Math equation for graph - javascript

I am working on a graphing class (in javascript) which uses canvas. This is just for experimental / learning purposes. Currently the graph scales correctly based on whatever height and width the canvas is set at. This is not a problem, and here is basically what I am doing to plot the correct coordinates [pseudo-code].
point[0] = [10, 15]
point[1] = [20, 10]
point[2] = [30, 20]
point[3] = [40, 15]
canvas width = 300
max x = 40
so for any given point:
position x = ( point[i][0] / max x ) * canvas width
simple enough. I get a ratio, then multiply it by the canvas width to plot it at the correct pixel.
The problem however, is coming up with an equation that would cause the minimum value of x to reside at 0 on the x coordinate of the graph, and the max value to be at the maximum point of the graph (which it already does because of the 1:1 ratio in my current equation). Currently the minimum value of x (10 in the example), resides at 75px in the x coordinate, because of the 1:4 ratio being multiplied to the canvas' width.
tldr / summary: I need to make a graph in which the minimum value is plotted at the beginning of the graph(0,0), and the maximum value plotted to the end.

try calculating a value for pixel-width-per-point first.
e.g.
widthPerPoint = canvasWidth / (maxX - minX)
then your position can be normalised to zero by subtracting the minimum value:
position = widthPerPoint * (point[i][0] - minX)
for your first example
widthPerPoint = 300 / (40 - 10) = 10
position = 10 * (point[i][0] - 10) = 10 * 0 = 0
and for the others:
point[0] = [10, 15] -> 0
point[1] = [20, 10] -> 100
point[2] = [30, 20] -> 200
point[3] = [40, 15] -> 300
at least I think that'll work....

Just loop over your points and record what you find (sorry, I can't do algorithm programming in JavaScript. pseudo-Python is so much easier):
minimum = [infinity, infinity, -1]
maximum = [-infinity, -infinity, -1]
for point in points:
if point.x > maximum.x and point.y > maximum.y:
maximum = [point.x, point.y, point.index]
if point.x < minimum.x and point.y < minimum.y:
minimum = [point.x, point.y, point.index]
if maximum.index == -1:
print 'No point is a maximum, so the points all lie in a horizontal line.'
maximum = [points[0].x, points[0].y, 0]
minimum = [points[0].x, points[0].y, 0]

You need to map linearly the range [min_x, max_x] to [0, width]. A point x = point[i][0] is mapped to
position(x) = width/(max_x - min_x) * (x - min_x).

Not sure I understand your question correctly. If so, this is the equation:
position x = (point[i][0] - min x) * canvas width / (max x - min x)
This way when point[i][0] is minimal (min x) your value is 0.0. and when it is maximal (max x) the value is canvas width, growing linearly.

Related

Generate Radial/Ellipse/Oval/Stadium Gradient Mask (Nested For Loop)

