle and the distance delta. The force applied is multiplied by the stiffness.
This has to be done forwards (point A -> point B) and backwards (point A <- point B) in order to account for the differences between the last to first point in the chain.
NOTE this is not 100% accurate. The accuracy can be increased by the iterations count, but as #bhspencer already pointed out, there are cases where this is impossible, simply because of geometry.

How to code an nth order Bezier curve

Trying to code an nth order bezier in javascript on canvas for a project. I want to be able to have the user press a button, in this case 'b', to select each end point and the control points. So far I am able to get the mouse coordinates on keypress and make quadratic and bezier curves using the built in functions. How would I go about making code for nth order?
Here's a Javascript implementation of nth order Bezier curves:
// setup canvas
var canvas = document.getElementById('canvas');
var ctx = canvas.getContext('2d');
canvas.height = window.innerHeight;
canvas.width = window.innerWidth;
ctx.fillText("INSTRUCTIONS: Press the 'b' key to add points to your curve. Press the 'c' key to clear all points and start over.", 20, 20);
// initialize points list
var plist = [];
// track mouse movements
var mouseX;
var mouseY;
document.addEventListener("mousemove", function(e) {
mouseX = e.clientX;
mouseY = e.clientY;
});
// from: http://rosettacode.org/wiki/Evaluate_binomial_coefficients#JavaScript
function binom(n, k) {
var coeff = 1;
for (var i = n - k + 1; i <= n; i++) coeff *= i;
for (var i = 1; i <= k; i++) coeff /= i;
return coeff;
}
// based on: https://stackoverflow.com/questions/16227300
function bezier(t, plist) {
var order = plist.length - 1;
var y = 0;
var x = 0;
for (i = 0; i <= order; i++) {
x = x + (binom(order, i) * Math.pow((1 - t), (order - i)) * Math.pow(t, i) * (plist[i].x));
y = y + (binom(order, i) * Math.pow((1 - t), (order - i)) * Math.pow(t, i) * (plist[i].y));
}
return {
x: x,
y: y
};
}
// draw the Bezier curve
function draw(plist) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
var accuracy = 0.01; //this'll give the 100 bezier segments
ctx.beginPath();
ctx.moveTo(plist[0].x, plist[0].y);
for (p in plist) {
ctx.fillText(p, plist[p].x + 5, plist[p].y - 5);
ctx.fillRect(plist[p].x - 5, plist[p].y - 5, 10, 10);
}
for (var i = 0; i < 1; i += accuracy) {
var p = bezier(i, plist);
ctx.lineTo(p.x, p.y);
}
ctx.stroke();
ctx.closePath();
}
// listen for keypress
document.addEventListener("keydown", function(e) {
switch (e.keyCode) {
case 66:
// b key
plist.push({
x: mouseX,
y: mouseY
});
break;
case 67:
// c key
plist = [];
break;
}
draw(plist);
});
html,
body {
height: 100%;
margin: 0 auto;
}
<canvas id="canvas"></canvas>
This is based on this implementation of cubic Bezier curves. In your application, it sounds like you'll want to populate the points array with user-defined points.
Here is a code example for any number of points you want to add to make a bezier curve. Here points you will pass is an array of objects containing x and y values of points. [ { x: 1,y: 2 } , { x: 3,y: 4} ... ]
function factorial(n) {
if(n<0)
return(-1); /*Wrong value*/
if(n==0)
return(1); /*Terminating condition*/
else
{
return(n*factorial(n-1));
}
}
function nCr(n,r) {
return( factorial(n) / ( factorial(r) * factorial(n-r) ) );
}
function BezierCurve(points) {
let n=points.length;
let curvepoints=[];
for(let u=0; u <= 1 ; u += 0.0001 ){
let p={x:0,y:0};
for(let i=0 ; i<n ; i++){
let B=nCr(n-1,i)*Math.pow((1-u),(n-1)-i)*Math.pow(u,i);
let px=points[i].x*B;
let py=points[i].y*B;
p.x+=px;
p.y+=py;
}
curvepoints.push(p);
}
return curvepoints;
}

Using midpoint circle algorithm to generate points of a filled circle

I need to generate and store the coordinates of each point of a filled circle of say, radius 10 in Javascript.
It seems like the best way to do this would be to use the midpoint circle algorithm, but I'm not sure how to adapt it to find every point in the circle. The coordinates are going to be stored as objects in an array.
Could someone help me with the implementation?
Personally I think it would probably be faster in this case to test all pixels in the bounding box for their distance to the center. If <= r then the point is in the circle and should be pushed onto your array.
function distance(p1, p2)
{
dx = p2.x - p1.x; dx *= dx;
dy = p2.y - p1.y; dy *= dy;
return Math.sqrt( dx + dy );
}
function getPoints(x, y, r)
{
var ret = [];
for (var j=x-r; j<=x+r; j++)
for (var k=y-r; k<=y+r; k++)
if (distance({x:j,y:k},{x:x,y:y}) <= r) ret.push({x:j,y:k});
return ret;
}
You loop through all the possible points and you run the Point-In-Circle check on them.
Something like the following would suffice...
var result = [];
var d = 10;
var r = d / 2;
var rr = r*r;
for(var y=0; y<d; y++)
for(var x=0; x<d; x++)
if((x-r)*(x-r)+(y-r)*(y-r) < rr)
result.push({"x": x, "y": y});
Modifying the above algorithm to handle other (more complex) shapes/path/polygons would be difficult. For a more generic solution you could use HTML5 CANVAS. You create a canvas, get the 2d context draw all of your shapes/paths/polygons in solid black then iterate through the pixel data and find the pixels with an alpha channel greater than 0 (or 127 if you want to alleviate false positives from anti-aliasing).
var r = 5; // radius of bounding circle
//
// set up a canvas element
//
var canvas = document.createElement("canvas");
canvas.width = r*2;
canvas.height = r*2;
canvas.style.width = (r*2) + "px";
canvas.style.height = (r*2) + "px";
var ctx = canvas.getContext("2d");
ctx.fillStyle = "#000";
//
// draw your shapes/paths/polys here
//
ctx.beginPath();
ctx.arc(r, r, r, 0, Math.PI*2, true);
ctx.closePath();
ctx.fill();
//
// process the pixel data
//
var imageData = ctx.getImageData(0,0,(r*2),(r*2));
var data = imageData.data;
var result = [];
var str = "";
for(var y = 0; y<(r*2); y++) {
for(var x = 0; x<(r*2); x++) {
var pixelOffset = (y * (r*2) + x) * 4;
if(data[pixelOffset+3] > 127) {
result.push({x: x, y: y});
str += "(" + x + ", " + y + ") "; // debug
}
}
}
//
// debug/test output
//
document.body.innerHTML += str;
document.body.appendChild(canvas);
alert(result.length);

Categories