Using midpoint circle algorithm to generate points of a filled circle - javascript

I need to generate and store the coordinates of each point of a filled circle of say, radius 10 in Javascript.
It seems like the best way to do this would be to use the midpoint circle algorithm, but I'm not sure how to adapt it to find every point in the circle. The coordinates are going to be stored as objects in an array.
Could someone help me with the implementation?

Personally I think it would probably be faster in this case to test all pixels in the bounding box for their distance to the center. If <= r then the point is in the circle and should be pushed onto your array.
function distance(p1, p2)
{
dx = p2.x - p1.x; dx *= dx;
dy = p2.y - p1.y; dy *= dy;
return Math.sqrt( dx + dy );
}
function getPoints(x, y, r)
{
var ret = [];
for (var j=x-r; j<=x+r; j++)
for (var k=y-r; k<=y+r; k++)
if (distance({x:j,y:k},{x:x,y:y}) <= r) ret.push({x:j,y:k});
return ret;
}

You loop through all the possible points and you run the Point-In-Circle check on them.
Something like the following would suffice...
var result = [];
var d = 10;
var r = d / 2;
var rr = r*r;
for(var y=0; y<d; y++)
for(var x=0; x<d; x++)
if((x-r)*(x-r)+(y-r)*(y-r) < rr)
result.push({"x": x, "y": y});
Modifying the above algorithm to handle other (more complex) shapes/path/polygons would be difficult. For a more generic solution you could use HTML5 CANVAS. You create a canvas, get the 2d context draw all of your shapes/paths/polygons in solid black then iterate through the pixel data and find the pixels with an alpha channel greater than 0 (or 127 if you want to alleviate false positives from anti-aliasing).
var r = 5; // radius of bounding circle
//
// set up a canvas element
//
var canvas = document.createElement("canvas");
canvas.width = r*2;
canvas.height = r*2;
canvas.style.width = (r*2) + "px";
canvas.style.height = (r*2) + "px";
var ctx = canvas.getContext("2d");
ctx.fillStyle = "#000";
//
// draw your shapes/paths/polys here
//
ctx.beginPath();
ctx.arc(r, r, r, 0, Math.PI*2, true);
ctx.closePath();
ctx.fill();
//
// process the pixel data
//
var imageData = ctx.getImageData(0,0,(r*2),(r*2));
var data = imageData.data;
var result = [];
var str = "";
for(var y = 0; y<(r*2); y++) {
for(var x = 0; x<(r*2); x++) {
var pixelOffset = (y * (r*2) + x) * 4;
if(data[pixelOffset+3] > 127) {
result.push({x: x, y: y});
str += "(" + x + ", " + y + ") "; // debug
}
}
}
//
// debug/test output
//
document.body.innerHTML += str;
document.body.appendChild(canvas);
alert(result.length);