What I'm attempting to do
Loop through two axes and generating a shape with a width and height, either less or equal to the length of the nested for-loops, and calculate the distance from all positions to the center of that shape.
Main Issue(s)
How do I specify the width and height of an ellipse shape to draw using a nested for-loop with different dimensions to that ellipse?
For example a nested for-loop which goes for 0 to 45 in the X axis, and 0 to 100 in the Y axis but draws an ellipse with a width of 39 and a height of 90 - with the remaining difference used as padding (3 on either side, and 5 on top and bottom).
I have this half working using the EdgeOrInBounds function below, however I'm having trouble understanding why the values I'm using are giving the results they are.
Using a nested for-loop the same as above, but specifying an ellipse with a width of 30 and a height of 70 doesn't have the expected padding, it instead draws an ellipse with only one extra sprite surrounding all sides.
How do I calculate the distance from the center of the ellipse to the positions generated by the nested for-loop as a value between zero and one?
For example, any position outside the ellipse returns a value of zero and any position within the ellipse returns the distance scaled between zero and one from the center of the ellipse.
Similar to above, I have this half working as I can return a value of zero for all posiitons outside of the ellipse, but I do not understand how scale the distances for positions within the ellipse.
Bonus Issue(s)
I'm doing this on a platform where code isn't easily shareable and there are few built in functions, so I've had to create my own versions stolen from based on examples from the Nvidia developer site.
I have a basic understanding of some C# and JavaScript, but zero understanding of mathematical formulas.
Ellipse Function(s)
bool EdgeOrInBounds (Vector2 position) {
int x = ((int) Math.Pow (position.x - center.x, 2) / (int) Math.Pow (radius.x, 2));
int y = ((int) Math.Pow (position.y - center.y, 2) / (int) Math.Pow (radius.y, 2));
return (x + y <= 1);
}
Distance Function(s)
float distance (Vector2 position) {
return (sqrt (dot (centerPosition - position, centerPosition - position));
}
float dot (Vector2 a, Vector2 b) {
return (a.x * b.x + a.y * b.y);
}
float sqrt (float a) {
return (1.0 / pow (a, -0.5));
}
Variables
int mapWidth = 45;
int mapHeight = 100;
Vector2 radius = new Vector2 (mapWidth - 8, mapHeight - 4);
Vector2 center = new Vector2 (mapWidth / 2, mapHeight / 2);
Nested For Loops
for (int x = 0; x < width; x ++) {
for (int y = 0; y < height; y ++) {
// Store current position to reference in a minute
Vector2 position = new Vector2 (x, y);
// Check if position is within bounds or lies on the edge of the ellipse
if (EdgeOrInBounds (position)) {
// Calculate distance from center to current position
float dist = distance (position);
}
}
}
Example Image:
Closing Remarks
I know I haven't done a good job of explaining what I'm tring to achieve, so I'd like to apologize in advance, and I'd also like to thank anyone who reads this as any help would be very much appreciated.
Cheers.
To get color shade better under control, you could use an elliptic spiral, instead of a square grid traverse. Start out with the two radii, use X=R1 * Cos(angle) and Y=R2 * Sin(angle), where you gradually decrease R1 and R2 to zero. Your loop will use polar coordinates (angle,r), see below. You are then sure of the size of your "plot" and you won't need to test distances underways. It can probably do without any distance function for color scaling, but I'm not sure how to do that properly.. I have included a few options.
// The image is 440x240, I want ellipse in the center, margins 20 pix
// Parameters, dependent on size and shape of elllipse
Point pc = new Point(220,120); // pixel center
double r1=200; // radius 1 margin 2x20 on 440
double r2=100; // radius 2 margin 2x20 on 240
// Covering all pixels
int rmax = (int)Math.Max(r1,r2);
// scaling for color
var ravgmax = (r1+r2)/2.0;
// Find suitable loop counts
var nr = rmax; // number of radius steps in loop
var nh = 2*nr*Math.PI); // number of angles in loop
// Prepare initial loop displacements
var h=0.0;
var dr1 = r1/(nr*nh);
var dr2 = r2/(nr*nh);
var dh=(Math.PI*2.0)/nh;
// The loop
for (int i=0; i<nr; i++)
{
for (int j=0; j<(int)nh; j++)
{
var p = new PointF((float)(pc.X+r1*Math.Cos(h)),(float)(pc.Y+r2*Math.Sin(h)));
// vanilla shading
// int grayscale = 255 - (int)(255 * ((r1+r2)/2.0)/ravgmax );
// elliptical option without using distance, scale along axes
// grayscale = 255 - (int)(Math.Abs(p.X-pc.X)*255/200+Math.Abs((p.Y-pc.Y)*255/100)/2;
// "Distance grayscale" which is circular, not elliptical
int grayscale = (int)(255 * floatFDistance(p,pc)/rmax);
PlotF(p,grayscale); // you provide: plotpixel(PointF, int)
r1-=dr1; r2-=dr2;
h+=dh;
}
}
}
float floatFDistance(PointF p1, PointF p2)
{
double d1 = (p1.X - p2.X);
double d2 = (p1.Y - p2.Y);
return (float)(Math.Sqrt(d1 * d1 + d2 * d2));
}

Increase Contrast 50% by using vanilla javascript [duplicate]

I've been writing an image processing program which applies effects through HTML5 canvas pixel processing. I've achieved Thresholding, Vintaging, and ColorGradient pixel manipulations but unbelievably I cannot change the contrast of the image!
I've tried multiple solutions but I always get too much brightness in the picture and less of a contrast effect and I'm not planning to use any Javascript libraries since I'm trying to achieve these effects natively.
The basic pixel manipulation code:
var data = imageData.data;
for (var i = 0; i < data.length; i += 4) {
//Note: data[i], data[i+1], data[i+2] represent RGB respectively
data[i] = data[i];
data[i+1] = data[i+1];
data[i+2] = data[i+2];
}
Pixel manipulation example
Values are in RGB mode which means data[i] is the Red color. So if data[i] = data[i] * 2; the brightness will be increased to twice for the Red channel of that pixel. Example:
var data = imageData.data;
for (var i = 0; i < data.length; i += 4) {
//Note: data[i], data[i+1], data[i+2] represent RGB respectively
//Increases brightness of RGB channel by 2
data[i] = data[i]*2;
data[i+1] = data[i+1]*2;
data[i+2] = data[i+2]*2;
}
*Note: I'm not asking you guys to complete the code! That would just be a favor! I'm asking for an algorithm (even Pseudo code) that shows how Contrast in pixel manipulation is possible!
I would be glad if someone can provide a good algorithm for Image Contrast in HTML5 canvas.
A faster option (based on Escher's approach) is:
function contrastImage(imgData, contrast){ //input range [-100..100]
var d = imgData.data;
contrast = (contrast/100) + 1; //convert to decimal & shift range: [0..2]
var intercept = 128 * (1 - contrast);
for(var i=0;i<d.length;i+=4){ //r,g,b,a
d[i] = d[i]*contrast + intercept;
d[i+1] = d[i+1]*contrast + intercept;
d[i+2] = d[i+2]*contrast + intercept;
}
return imgData;
}
Derivation similar to the below; this version is mathematically the same, but runs much faster.
Original answer
Here is a simplified version with explanation of an approach already discussed (which was based on this article):
function contrastImage(imageData, contrast) { // contrast as an integer percent
var data = imageData.data; // original array modified, but canvas not updated
contrast *= 2.55; // or *= 255 / 100; scale integer percent to full range
var factor = (255 + contrast) / (255.01 - contrast); //add .1 to avoid /0 error
for(var i=0;i<data.length;i+=4) //pixel values in 4-byte blocks (r,g,b,a)
{
data[i] = factor * (data[i] - 128) + 128; //r value
data[i+1] = factor * (data[i+1] - 128) + 128; //g value
data[i+2] = factor * (data[i+2] - 128) + 128; //b value
}
return imageData; //optional (e.g. for filter function chaining)
}
Notes
I have chosen to use a contrast range of +/- 100 instead of the original +/- 255. A percentage value seems more intuitive for users, or programmers who don't understand the underlying concepts. Also, my usage is always tied to UI controls; a range from -100% to +100% allows me to label and bind the control value directly instead of adjusting or explaining it.
This algorithm doesn't include range checking, even though the calculated values can far exceed the allowable range - this is because the array underlying the ImageData object is a Uint8ClampedArray. As MSDN explains, with a Uint8ClampedArray the range checking is handled for you:
"if you specified a value that is out of the range of [0,255], 0 or 255 will be set instead."
Usage
Note that while the underlying formula is fairly symmetric (allows round-tripping), data is lost at high levels of filtering because pixels only allow integer values. For example, by the time you de-saturate an image to extreme levels (>95% or so), all the pixels are basically a uniform medium gray (within a few digits of the average possible value of 128). Turning the contrast back up again results in a flattened color range.
Also, order of operations is important when applying multiple contrast adjustments - saturated values "blow out" (exceed the clamped max value of 255) quickly, meaning highly saturating and then de-saturating will result in a darker image overall. De-saturating and then saturating however doesn't have as much data loss, because the highlight and shadow values get muted, instead of clipped (see explanation below).
Generally speaking, when applying multiple filters it's better to start each operation with the original data and re-apply each adjustment in turn, rather than trying to reverse a previous change - at least for image quality. Performance speed or other demands may dictate differently for each situation.
Code Example:
function contrastImage(imageData, contrast) { // contrast input as percent; range [-1..1]
var data = imageData.data; // Note: original dataset modified directly!
contrast *= 255;
var factor = (contrast + 255) / (255.01 - contrast); //add .1 to avoid /0 error.
for(var i=0;i<data.length;i+=4)
{
data[i] = factor * (data[i] - 128) + 128;
data[i+1] = factor * (data[i+1] - 128) + 128;
data[i+2] = factor * (data[i+2] - 128) + 128;
}
return imageData; //optional (e.g. for filter function chaining)
}
$(document).ready(function(){
var ctxOrigMinus100 = document.getElementById('canvOrigMinus100').getContext("2d");
var ctxOrigMinus50 = document.getElementById('canvOrigMinus50').getContext("2d");