Related

Fill in shape with lines at a specified angle

I need to create line segments within a shape and not just a visual pattern - I need to know start and end coordinates for those lines that are within a given boundary (shape). I'll go through what I have and explain the issues I'm facing
I have a closed irregular shape (can have dozens of sides) defined by [x, y] coordinates
shape = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
];
I calculate and draw the bounding box of this shape
I then draw my shape on the canvas
Next, I cast rays within the bounding box with a set spacing between each ray. The ray goes from left to right incrementing by 1 pixel.
Whenever a cast ray gets to a pixel with RGB values of 100, 255, 100 I then know it has entered the shape. I know when it exits the shape if the pixel value is not 100, 255, 100. Thus I know start and end coordinates for each line within my shape and if one ray enters and exits the shape multiple times - this will generate all line segments within that one ray cast.
For the most part it works but there are issues:
It's very slow. Perhaps there is a better way than casting rays? Or perhaps there is a way to optimize the ray logic? Perhaps something more intelligent than just checking for RGB color values?
How do I cast rays at a different angle within the bounding box? Now it's going left to right, but how would I fill my bounding box with rays cast at any specified angle? i.e.:
I don't care about holes or curves. The shapes will all be made of straight line segments and won't have any holes inside them.
Edit: made changes to the pixel RGB sampling that improve performance.
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 15;
shape = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
];
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
// display bounding box
ctx.fillStyle = 'rgba(255,0,0,.2)';
ctx.fillRect(boundingBox[0][0], boundingBox[0][1], boundingBox[1][0]-boundingBox[0][0], boundingBox[1][1]-boundingBox[0][1]);
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
canvasData = ctx.getImageData(0, 0, canvas.width, canvas.height).data;
// loop through the shape in vertical slices
for(var i = boundingBox[0][1]+lineSpacing; i <= boundingBox[1][1]; i += lineSpacing) {
// send ray from left to right
for(var j = boundingBox[0][0], start = false; j <= boundingBox[1][0]; j++) {
x = j, y = i;
pixel = y * (canvas.width * 4) + x * 4;
// if pixel is within boundary (shape)
if(canvasData[pixel] == 100 && canvasData[pixel+1] == 255 && canvasData[pixel+2] == 100) {
// arrived at start of boundary
if(start === false) {
start = [x,y]
}
} else {
// arrived at end of boundary
if(start !== false) {
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.beginPath();
ctx.moveTo(start[0], start[1]);
ctx.lineTo(x, y);
ctx.closePath();
ctx.stroke();
start = false;
}
}
}
// show entire cast ray for debugging purposes
ctx.strokeStyle = 'rgba(0,0,0,.2)';
ctx.beginPath();
ctx.moveTo(boundingBox[0][0], i);
ctx.lineTo(boundingBox[1][0], i);
ctx.closePath();
ctx.stroke();
}
<canvas id="canvas" width="350" height="350"></canvas>
This is a pretty complex problem that I am trying to simplify as much as possible. Using the line intersection formula we can determin where the ray intersects with the shape at every edge. What we can do is loop through each side of the shape while check every rays intersection. If they intersect we push those coordinates to an array.
I have tried to make this as dynamic as possible. You can pass the shape and change the number of rays and the angle. As for the angle it doesn't take a specific degree (i.e. 45) but rather you change the start and stop y axis. I'm sure if you must have the ability to put in a degree we can do that.
It currently console logs the array of intersecting coordinates but you can output them however you see fit.
The mouse function is just to verify that the number match up. Also be aware I am using toFixed() to get rid of lots of decimals but it does convert to a string. If you need an integer you'll have to convert back.
let canvas = document.getElementById("canvas");
let ctx = canvas.getContext("2d")
canvas.width = 300;
canvas.height = 300;
ctx.fillStyle = "violet";
ctx.fillRect(0,0,canvas.width,canvas.height)
//Shapes
let triangleish = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
]
let star = [ [ 0, 85 ], [ 75, 75 ], [ 100, 10 ], [ 125, 75 ],
[ 200, 85 ], [ 150, 125 ], [ 160, 190 ], [ 100, 150 ],
[ 40, 190 ], [ 50, 125 ], [ 0, 85 ] ];
let coords = [];
//Class that draws the shape on canvas
function drawShape(arr) {
ctx.beginPath();
ctx.fillStyle = "rgb(0,255,0)";
ctx.moveTo(arr[0][0], arr[0][1]);
for (let i=1;i<arr.length;i++) {
ctx.lineTo(arr[i][0], arr[i][1]);
}
ctx.fill();
ctx.closePath();
}
//pass the shape in here to draw it
drawShape(star)
//Class to creat the rays.
class Rays {
constructor(x1, y1, x2, y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
this.w = canvas.width;
this.h = 1;
}
draw() {
ctx.beginPath();
ctx.strokeStyle = 'black';
ctx.moveTo(this.x1, this.y1)
ctx.lineTo(this.x2, this.y2)
ctx.stroke();
ctx.closePath();
}
}
let rays = [];
function createRays(angle) {
let degrees = angle * (Math.PI/180)
//I am currently creating an array every 10px on the Y axis
for (let i=0; i < angle + 45; i++) {
//The i will be your start and stop Y axis. This is where you can change the angle
let cx = canvas.width/2 + (angle*2);
let cy = i * 10;
let x1 = (cx - 1000 * Math.cos(degrees));
let y1 = (cy - 1000 * Math.sin(degrees));
let x2 = (cx + 1000 * Math.cos(degrees));
let y2 = (cy + 1000 * Math.sin(degrees));
rays.push(new Rays(x1, y1, x2, y2))
}
}
//enter angle here
createRays(40);
//function to draw the rays after crating them
function drawRays() {
for (let i=0;i<rays.length; i++) {
rays[i].draw();
}
}
drawRays();
//This is where the magic happens. Using the line intersect formula we can determine if the rays intersect with the objects sides
function intersectLines(coord1, coord2, rays) {
let x1 = coord1[0];
let x2 = coord2[0];
let y1 = coord1[1];
let y2 = coord2[1];
let x3 = rays.x1;
let x4 = rays.x2;
let y3 = rays.y1;
let y4 = rays.y2;
//All of this comes from Wikipedia on line intersect formulas
let d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) {
return
}
let t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
let u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
//if this statement is true then the lines intersect
if (t > 0 && t < 1 && u > 0) {
//I have currently set it to fixed but if a string does not work for you you can change it however you want.
//the first formula is the X coord of the interect the second is the Y
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return
}
//function to call the intersect function by passing in the shapes sides and each ray
function callIntersect(shape) {
for (let i=0;i<shape.length;i++) {
for (let j=0;j<rays.length;j++) {
if (i < shape.length - 1) {
intersectLines(shape[i], shape[i+1], rays[j]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rays[j]);
}
}
}
}
callIntersect(star);
//just to sort them by the Y axis so they they show up as in-and-out
function sortCoords() {
coords.sort((a, b) => {
return a[1] - b[1];
});
}
sortCoords()
console.log(coords)
//This part is not needed only added to verify number matched the mouse posit
let mouse = {
x: undefined,
y: undefined
}
let canvasBounds = canvas.getBoundingClientRect();
addEventListener('mousemove', e => {
mouse.x = e.x - canvasBounds.left;
mouse.y = e.y - canvasBounds.top;
ctx.clearRect(0, 0, canvas.width, canvas.height)
drawCoordinates();
})
function drawCoordinates() {
ctx.font = '15px Arial';
ctx.fillStyle = 'black';
ctx.fillText('x: '+mouse.x+' y: '+mouse.y, mouse.x, mouse.y)
}
function animate() {
ctx.clearRect(0, 0, canvas.width, canvas.height)
ctx.fillStyle = "violet";
ctx.fillRect(0,0,canvas.width,canvas.height)
for (let i=0;i<rays.length; i++) {
rays[i].draw();
}
drawShape(star)
drawCoordinates();
requestAnimationFrame(animate)
}
animate()
<canvas id="canvas"></canvas>
I'm not an expert, but maybe you could do something like this:
Generate the points that constitute the borders.
Organize them in a convenient structure, e.g. an object with the y as key, and an array of x as values.
2.1. i.e. each item in the object would constitute all points of all borders in a single y.
Iterate over the object and generate the segments for each y.
3.1. e.g. if the array of y=12 contains [ 10, 20, 60, 80 ] then you would generate two segments: [ 10, 12 ] --> [ 20, 12 ] and [ 60, 12 ] --> [ 80, 12 ].
To generate the borders' points (and to answer your second question), you can use the line function y = a*x + b.
For example, to draw a line between [ 10, 30 ] and [ 60, 40 ], you would:
Solve a and b by substituting x and y for both points and combining these two formulas (with standard algebra):
For point #1: 30 = a*10 + b
For point #2: 40 = a*60 + b
b = 30 - a*10
40 = a*60 + (30 - a*10)
a*60 - a*10 = 40 - 30
50*a = 10
a = 0.2
30 = a*10 + b
30 = 0.2*10 + b
b = 30 - 2
b = 28
With a and b at hand, you get the function for your specific line:
y = 0.2*x + 28
With that, you can calculate the point of the line for any y. So, for example, the x of the point right under the first point ([ 10, 30 ]) would have a y of 31, and so: 31 = 0.2*x + 28, and so: x = 15. So you get: [ 15, 31 ].
You may need a bit of special handling for:
Vertical lines, because the slope is "infinite" and calculating it would cause division by zero.
Rounding issues. For some (probably most) pixels you will get real x values (i.e. non-integer). You can Math.round() them, but it can cause issues, like:
8.1. Diagonal rays may not actually hit a border point even when they go through a border. This will probably require additional handling (like checking points around and not just exactly the pixels the ray lies on).
8.2. The points your algorithm generate may (slightly) differ from the points that appear on the screen when you use libraries or built-in browser functionality to draw the shape (depending on the implementation of their drawing algorithms).
This is a mashup of Justin's answer and code from my proposed question.
One issue was generating rays at a set angle and a set distance from each other. To have rays be equal distances apart at any angle we can use a vector at a 90 degree angle and then place a new center point for the next line.
We can start at the exact midpoint of our boundary and then spread out on either side.
Red line is the center line, green dots are the vector offset points for the next line.
Next I modified Justin's intersect algorithm to iterate by ray and not side, that way I get interlaced coordinates where array[index] is the start point of a segment and array[index+1] is the end point.
And by connecting the lines we get a shape that is filled with lines inside its boundaries at set distances apart
Issues:
I had to inflate the boundary by 1 pixel otherwise certain shapes would fail to generate paths
I'd like rays to be some what aligned. It's hard to explain, but here's an example of 6 triangles rotated at 60 degree increments that form a hexagon with their inner lines also offset by 60 degree increments. The top and bottom triangle inner lines do not join those of the outside triangles. This is an issue with the cast rays. Ideally I'd like them to join and be aligned with the outer most edge if that makes sense. Surely there is a better way to cast rays than this...
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 12;
angle = 45;
shapes = [
[[143.7,134.2], [210.4,18.7], [77.1,18.7]],
[[143.7,134.2], [77.1,18.7], [10.4,134.2]],
[[143.7,134.2], [10.4,134.2], [77.1,249.7]],
[[143.7,134.2], [77.1,249.7], [210.4,249.7]],
[[143.7,134.2], [210.4,249.7], [277.1,134.2]],
[[143.7,134.2], [277.1,134.2], [210.4,18.7]]
];
for(var i in shapes) {
lines = getLineSegments(shapes[i], 90+(-60*i), lineSpacing);
for(var i = 0; i < lines.length; i += 2) {
start = lines[i];
end = lines[i+1];
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.moveTo(start[0], start[1]);
ctx.lineTo(end[0], end[1]);
ctx.closePath();
ctx.stroke();
}
}
function getLineSegments(shape, angle, lineSpacing) {
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
boundingBox[0][0] -= 1, boundingBox[0][1] -= 1;
boundingBox[1][0] += 1, boundingBox[1][1] += 1;
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
rayPaths = [];
path = getPathCoords(boundingBox, 0, 0, angle);
rayPaths.push(path);
/*ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'red';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
getPaths:
for(var i = 0, lastPaths = [path, path]; true; i++) {
for(var j = 0; j < 2; j++) {
pathMidX = (lastPaths[j][0][0] + lastPaths[j][1][0]) / 2;
pathMidY = (lastPaths[j][0][1] + lastPaths[j][1][1]) / 2;
pathVectorX = lastPaths[j][1][1] - lastPaths[j][0][1];