var ctxOrig = document.getElementById('canvOrig').getContext("2d");
var ctxOrigPlus50 = document.getElementById('canvOrigPlus50').getContext("2d");
var ctxOrigPlus100 = document.getElementById('canvOrigPlus100').getContext("2d");
var ctxRoundMinus90 = document.getElementById('canvRoundMinus90').getContext("2d");
var ctxRoundMinus50 = document.getElementById('canvRoundMinus50').getContext("2d");
var ctxRound0 = document.getElementById('canvRound0').getContext("2d");
var ctxRoundPlus50 = document.getElementById('canvRoundPlus50').getContext("2d");
var ctxRoundPlus90 = document.getElementById('canvRoundPlus90').getContext("2d");
var img = new Image();
img.onload = function() {
//draw orig
ctxOrig.drawImage(img, 0, 0, img.width, img.height, 0, 0, 100, 100); //100 = canvas width, height
//reduce contrast
var origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, -.98);
ctxOrigMinus100.putImageData(origBits, 0, 0);
var origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, -.5);
ctxOrigMinus50.putImageData(origBits, 0, 0);
// add contrast
var origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, .5);
ctxOrigPlus50.putImageData(origBits, 0, 0);
var origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, .98);
ctxOrigPlus100.putImageData(origBits, 0, 0);
//round-trip, de-saturate first
origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, -.98);
contrastImage(origBits, .98);
ctxRoundMinus90.putImageData(origBits, 0, 0);
origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, -.5);
contrastImage(origBits, .5);
ctxRoundMinus50.putImageData(origBits, 0, 0);
//do nothing 100 times
origBits = ctxOrig.getImageData(0, 0, 100, 100);
for(i=0;i<100;i++){
contrastImage(origBits, 0);
}
ctxRound0.putImageData(origBits, 0, 0);
//round-trip, saturate first
origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, .5);
contrastImage(origBits, -.5);
ctxRoundPlus50.putImageData(origBits, 0, 0);
origBits = ctxOrig.getImageData(0, 0, 100, 100);
contrastImage(origBits, .98);
contrastImage(origBits, -.98);
ctxRoundPlus90.putImageData(origBits, 0, 0);
};
img.src = "";
});
canvas {width: 100px; height: 100px}
div {text-align:center; width:120px; float:left}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div>
<canvas id="canvOrigMinus100" width="100" height="100"></canvas>
-98%
</div>
<div>
<canvas id="canvOrigMinus50" width="100" height="100"></canvas>
-50%
</div>
<div>
<canvas id="canvOrig" width="100" height="100"></canvas>
Original
</div>
<div>
<canvas id="canvOrigPlus50" width="100" height="100"></canvas>
+50%
</div>
<div>
<canvas id="canvOrigPlus100" width="100" height="100"></canvas>
+98%
</div>
<hr/>
<div style="clear:left">
<canvas id="canvRoundMinus90" width="100" height="100"></canvas>
Round-trip <br/> (-98%, +98%)
</div>
<div>
<canvas id="canvRoundMinus50" width="100" height="100"></canvas>
Round-trip <br/> (-50%, +50%)
</div>
<div>
<canvas id="canvRound0" width="100" height="100"></canvas>
Round-trip <br/> (0% 100x)
</div>
<div>
<canvas id="canvRoundPlus50" width="100" height="100"></canvas>
Round-trip <br/> (+50%, -50%)
</div>
<div>
<canvas id="canvRoundPlus90" width="100" height="100"></canvas>
Round-trip <br/> (+98%, -98%)
</div>
Explanation
(Disclaimer - I am not an image specialist or a mathematician. I am trying to provide a common-sense explanation with minimal technical details. Some hand-waving below, e.g. 255=256 to avoid indexing issues, and 127.5=128, for simplifying the numbers.)
Since, for a given pixel, the possible number of non-zero values for a color channel is 255, the "no-contrast", average value of a pixel is 128 (or 127, or 127.5 if you want argue, but the difference is negligible). For purposed of this explanation, the amount of "contrast" is the distance from the current value to the average value (128). Adjusting the contrast means increasing or decreasing the difference between the current value and the average value.
The problem the algorithm solves then is to:
Chose a constant factor to adjust contrast by
For each color channel of each pixel, scale "contrast" (distance from average) by that constant factor
Or, as hinted at in the CSS spec, simply choosing the slope and intercept of a line:
<feFuncR type="linear" slope="[amount]" intercept="-(0.5 * [amount]) + 0.5"/>
Note the term type='linear'; we are doing linear contrast adjustment in RGB color space, as opposed to a quadratic scaling function, luminence-based adjustment, or histogram matching.
If you recall from geometry class, the formula for a line is y=mx+b. y is the final value we are after, the slope m is the contrast (or factor), x is the initial pixel value, and b is the intercept of the y-axis (x=0), which shifts the line vertically. Recall also that since the y-intercept is not at the origin (0,0), the formula can also be represented as y=m(x-a)+b, where a is the x-offset shifting the line horizontally.
For our purposes, this graph represents the input value (x-axis) and the result (y-axis). We already know that b, the y-intercept (for m=0, no contrast) must be 128 (which we can check against the 0.5 from the spec - 0.5 * the full range of 256 = 128). x is our original value, so all we need is to figure out the slope m and x-offset a.
First, the slope m is "rise over run", or (y2-y1)/(x2-x1) - so we need 2 points known to be on the desired line. Finding these points requires bringing a few things together:
Our function takes the shape of a line-intercept graph
The y-intercept is at b = 128 - regardless of the slope (contrast).
The maximum expected 'y' value is 255, and the minimum is 0
The range of possible 'x' values is 256
A neutral value should always stay neutral: 128 => 128 regardless of slope
A contrast adjustment of 0 should result in no change between input and output; that is, a 1:1 slope.
Taking all these together, we can deduce that regardless of the contrast (slope) applied, our resulting line will be centered at (and pivot around) 128,128. Since our y-intercept is non-zero, the x-intercept is also non-zero; we know the x-range is 256 wide and is centered in the middle, so it must be offset by half of the possible range: 256 / 2 = 128.
So now for y=m(x-a)+b, we know everything except m. Recall two more important points from geometry class:
Lines have the same slope even if their location changes; that is, m stays the same regardless of the values of a and b.
The slope of a line can be found using any 2 points on the line
To simplify the slope discussion, let's move the coordinate origin to the x-intercept (-128) and ignore a and b for a moment. Our original line will now pivot through (0,0), and we know a second point on the line lies away the full range of both x (input) and y (output) at (255,255).
We'll let the new line pivot at (0,0), so we can use that as one of the points on the new line that will follow our final contrast slope m. The second point can be determined by moving the current end at (255,255) by some amount; since we are limited to a single input (contrast) and using a linear function, this second point will be moved equally in the x and y directions on our graph.
The (x,y) coordinates of the 4 possible new points will be 255 +/- contrast. Since increasing or decreasing both x and y would keep us on the original 1:1 line, let's just look at +x, -y and -x, +y as shown.
The steeper line (-x, +y) is associated with a positive contrast adjustment; it's (x,y) coordinates are (255 - contrast,255 + contrast). The coordinates of the shallower line (negative contrast) are found the same way. Notice that the biggest meaningful value of contrast will be 255 - the most that the initial point of (255,255) can be translated before resulting in a vertical line (full contrast, all black or white) or a horizontal line (no contrast, all gray).
So now we have the coordinates of two points on our new line - (0,0) and (255 - contrast,255 + contrast). We plug this into the slope equation, and then plug that into the full line equation, using all the parts from before:
y = m(x-a) + b
m = (y2-y1)/(x2-x1) =>
((255 + contrast) - 0)/((255 - contrast) - 0) =>
(255 + contrast)/(255 - contrast)
a = 128
b = 128
y = (255 + contrast)/(255 - contrast) * (x - 128) + 128 QED
The math-minded will notice that the resulting m or factor is a scalar (unitless) value; you can use any range you want for contrast as long as it matches the constant (255) in the factor calculation. For example, a contrast range of +/-100 and factor = (100 + contrast)/(100.01 - contrast), which is was I really use to eliminate the step of scaling to 255; I just left 255 in the code at the top to simplify the explanation.
Note about the "magic" 259
The source article uses a "magic" 259, although the author admits he doesn't remember why:
"I can’t remember if I had calculated this myself or if I’ve read it in a book or online.".
259 should really be 255 or perhaps 256 - the number of possible non-zero values for each channel of each pixel. Note that in the original factor calculation, 259/255 cancels out - technically 1.01, but final values are whole integers so 1 for all practical purposes. So this outer term can be discarded. Actually using 255 for the constant in the denominator, though, introduces the possibility of a Divide By Zero error in the formula; adjusting to a slightly larger value (say, 259) avoids this issue without introducing significant error to the results. I chose to use 255.01 instead as the error is lower and it (hopefully) seems less "magic" to a newcomer.
As far as I can tell though, it doesn't make much difference which you use - you get identical values except for minor, symmetric differences in a narrow band of low contrast values with a low positive contrast increase. I'd be curious to round-trip both versions repeatedly and compare to the original data, but this answer already took way too long. :)
After trying the answer by Schahriar SaffarShargh, it wasn't behaving like contrast should behave. I finally came across this algorithm, and it works like a charm!
For additional information about the algorithm, read this article and it's comments section.
function contrastImage(imageData, contrast) {
var data = imageData.data;
var factor = (259 * (contrast + 255)) / (255 * (259 - contrast));
for(var i=0;i<data.length;i+=4)
{
data[i] = factor * (data[i] - 128) + 128;
data[i+1] = factor * (data[i+1] - 128) + 128;
data[i+2] = factor * (data[i+2] - 128) + 128;
}
return imageData;
}
Usage:
var newImageData = contrastImage(imageData, 30);
Hopefully this will be a time-saver for someone. Cheers!
This javascript implementation complies with the SVG/CSS3 definition of "contrast" (and the following code will render your canvas image identically):
/*contrast filter function*/
//See definition at https://drafts.fxtf.org/filters/#contrastEquivalent
//pixels come from your getImageData() function call on your canvas image
contrast = function(pixels, value){
var d = pixels.data;
var intercept = 255*(-value/2 + 0.5);
for(var i=0;i<d.length;i+=4){
d[i] = d[i]*value + intercept;
d[i+1] = d[i+1]*value + intercept;
d[i+2] = d[i+2]*value + intercept;
//implement clamping in a separate function if using in production
if(d[i] > 255) d[i] = 255;
if(d[i+1] > 255) d[i+1] = 255;
if(d[i+2] > 255) d[i+2] = 255;
if(d[i] < 0) d[i] = 0;
if(d[i+1] < 0) d[i+1] = 0;
if(d[i+2] < 0) d[i+2] = 0;
}
return pixels;
}
I found out that you have to use the effect by separating the darks and lights or technically anything that is less than 127 (average of R+G+B / 3) in rgb scale is a black and more than 127 is a white, therefore by your level of contrast you minus a value say 10 contrast from the blacks and add the same value to the whites!
Here is an example:
I have two pixels with RGB colors, [105,40,200] | [255,200,150]
So I know that for my first pixel 105 + 40 + 200 = 345, 345/3 = 115
and 115 is less than my half of 255 which is 127 so I consider the pixel closer to [0,0,0] therefore if I want to minus 10 contrast then I take away 10 from each color on it's average
Thus I have to divide each color's value by the total's average which was 115 for this case and times it by my contrast and minus out the final value from that specific color:
For example I'll take 105 (red) from my pixel, so I divide it by total RGB's avg. which is 115 and times it by my contrast value of 10, (105/115)*10 which gives you something around 9 (you have to round it up!) and then take that 9 away from 105 so that color becomes 96 so my red after having a 10 contrast on a dark pixel.
So if I go on my pixel's values become [96,37,183]! (note: the scale of contrast is up to you! but my in the end you should convert it to some scale like from 1 to 255)
For the lighter pixels I also do the same except instead of subtracting the contrast value I add it! and if you reach the limit of 255 or 0 then you stop your addition and subtraction for that specific color! therefore my second pixel which is a lighter pixel becomes [255,210,157]
As you add more contrast it will lighten the lighter colors and darken the darker and therefore adds contrast to your picture!
Here is a sample Javascript code ( I haven't tried it yet ) :
var data = imageData.data;
for (var i = 0; i < data.length; i += 4) {
var contrast = 10;
var average = Math.round( ( data[i] + data[i+1] + data[i+2] ) / 3 );
if (average > 127){
data[i] += ( data[i]/average ) * contrast;
data[i+1] += ( data[i+1]/average ) * contrast;
data[i+2] += ( data[i+2]/average ) * contrast;
}else{
data[i] -= ( data[i]/average ) * contrast;
data[i+1] -= ( data[i+1]/average ) * contrast;
data[i+2] -= ( data[i+2]/average ) * contrast;
}
}
You can take a look at the OpenCV docs to see how you could accomplish this: Brightness and contrast adjustments.
Then there's the demo code:
double alpha; // Simple contrast control: value [1.0-3.0]
int beta; // Simple brightness control: value [0-100]
for( int y = 0; y < image.rows; y++ )
{
for( int x = 0; x < image.cols; x++ )
{
for( int c = 0; c < 3; c++ )
{
new_image.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
}
}
}
which I imagine you are capable of translating to javascript.
By vintaging I assume your trying to apply LUTS..Recently I have been trying to add color treatments to canvas windows. If you want to actually apply "LUTS" to the canvas window I believe you need to actually map the array that imageData returns to the RGB array of the LUT.
(From Light illusion)
As an example the start of a 1D LUT could look something like this:
Note: strictly speaking this is 3x 1D LUTs, as each colour (R,G,B) is a 1D LUT
R, G, B
3, 0, 0
5, 2, 1
7, 5, 3
9, 9, 9
Which means that:
For an input value of 0 for R, G, and B, the output is R=3, G=0, B=0
For an input value of 1 for R, G, and B, the output is R=5, G=2, B=1
For an input value of 2 for R, G, and B, the output is R=7, G=5, B=3
For an input value of 3 for R, G, and B, the output is R=9, G=9, B=9
Which is a weird LUT, but you see that for a given value of R, G, or B input, there is a given value of R, G, and B output.
So, if a pixel had an input value of 3, 1, 0 for RGB, the output pixel would be 9, 2, 0.
During this I also realized after playing with imageData that it returns a Uint8Array and that the values in that array are decimal. Most 3D LUTS are Hex. So you first have to do some type of hex to dec conversion on the entire array before all this mapping.
This is the formula you are looking for ...
var data = imageData.data;
if (contrast > 0) {
for(var i = 0; i < data.length; i += 4) {
data[i] += (255 - data[i]) * contrast / 255; // red
data[i + 1] += (255 - data[i + 1]) * contrast / 255; // green
data[i + 2] += (255 - data[i + 2]) * contrast / 255; // blue
}
} else if (contrast < 0) {
for (var i = 0; i < data.length; i += 4) {
data[i] += data[i] * (contrast) / 255; // red
data[i + 1] += data[i + 1] * (contrast) / 255; // green
data[i + 2] += data[i + 2] * (contrast) / 255; // blue
}
}
Hope it helps!