pathVectorY = lastPaths[j][1][0] - lastPaths[j][0][0];
pathLength = Math.sqrt(pathVectorX * pathVectorX + pathVectorY * pathVectorY);
pathOffsetPointX = pathMidX + ((j % 2 === 0 ? pathVectorX : -pathVectorX) / pathLength * lineSpacing);
pathOffsetPointY = pathMidY + ((j % 2 === 0 ? -pathVectorY : pathVectorY) / pathLength * lineSpacing);
offsetX = pathOffsetPointX-boundingMidX;
offsetY = pathOffsetPointY-boundingMidY;
path = getPathCoords(boundingBox, offsetX, offsetY, angle);
if(
path[0][0] < boundingBox[0][0] ||
path[1][0] > boundingBox[1][0] ||
path[0][0] > boundingBox[1][0] ||
path[1][0] < boundingBox[0][0]
) break getPaths;
/*ctx.fillStyle = 'green';
ctx.fillRect(pathOffsetPointX-2.5, pathOffsetPointY-2.5, 5, 5);
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'black';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
rayPaths.push(path);
lastPaths[j] = path;
}
}
coords = [];
function intersectLines(coord1, coord2, rays) {
x1 = coord1[0], x2 = coord2[0];
y1 = coord1[1], y2 = coord2[1];
x3 = rays[0][0], x4 = rays[1][0];
y3 = rays[0][1], y4 = rays[1][1];
d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) return;
t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
if (t > 0 && t < 1 && u > 0) {
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return;
}
function callIntersect(shape) {
for (var i = 0; i < rayPaths.length; i++) {
for (var j = 0; j< shape.length; j++) {
if (j < shape.length - 1) {
intersectLines(shape[j], shape[j+1], rayPaths[i]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rayPaths[i]);
}
}
}
}
callIntersect(shape);
return coords;
}
function getPathCoords(boundingBox, offsetX, offsetY, angle) {
coords = [];
// add decimal places otherwise can lead to Infinity, subtract 90 so 0 degrees is at the top
angle = angle + 0.0000000000001 - 90;
boundingBoxWidth = boundingBox[1][0] - boundingBox[0][0];
boundingBoxHeight = boundingBox[1][1] - boundingBox[0][1];
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
x = boundingMidX + offsetX, y = boundingMidY + offsetY;
dx = Math.cos(Math.PI * angle / 180);
dy = Math.sin(Math.PI * angle / 180);
for(var i = 0; i < 2; i++) {
bx = (dx > 0) ? boundingBoxWidth+boundingBox[0][0] : boundingBox[0][0];
by = (dy > 0) ? boundingBoxHeight+boundingBox[0][1] : boundingBox[0][1];
if(dx == 0) ix = x, iy = by;
if(dy == 0) iy = y, ix = bx;
tx = (bx - x) / dx;
ty = (by - y) / dy;
if(tx <= ty) {
ix = bx, iy = y + tx * dy;
} else {
iy = by, ix = x + ty * dx;
}
coords.push([ix, iy]);
dx = -dx;
dy = -dy;
}
return coords;
}
<canvas id="canvas" width="500" height="500"></canvas>
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 10;
angle = 45;
shape = [
[200,10], // x, y
[10,300],
[200,200],
[400,300]
];
lines = getLineSegments(shape, angle, lineSpacing);
for(var i = 0; i < lines.length; i += 2) {
start = lines[i];
end = lines[i+1];
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.moveTo(start[0], start[1]);
ctx.lineTo(end[0], end[1]);
ctx.closePath();
ctx.stroke();
}
function getLineSegments(shape, angle, lineSpacing) {
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
boundingBox[0][0] -= 1, boundingBox[0][1] -= 1;
boundingBox[1][0] += 1, boundingBox[1][1] += 1;
// display bounding box
ctx.fillStyle = 'rgba(255,0,0,.2)';
ctx.fillRect(boundingBox[0][0], boundingBox[0][1], boundingBox[1][0]-boundingBox[0][0], boundingBox[1][1]-boundingBox[0][1]);
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
rayPaths = [];
path = getPathCoords(boundingBox, 0, 0, angle);
rayPaths.push(path);
/*ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'red';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
getPaths:
for(var i = 0, lastPaths = [path, path]; true; i++) {
for(var j = 0; j < 2; j++) {
pathMidX = (lastPaths[j][0][0] + lastPaths[j][1][0]) / 2;
pathMidY = (lastPaths[j][0][1] + lastPaths[j][1][1]) / 2;
pathVectorX = lastPaths[j][1][1] - lastPaths[j][0][1];
pathVectorY = lastPaths[j][1][0] - lastPaths[j][0][0];
pathLength = Math.sqrt(pathVectorX * pathVectorX + pathVectorY * pathVectorY);
pathOffsetPointX = pathMidX + ((j % 2 === 0 ? pathVectorX : -pathVectorX) / pathLength * lineSpacing);
pathOffsetPointY = pathMidY + ((j % 2 === 0 ? -pathVectorY : pathVectorY) / pathLength * lineSpacing);
offsetX = pathOffsetPointX-boundingMidX;
offsetY = pathOffsetPointY-boundingMidY;
path = getPathCoords(boundingBox, offsetX, offsetY, angle);
if(
path[0][0] < boundingBox[0][0] ||
path[1][0] > boundingBox[1][0] ||
path[0][0] > boundingBox[1][0] ||
path[1][0] < boundingBox[0][0]
) break getPaths;
/*ctx.fillStyle = 'green';
ctx.fillRect(pathOffsetPointX-2.5, pathOffsetPointY-2.5, 5, 5);
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'black';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
rayPaths.push(path);
lastPaths[j] = path;
}
}
coords = [];
function intersectLines(coord1, coord2, rays) {
x1 = coord1[0], x2 = coord2[0];
y1 = coord1[1], y2 = coord2[1];
x3 = rays[0][0], x4 = rays[1][0];
y3 = rays[0][1], y4 = rays[1][1];
d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) return;
t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
if (t > 0 && t < 1 && u > 0) {
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return;
}
function callIntersect(shape) {
for (var i = 0; i < rayPaths.length; i++) {
for (var j = 0; j< shape.length; j++) {
if (j < shape.length - 1) {
intersectLines(shape[j], shape[j+1], rayPaths[i]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rayPaths[i]);
}
}
}
}
callIntersect(shape);
return coords;
}
function getPathCoords(boundingBox, offsetX, offsetY, angle) {
coords = [];
// add decimal places otherwise can lead to Infinity, subtract 90 so 0 degrees is at the top
angle = angle + 0.0000000000001 - 90;
boundingBoxWidth = boundingBox[1][0] - boundingBox[0][0];
boundingBoxHeight = boundingBox[1][1] - boundingBox[0][1];
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
x = boundingMidX + offsetX, y = boundingMidY + offsetY;
dx = Math.cos(Math.PI * angle / 180);
dy = Math.sin(Math.PI * angle / 180);
for(var i = 0; i < 2; i++) {
bx = (dx > 0) ? boundingBoxWidth+boundingBox[0][0] : boundingBox[0][0];
by = (dy > 0) ? boundingBoxHeight+boundingBox[0][1] : boundingBox[0][1];
if(dx == 0) ix = x, iy = by;
if(dy == 0) iy = y, ix = bx;
tx = (bx - x) / dx;
ty = (by - y) / dy;
if(tx <= ty) {
ix = bx, iy = y + tx * dy;
} else {
iy = by, ix = x + ty * dx;
}
coords.push([ix, iy]);
dx = -dx;
dy = -dy;
}
return coords;
}
<canvas id="canvas" width="500" height="500"></canvas>

How to calculate actual width and height of rotated object in canvas?

Am trying to calculate width and height of object i loaded into canvas. When object is not rotated i get correct left right top bottom values, but when i load rotated object in canvas then i not get correct values , so i wonder what will be the logic or math formula to do achieve it.
how am doing.
initially load image into canvas
get image data from canvas
loop through image data to get only colored pixels by using alpha check
from colored pixel array find min max xy values
var temp_ray = []; // pixel array
for (var y = 0; y < imgData.height; ++y) {
for (var x = 0; x < imgData.width; ++x) {
var index = (y * imgData.width + x) * 4;
if(imgData.data[index+3]){
var xc = (index / 4) % imgData.width;
var yc = Math.floor((index / 4) / imgData.width);
temp_ray.push([xc,yc]);
}
}
}
if(temp_ray.length > 0){
var Xind = MaxMin2darray(temp_ray,0);
var Yind = MaxMin2darray(temp_ray,1);
var W = parseFloat(Xind['max']) - parseFloat(Xind['min']);
var H = parseFloat(Yind['max']) - parseFloat(Yind['min']);
var center_x = Xind['min'] + (W/2);
var center_y = Yind['min'] + (H/2);
// find corners of object
// find *min x , min y
let top_left = temp_ray[Xind['imin']]; // min X priority , min Y // top left
// find max x , *min y
let top_right = temp_ray[Yind['imin']]; // max X, min Y priority , // top right
// find *max x , min y
let bot_right = temp_ray[Xind['imax']]; // max X priority , min Y // bottom right
// find max x , *max y
let bot_left = temp_ray[Yind['imax']]; // max X , max Y priority // bottom left
var dim = {'W':W,'H':H,'CenterX':center_x,'CenterY':center_y,'top_left':top_left,'top_right':top_right,'bot_right':bot_right,'bot_left':bot_left,'Xend':Xind['max'],'Yend':Yind['max'],'Xstart':Xind['min'],'Ystart':Yind['min'],'Xend':Xind['max'],'Yend':Yind['max']};
console.log(dim);
}
and then using min max xy value find corners of object which works with none rotated objects but not work with rotated/tilted objects.
so any idea how to solve this problem
openpnp project is achieving this through opencv, but i think in js we do not have opencv library nor am that pro of java :(.
https://github.com/openpnp/openpnp/blob/develop/src/main/java/org/openpnp/vision/pipeline/stages/DrawRotatedRects.java
jsfiddle: http://jsfiddle.net/4L13vtaj/
In some simple cases (like rectangular objects), you could try to rotate the image until you minimize the number of uncolored pixels.
So you start with your image, and for each of the possible 360°, you compute the ratio. This is not perfect, but "doable" simply in pure js.
Here's a pseudoCode that might help you:
for degree in [0,365]{
rotateOriginalImageBy(degree);
cost[degree] = NemptyPixels/NfilledPixels;
}
predictedDegree = Math.min(cost);
rotateOriginalImageBy(predictedDegree);
compute 2 dimensions;
width = largerDimension;
height = shorterDimension;
Begining of an implementation (I edited your jsfiddle):
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var rotatioDegree = 45;
var imageObject = new Image();
imageObject.onload = function() {
var canvasWidth = imageObject.width;
var canvasHeight = canvasWidth; // not useful since width==height
document.getElementById('canvas').width = canvasWidth;
document.getElementById('canvas').height = canvasWidth;
ctx.clearRect(0, 0, canvasWidth, canvasWidth);
// Move registration point to the center of the canvas
ctx.translate(canvasWidth/2, canvasWidth/2)
ctx.rotate(rotatioDegree*3.1415/180);
ctx.translate(-canvasWidth/2,-canvasWidth/2)
ctx.drawImage(imageObject,0,0);
ctx.translate(canvasWidth/2, canvasWidth/2)
ctx.rotate(-rotatioDegree*3.1415/180);
ctx.translate(-canvasWidth/2,-canvasWidth/2)
var imgData = ctx.getImageData(0, 0, canvasWidth, canvasWidth);
http://jsfiddle.net/4L13vtaj/17/
If this doesn't work, you could implement some image detection techniques (Mathematical morphology for example). But i think this is outside the scope of stackoverflow.
If you work with some approximation, you can have something like that; I hope at least it can provide to you some ideas:
// some pixels in this image are not transparent, so we add a tollerance
// you can try to remove the second condition.
const isNotEmpty = (color) => color && color < 0xffaaaaaa;
function getTop(buff, w, h) {
for (let y = 0; y < h; y++) {
for (let x = 0; x < w; x++) {
let i = y * w + x;
if (isNotEmpty(buff[i])) {
return {x, y}
}
}
}
}
function getRight(buff, w, h) {
for (let x = w; x >=0; x--) {
for (let y = 0; y < h; y++) {
let i = y * w + x;
if (isNotEmpty(buff[i])) {
return {x, y}
}
}
}
}
function getBottom(buff, w, h) {
for (let y = h; y >= 0; y--) {
for (let x = 0; x < w; x++) {
let i = y * w + x;
if (isNotEmpty(buff[i])) {
return {x, y}
}
}
}
}
function getLeft(buff, w, h) {
for (let x = 0; x < w; x++) {
for (let y = 0; y < h; y++) {
let i = y * w + x;
if (isNotEmpty(buff[i])) {
return {x, y}
}
}
}
}
async function main(imageSource) {
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");
const imageObject = new Image();
imageObject.src = imageSource;
await new Promise(r => imageObject.onload = r);
const w = canvas.width = imageObject.width;
const h = canvas.height = imageObject.height;
ctx.clearRect(0, 0, w, h);
ctx.drawImage(imageObject, 0, 0);
const imgData = ctx.getImageData(0, 0, w, h);
const buff = new Uint32Array(imgData.data.buffer);
const points = [
getTop(buff, w, h),
getRight(buff, w, h),
getBottom(buff, w, h),
getLeft(buff, w, h)
];
ctx.strokeStyle = "#0000ff"
ctx.beginPath();
ctx.moveTo(points[0].x, points[0].y);
ctx.lineTo(points[1].x, points[1].y);
ctx.lineTo(points[2].x, points[2].y);
ctx.lineTo(points[3].x, points[3].y);
ctx.closePath();
ctx.stroke();
}
main(/* image's url*/);
Here the link for testing: https://codepen.io/zer0/pen/zLxyQV
There are several problem with this approach: as said, with irregular images, it's not precise, in fact you will see the pin are making the image's bounding box a little bit smaller.
But the thing can be worse: try in the link above to use the 2nd image, that is quite irregular, and you will see.
Of course we can compensate, using also a bit more complex algorithm instead this simple one, but the question is: what the expected result for something like the 2nd image? Depends by that you can decide how to proceed.