Percentage value from different ranges

I tried from yesterday to find a formula in JavaScript (also math formula) that return the value, of a given percentage from 3 different cases.
Example:
range A = [0, 10 ] - percentage 25% => value will be 2.5
range B = [0, 100] - percentage 50% => value will be 50
but how do I treat this 2 cases?:
case 1 = range [-5, 5 ] - percentage for example 50% => value will be 0
case 2 = range [-10, 0 ] - percentage for example 25% => value will be -7.5
case 3 = range [-11, -1] - percentage for example 30% => value will be ?
Here is your formula:
Try this.
const percentage = function(x, y, perc){
// x is start point
// y is end point
// so you need length of this range (between x and y) and we subtract x from y
// and dividing to 100 (because 100% is full range between x and y)
// when we divide it to 100, the result is 1% of the range
// then we multiply it to percentage we want for example 25%
// and adding x to result. Because we started from x;
return ((y-x)/100)*perc+x;
}
console.log(percentage(0,10,25));
console.log(percentage(0,100,50));
console.log(percentage(-5,5,50));
console.log(percentage(-10,0,25));
console.log(percentage(-11,-1,30));

Best way to generate random number between x and y but not between a and b

I have a canvas that is 1000x600px. I want to spawn sprites outside the canvas (but evenly distributed).
What is the best way to retrieve random values between (-500, -500) and (1500, 1100) but not between (0, 0) and (1000, 600)? I understand a while loop could be used to generate numbers until they are in range but that seems superfluous. Thanks.
If you want to generate a number between -500 and 1500, excluding 0 to 1000, you can just generate a number between 0 and 1000 ( 0 - -500 + 1500 - 1000).
If the number is less than 500, you subtract 500; if the number is greater or equal to 500, add 500.
Or, more generically:
function randomInt(outerMin, outerMax, innerMin, innerMax)
{
var usableRange = innerMin - outerMin + outerMax - innerMax,
threshold = innerMin - outerMin,
num = Math.floor(Math.random() * (usableRange + 1));
if (num < threshold) {
return num - threshold;
} else {
return num - threshold + innerMax;
}
}
randomInt(-500, 1500, 0, 1000);
For two-dimensional points you have to get more creative. First, you generate two points that ARE inside the forbidden area and then spread those values to the good areas:
function randomVector(outer, inner)
{
var innerWidth = inner.right - inner.left,
innerHeight = inner.bottom - inner.top,
x = Math.floor(Math.random() * (innerWidth + 1)),
y = Math.floor(Math.random() * (innerHeight + 1)),
midx = Math.floor(innerWidth / 2),
midy = Math.floor(innerHeight / 2);
if (x < midx) { // left side of forbidden area, spread left
x = x / midx * (inner.left - outer.left) - inner.left;
} else { // right side of forbidden area, spread right
x = (x - midx) / midx * (outer.right - inner.right) + inner.right;
}
if (y < midy) { // top side of forbidden area, spread top
y = y / midy * (inner.top - outer.top) - inner.top;
} else { // bottom side of forbidden area, spread bottom
y = (y - midy) / midy * (outer.bottom - inner.bottom) + inner.bottom;
}
// at this point I'm not sure how to round them
// but it probably should have happened one step above :)
return {
x: Math.floor(x),
y: Math.floor(y)
}
}
randomVector({
left: -500,
top: -500,
right: 1500,
bottom: 1100
}, {
left: 0,
top: 0,
right: 1000,
bottom: 600
});
Important
This works because the areas outside of your "forbidden" area are equal in their respective dimension, i.e. padding-top == padding-bottom && padding-left == padding-right.
If this will be different, the distribution is no longer uniform.
Generate a random number between 0 and 1000, if its over 500 add 500 (or 600 respectivly) if not negate it.
Instead of having a set of forbidden rectangles, you could calculate a set of allowed rectangles. To get a random position inside any allowed rectangle, you first choose a random rectangle and then a random position inside that chosen rectangle.
When the retangles don't have an equal size, you need to weight them by area, otherwise smaller rectangles will have a higher density than larger ones (a 200x100 rectangle needs to be 100 times as likely as a 10x20 rectangle).
Just generate those numbers between (0,0) and (1,1) and then use some linear function to do the mapping.
Otherwise, divide the area where you want the random coordinates to fall in rectangles. Let's say you obtain N such rectangles. Each of those rectangles may be populated through mapping the output of a random generator betweeen (0,0) and (1,1) to that rectangle (this is a linear mapping).