p5.js – Smoothly morphing random shape

first of all, i am a beginner on js and p5.js. My aim on this program is a smoothly morphing random shape. I was satisfied with the calculateShape()-function and the drawShape()-function, but when it comes to morphing (updateShape()) it gets really ugly. I thought it might be a good idea to save my current array into a temporary array, then loop over the array and add a random number to each x and y of each index and then replace the old x and y at this index. The main problem is, that it is always adding new shapes on the screen instead of changing the values of the vertices of the existing shape. Can anybody of you please give me a hint or point out my mistake(s)? THANK YOU IN ADVANCE!
var c1;
var c2;
var c3;
var centerX;
var centerY;
var fb;
var radius;
var angle;
var shape = [];
var temp;
/*function to calculate the inital shape*/
function calculateShape() {
//calculate coordinates and save into array
for (var i = 0; i < fb; i++) {
var x = cos(angle * i) * radius + random(-77,77);
var y = sin(angle * i) * radius + random(-77,77);
var v = createVector(x, y);
shape.push(v);
}
}
/*function for morphing the shape*/
function updateShape() {
var temp = shape;
for (var i = 0; i < shape.length - 1; i++) {
var x = temp[i].x + random(-1, 1);
var y = temp[i].y + random(-1, 1);
var p = temp[i];
var v = createVector(x, y);
shape.splice(p,1);
shape.push(v);
}
}
/*function for drawing the shape on the screen*/
function createShape(){
beginShape();
curveVertex(shape[shape.length-1].x, shape[shape.length-1].y);
for (var i = 0; i < shape.length; i++){
curveVertex(shape[i].x, shape[i].y);
}
curveVertex(shape[0].x, shape[0].y);
endShape(CLOSE);
}
function setup() {
createCanvas(windowWidth, windowHeight);
smooth();
background(250);
//frameRate(2);
// defining possible colors
c1 = color(0, 196, 181, 235);
c2 = color(50, 227, 232, 235);
c3 = color(248, 49, 62, 255);
var colors = [c1, c2, c3];
//center of the window
centerX = windowWidth/2;
centerY = windowHeight/2;
//defining all variables
fb = 8;
angle = radians(360 / fb);
radius = random(120, 140);
//calling thefunction that initalises the shape
calculateShape();
}
function draw() {
translate(centerX, centerY);
blendMode(BLEND);
fill(c3);
noStroke();
createShape();
updateShape();
}
The main problem is, that it is always adding new shapes on the screen instead of changing the values of the vertices of the existing shape.
Sure, you just need to clear the screen before drawing again. So, reset the background with the background(250) from setup, in draw.