Find column, row on 2D isometric grid from x,y screen space coords (Convert equation to function)

I'm trying to find the row, column in a 2d isometric grid of a screen space point (x, y)
Now I pretty much know what I need to do which is find the length of the vectors in red in the pictures above and then compare it to the length of the vector that represent the bounds of the grid (which is represented by the black vectors)
Now I asked for help over at mathematics stack exchange to get the equation for figuring out what the parallel vectors are of a point x,y compared to the black boundary vectors. Link here Length of Perpendicular/Parallel Vectors
but im having trouble converting this to a function
Ideally i need enough of a function to get the length of both red vectors from three sets of points, the x,y of the end of the 2 black vectors and the point at the end of the red vectors.
Any language is fine but ideally javascript
What you need is a base transformation:
Suppose the coordinates of the first black vector are (x1, x2) and the coordinates of the second vector are (y1, y2).
Therefore, finding the red vectors that get at a point (z1, z2) is equivalent to solving the following linear system:
x1*r1 + y1*r2 = z1
x2*r1 + y2*r2 = z2
or in matrix form:
A x = b
/x1 y1\ |r1| = |z1|
\x2 y2/ |r2| |z2|
x = inverse(A)*b
For example, lets have the black vector be (2, 1) and (2, -1). The corresponding matrix A will be
2 2
1 -1
and its inverse will be
1/4 1/2
1/4 -1/2
So a point (x, y) in the original coordinates will be able to be represened in the alternate base, bia the following formula:
(x, y) = (1/4 * x + 1/2 * y)*(2,1) + (1/4 * x -1/2 * y)*(2, -1)
What exactly is the point of doing it like this? Any isometric grid you display usually contains cells of equal size, so you can skip all the vector math and simply do something like:
var xStep = 50,
yStep = 30, // roughly matches your image
pointX = 2*xStep,
pointY = 0;
Basically the points on any isometric grid fall onto the intersections of a non-isometric grid. Isometric grid controller:
screenPositionToIsoXY : function(o, w, h){
var sX = ((((o.x - this.canvas.xPosition) - this.screenOffsetX) / this.unitWidth ) * 2) >> 0,
sY = ((((o.y - this.canvas.yPosition) - this.screenOffsetY) / this.unitHeight) * 2) >> 0,
isoX = ((sX + sY - this.cols) / 2) >> 0,
isoY = (((-1 + this.cols) - (sX - sY)) / 2) >> 0;
// isoX = ((sX + sY) / isoGrid.width) - 1
// isoY = ((-2 + isoGrid.width) - sX - sY) / 2
return $.extend(o, {
isoX : Math.constrain(isoX, 0, this.cols - (w||0)),
isoY : Math.constrain(isoY, 0, this.rows - (h||0))
});
},
// ...
isoToUnitGrid : function(isoX, isoY){
var offset = this.grid.offset(),
isoX = $.uD(isoX) ? this.isoX : isoX,
isoY = $.uD(isoY) ? this.isoY : isoY;
return {
x : (offset.x + (this.grid.unitWidth / 2) * (this.grid.rows - this.isoWidth + isoX - isoY)) >> 0,
y : (offset.y + (this.grid.unitHeight / 2) * (isoX + isoY)) >> 0
};
},
Okay so with the help of other answers (sorry guys neither quite provided the answer i was after)
I present my function for finding the grid position on an iso 2d grid using a world x,y coordinate where the world x,y is an offset screen space coord.
WorldPosToGridPos: function(iPosX, iPosY){
var d = (this.mcBoundaryVectors.upper.x * this.mcBoundaryVectors.lower.y) - (this.mcBoundaryVectors.upper.y * this.mcBoundaryVectors.lower.x);
var a = ((iPosX * this.mcBoundaryVectors.lower.y) - (this.mcBoundaryVectors.lower.x * iPosY)) / d;
var b = ((this.mcBoundaryVectors.upper.x * iPosY) - (iPosX * this.mcBoundaryVectors.upper.y)) / d;
var cParaUpperVec = new Vector2(a * this.mcBoundaryVectors.upper.x, a * this.mcBoundaryVectors.upper.y);
var cParaLowerVec = new Vector2(b * this.mcBoundaryVectors.lower.x, b * this.mcBoundaryVectors.lower.y);
var iGridWidth = 40;
var iGridHeight = 40;
var iGridX = Math.floor((cParaLowerVec.length() / this.mcBoundaryVectors.lower.length()) * iGridWidth);
var iGridY = Math.floor((cParaUpperVec.length() / this.mcBoundaryVectors.upper.length()) * iGridHeight);
return {gridX: iGridX, gridY: iGridY};
},
The first line is best done once in an init function or similar to save doing the same calculation over and over, I just included it for completeness.
The mcBoundaryVectors are two vectors defining the outer limits of the x and y axis of the isometric grid (The black vectors shown in the picture above).
Hope this helps anyone else in the future

Categories