Draw a polygon between coordinates, preventing intersects

JS fiddle
I have a coordinates array populated by mouse clicks on a canvas.
var pointsArray = [];
This array is pushed x and y values using a click event.
pointsArray.push({x: xVal, y: yVal});
I iterate the points array and draw a line between the current point, and the previous point.
function drawPolygon(points) {
//check arguments for null values
if(!points)
return false;
var i;
for(i = 0; i < points.length; i++)
drawLine(points[i-1], points[i]);
//draw the final line
drawLine(points[i-1], points[0]);
}
drawLine looks like this:
function drawLine(point1, point2) {
//check arguments for null values
if(!point1 || !point2)
return false;
context.beginPath();
context.moveTo(point1.x, point1.y);
context.lineTo(point2.x, point2.y);
context.stroke();
}
Unfortunately, depending on what order the users click, I can have the lines intersect, which I don't want: http://i.imgur.com/3gaHRTa.png How would I solve for this? My first instinct tells me to order the points top-to-bottom, left-to-right in the array then draw.
Step 1: Find center of polygon using average position of points
This function will find the center given all the points in the drawing, independent of order:
function findCenter(points) {
var x = 0, y = 0, i, len = points.length;
for (i = 0; i < len; i++) {
x += points[i].x;
y += points[i].y;
}
return {x: x / len, y: y / len}; // return average position
}
Demo showing center point in polygon
/**
* Created by knguyen on 4/13/2015.
*/
var pointsArray = [];
var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
function Point(x, y) {
this.x = x;
this.y = y;
}
function drawDot(e) {
var position = getMousePosition(canvas, e);
posx = position.x;
posy = position.y;
storeCoordinate(posx, posy);
context.fillStyle = "#F00";
context.fillRect(posx, posy, 6, 6);
}
function getMousePosition(c, e) {
var rect = canvas.getBoundingClientRect();
return {x: e.clientX - rect.left, y: e.clientY - rect.top}
}
function storeCoordinate(xVal, yVal) {pointsArray.push(new Point(xVal, yVal))}
$("#solve").click(
function() {
var p = findCenter(pointsArray);
context.fillStyle = "green";
context.fillRect(p.x, p.y, 4, 4);
}
);
function findCenter(points) {
var x = 0, y = 0, i, len = points.length;
for (i = 0; i < len; i++) {
x += points[i].x;
y += points[i].y;
}
return {x: x / len, y: y / len}; // return average position
}
#myCanvas {border: 1px solid #000}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<canvas id="myCanvas" width="400" height="300" onclick="drawDot(event)"></canvas>
<div>
<button type="button" class="btn btn-default" id="solve">Show center point</button>
</div>
Step 2: Sort points based on angle
Extend the point object to also take an angle argument.
Iterate trough the point array
Calculate the angle relative to the center point
Sort array based on angle
To find the angles just calculate the angle relative to the center point.
Here is how:
function findAngles(c, points) {
var i, len = points.length, p, dx, dy;
for (i = 0; i < len; i++) {
p = points[i];
dx = p.x - c.x;
dy = p.y - c.y;
p.angle = Math.atan2(dy, dx);
}
}
Then you have to sort the points based on angle using a custom sort function. Just use the standard sort() method on the array and supply your own function which will use the angle property of the point object:
pointsArray.sort(function(a, b) {
if (a.angle > b.angle) return 1;
else if (a.angle < b.angle) return -1;
return 0;
});
Then draw a line between all the points.
Working Demo
var pointsArray = [];
var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
function Point(x, y) {
this.x = x;
this.y = y;
this.angle = 0;
}
canvas.onclick = drawDot;
function drawDot(e) {
var position = getMousePosition(canvas, e);
posx = position.x;
posy = position.y;
storeCoordinate(posx, posy);
context.fillStyle = "#F00";
context.fillRect(posx-3, posy-3, 6, 6);
}
function getMousePosition(c, e) {
var rect = canvas.getBoundingClientRect();
return {x: e.clientX - rect.left, y: e.clientY - rect.top}
}
function storeCoordinate(xVal, yVal) {pointsArray.push(new Point(xVal, yVal))}
$("#solve").click(
function() {
// find center
var cent = findCenter(pointsArray);
context.fillStyle = "green";
context.fillRect(cent.x-3, cent.y-3, 6, 6);
// find angles
findAngles(cent, pointsArray);
// sort based on angle using custom sort
pointsArray.sort(function(a, b) {
return (a.angle >= b.angle) ? 1 : -1
});
// draw lines
context.beginPath();
context.moveTo(pointsArray[0].x, pointsArray[0].y);
for(var i = 0; i < pointsArray.length; i++) {
context.lineTo(pointsArray[i].x, pointsArray[i].y);
}
context.strokeStyle = "#00f";
context.closePath();
context.stroke();
}
);
function findCenter(points) {
var x = 0, y = 0, i, len = points.length;
for (i = 0; i < len; i++) {
x += points[i].x;
y += points[i].y;
}
return {x: x / len, y: y / len}; // return average position
}
function findAngles(c, points) {
var i, len = points.length, p, dx, dy;
for (i = 0; i < len; i++) {
p = points[i];
dx = p.x - c.x;
dy = p.y - c.y;
p.angle = Math.atan2(dy, dx);
}
}
$("#reset").click(
function() {
context.clearRect(0, 0, canvas.width, canvas.height); //clear the canvas
pointsArray = []; //clear the array
}
);
#myCanvas {border: 1px solid #000}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<canvas id="myCanvas" width="400" height="300"></canvas>
<div><button id="solve">Draw Polygon</button><button id="reset">Reset</button></div>
Polygons are said to be defined clockwise or counter-clockwise manner.
To sort your "random" clicks into clockwise order:
Find the "center" of your polygon. This is the arithmetic mean of the x's and y's.
Calculate all the angles from the centerpoint to each of your user's points. You can do this using Math.atan2(differenceInYs,differenceInXs);
Sort the points in ascending order by their angles calculated in #2.
Your points now form a clockwise polygon.

Canvas: draw lots of elements with a changing gradient (emulate angular gradient)

for this project http://biduleohm.free.fr/ledohm/ (sorry, the user interface is in french but the code is in english) I need an angular gradient but it doesn't exists in native so I've implemented it using a linear gradient on a line and I draw the lines more and more longer to form a triangle. The result is graphically OK but the speed isn't really good (1850 ms for 125 triangles). It's in the tab [Répartition], it redraws if there is a keyup event on one of the inputs, don't be afraid of the apparent slowness, I've limited to maximum one redraw every 2000 ms.
Before I used a simple linear gradient on the whole triangle (but this doesn't match the reality) and the speed was OK, it draws thousands of triangles in less than a second. This function was used :
drawFrontLightForColor : function(x, y, w, h, color) {
var x2 = x - w;
var x3 = x + w;
var gradient = Distri.frontCanvas.createLinearGradient(x2, y, x3, y);
gradient.addColorStop(0, 'rgba(' + color + ', ' + Distri.lightEdgeAlpha + ')');
gradient.addColorStop(0.5, 'rgba(' + color + ', ' + (color == Distri.lightColors.cw ? Distri.lightCenterAlphaCw : Distri.lightCenterAlphaOther) + ')');
gradient.addColorStop(1, 'rgba(' + color + ', ' + Distri.lightEdgeAlpha + ')');
Distri.frontCanvas.fillStyle = gradient;
Distri.frontCanvas.beginPath();
Distri.frontCanvas.moveTo(x, y);
Distri.frontCanvas.lineTo(x2, (y + h));
Distri.frontCanvas.lineTo(x3, (y + h));
Distri.frontCanvas.lineTo(x, y);
Distri.frontCanvas.fill();
Distri.frontCanvas.closePath();
},
Then I switched to this function :
drawFrontLightForColor : function(x, y, w, h, centerColor, edgeColor) {
var ratio = w / h;
var tmpY;
var tmpW;
var x2;
var x3;
var gradient;
Distri.frontCanvas.lineWidth = 1;
for (var tmpH = 0; tmpH < h; tmpH++) {
tmpY = y + tmpH;
tmpW = Math.round(tmpH * ratio);
x2 = x - tmpW;
x3 = x + tmpW;
gradient = Distri.frontCanvas.createLinearGradient(x2, tmpY, x3, tmpY);
gradient.addColorStop(0, edgeColor);
gradient.addColorStop(0.5, centerColor);
gradient.addColorStop(1, edgeColor);
Distri.frontCanvas.beginPath();
Distri.frontCanvas.moveTo(x2, tmpY);
Distri.frontCanvas.lineTo(x, tmpY);
Distri.frontCanvas.lineTo(x3, tmpY);
Distri.frontCanvas.strokeStyle = gradient;
Distri.frontCanvas.stroke();
Distri.frontCanvas.closePath();
}
},
You can find the whole source here
I can't put the beginPath, stroke, closePath out of the loop because of the gradient which is changing every iteration (I've tried but it used the last gradient for every line (which, ironically, is identical to the first function...) which is understandable but not what I want).
I accept any advice (including redo the whole function and modify his caller to outsource some code) to improve the speed let's say 5x (ideally more).
I think you took the wrong way from the start : when doing so much changes of color, you have better operate at the pixel level.
So yes that could be with a webgl pixel shader, but you'll have to fight just to get the boilerplate running ok on all platform (or get a lib to do that for you).
And anyway there's a solution perfect for your need, and fast enough (a few ms) : use raw pixel data, update them one by one with the relevant function, then draw the result.
The steps to do that are :
- create a buffer same size as the canvas.
- iterate through it's pixel, keeping track of the x,y of the point.
- normalize the coordinates so they match your 'space'.
- compute the value for the normalized (x,y) out of all the data that you have.
- write a color (in my example i choose greyscale) out of that value.
- draw the whole buffer to canvas.
I did a jsfiddle, and here's the result with 4 data points :
fiddle is here :
http://jsfiddle.net/gamealchemist/KsM9c/3/
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext('2d');
var width = canvas.width,
height = canvas.height;
// builds an image for the target canvas
function buildImage(targetCanvas, valueForXY, someData) {
var width = targetCanvas.width;
var height = targetCanvas.height;
var tempImg = ctx.createImageData(width, height);
var buffer = tempImg.data;
var offset = 0;
var xy = [0, 0];
function normalizeXY(xy) {
xy[0] = xy[0] / width ;
xy[1] = xy[1] / height;
}
for (var y = 0; y < height; y++)
for (var x = 0; x < width; x++, offset += 4) {
xy[0] = x; xy[1]=y;
normalizeXY(xy);
var val = Math.floor(valueForXY(xy, someData) * 255);
buffer[offset] = val;
buffer[offset + 1] = val;
buffer[offset + 2] = val;
buffer[offset + 3] = 255;
}
ctx.putImageData(tempImg, 0, 0);
}
// return normalized (0->1) value for x,y and
// provided data.
// xy is a 2 elements array
function someValueForXY(xy, someData) {
var res = 0;
for (var i = 0; i < someData.length; i++) {
var thisData = someData[i];
var dist = Math.pow(sq(thisData[0] - xy[0]) + sq(thisData[1] - xy[1]), -0.55);
localRes = 0.04 * dist;
res += localRes;
}
if (res > 1) res = 1;
return res;
}
var someData = [
[0.6, 0.2],
[0.35, 0.8],
[0.2, 0.5],
[0.6, 0.75]
];
buildImage(canvas, someValueForXY, someData);
// ------------------------
function sq(x) {
return x * x
}
In fact the GameAlchemist's solution isn't fast or I do something really wrong. I've implemented this algo only for the top view because the front view is much more complex.
For 120 lights the top view take 100-105 ms with the old code and it take 1650-1700 ms with this code (and moreover it still lacks a few things in the new code like the color for example):
drawTopLightForColor_ : function(canvasW, canvasD, rampX, rampY, rampZ, ledsArrays, color) {
function sq(x) {
return x * x;
}
var tmpImg = Distri.topCanvasCtx.createImageData(canvasW, canvasD);
var rawData = tmpImg.data;
var ledsArray = ledsArrays[color];
var len = ledsArray.length;
var i = 0;
for (var y = 0; y < canvasD; y++) {
for (var x = 0; x < canvasW; x++, i += 4) {
var intensity = 0;
for (var j = 0; j < len; j++) {
intensity += 2 * Math.pow(
sq((rampX + ledsArray[j].x) - x) +
sq((rampZ + ledsArray[j].y) - y),
-0.5
);
}
if (intensity > 1) {
intensity = 1;
}
intensity = Math.round(intensity * 255);
rawData[i] = intensity;
rawData[i + 1] = intensity;
rawData[i + 2] = intensity;
rawData[i + 3] = 255;
}
}
Distri.topCanvasCtx.putImageData(tmpImg, 0, 0);
},
Am I doing something wrong?

Categories