What is the difference between Math and Array in Javascript? - javascript

Javascript seems to take a few liberties when it comes to its built-in types and objects.
To get at the functions inside the Array type you can do this:
> Array().slice
function slice() {
[native code]
}
So here Array looks like a standard function that is being used as a constructor. Except... slice is not a member function of the Array() function, it's a member function of the Array object.
Another unusual thing about Array() is it seems to return an Array object whether you call it with new() or not:
> var a = Array()
undefined
> a
[]
> a.length
0
> var b = new Array()
undefined
> b
[]
> b.length
0
Math on the other hand seems to be a built in singleton object that is always present (ie: no need to instantiate). So you would use Math.min.apply while with Array using Array().slice.apply.
My question is what makes Array() so different than either a constructor you would write yourself and the other built-in objects of Javascript.

I'll make some comments inline, quoting your question:
Except... slice is not a member function of the Array() function, it's a member function of the Array object.
More exactly, slice is a member of the Array.prototype object, by executing Array(), you are creating a new array object, that inherits from Array.prototype, that's why slice is available.
Another unusual thing about Array() is it seems to return an Array object whether you call it with new() or not:
This behavior is shared also by other built-in constructors, for example Function:
var fn = Function('return "foo";');
Is equivalent to:
var fn = new Function('return "foo";');
The cases are described in the specification (The Array constructor called as a function vs new Array), although other constructors present a different behavior when you use them with or without new, for example, the primitive wrappers:
new Number("20"); // produces a Number object
typeof new Number("20"); // "object"
Number("20"); // makes type conversion
typeof Number("20"); // "number"
Math on the other hand seems to be a built in singleton object that is always present (ie: no need to instantiate). So you would use Math.min.apply while with Array using Array().slice.apply.
Yes, Math is a simple object, not a function like Array.
It inherits from Object.prototype and IIRC the only peculiar difference that it has with a simple user-defined object is that it's internal [[Class]] property contains "Math", e.g.:
Object.prototype.toString.call(Math); // "[object Math]"
My question is what makes Array() so different than either a constructor you would write yourself and the other built-in objects of Javascript.
Array isn't that different, you could write a constructor that behaves the same way if invoked with new or not, for example:
function Foo (arg) {
if (!(this instanceof Foo)) { return new Foo(arg); }
this.foo = arg;
}
new Foo('bar'); // { foo: 'bar' }
Foo('bar'); // { foo: 'bar' }

You're writing
Array().slice()
What that means is:
Call the "Array" function
Look for a property called "slice" on the return value
Treat the value of that property as a reference to a function, and call it
The "slice" function is defined on the Array prototype object, which means that every instance of Array has access to it via that property name. The key here is that the "Array function" as you call it is referenced by the symbol "Array". When you write "Array()", that means to call the function, and thus that expression refers to an array instance. There's not really much difference between a constructor and a regular function; really, it's the new keyword that makes a difference by altering the way that the function is invoked (that is, with a freshly-created Object instance as the this context value). A function is free to check to see if this refers to the global object, and if so to return a newly-created object on its own initiative.
The "Math" object is just an object; you can think of it as being defined like this:
var Math = {
min: function(n1, n2) { ... },
max: function(n1, n2) { ... },
// ...
};

Related

object using function in javascript [duplicate]

The new keyword in JavaScript can be quite confusing when it is first encountered, as people tend to think that JavaScript is not an object-oriented programming language.
What is it?
What problems does it solve?
When is it appropriate and when not?
It does 5 things:
It creates a new object. The type of this object is simply object.
It sets this new object's internal, inaccessible, [[prototype]] (i.e. __proto__) property to be the constructor function's external, accessible, prototype object (every function object automatically has a prototype property).
It makes the this variable point to the newly created object.
It executes the constructor function, using the newly created object whenever this is mentioned.
It returns the newly created object, unless the constructor function returns a non-null object reference. In this case, that object reference is returned instead.
Note: constructor function refers to the function after the new keyword, as in
new ConstructorFunction(arg1, arg2)
Once this is done, if an undefined property of the new object is requested, the script will check the object's [[prototype]] object for the property instead. This is how you can get something similar to traditional class inheritance in JavaScript.
The most difficult part about this is point number 2. Every object (including functions) has this internal property called [[prototype]]. It can only be set at object creation time, either with new, with Object.create, or based on the literal (functions default to Function.prototype, numbers to Number.prototype, etc.). It can only be read with Object.getPrototypeOf(someObject). There is no other way to get or set this value.
Functions, in addition to the hidden [[prototype]] property, also have a property called prototype, and it is this that you can access, and modify, to provide inherited properties and methods for the objects you make.
Here is an example:
ObjMaker = function() { this.a = 'first'; };
// `ObjMaker` is just a function, there's nothing special about it
// that makes it a constructor.
ObjMaker.prototype.b = 'second';
// like all functions, ObjMaker has an accessible `prototype` property that
// we can alter. I just added a property called 'b' to it. Like
// all objects, ObjMaker also has an inaccessible `[[prototype]]` property
// that we can't do anything with
obj1 = new ObjMaker();
// 3 things just happened.
// A new, empty object was created called `obj1`. At first `obj1`
// was just `{}`. The `[[prototype]]` property of `obj1` was then set to the current
// object value of the `ObjMaker.prototype` (if `ObjMaker.prototype` is later
// assigned a new object value, `obj1`'s `[[prototype]]` will not change, but you
// can alter the properties of `ObjMaker.prototype` to add to both the
// `prototype` and `[[prototype]]`). The `ObjMaker` function was executed, with
// `obj1` in place of `this`... so `obj1.a` was set to 'first'.
obj1.a;
// returns 'first'
obj1.b;
// `obj1` doesn't have a property called 'b', so JavaScript checks
// its `[[prototype]]`. Its `[[prototype]]` is the same as `ObjMaker.prototype`
// `ObjMaker.prototype` has a property called 'b' with value 'second'
// returns 'second'
It's like class inheritance because now, any objects you make using new ObjMaker() will also appear to have inherited the 'b' property.
If you want something like a subclass, then you do this:
SubObjMaker = function () {};
SubObjMaker.prototype = new ObjMaker(); // note: this pattern is deprecated!
// Because we used 'new', the [[prototype]] property of SubObjMaker.prototype
// is now set to the object value of ObjMaker.prototype.
// The modern way to do this is with Object.create(), which was added in ECMAScript 5:
// SubObjMaker.prototype = Object.create(ObjMaker.prototype);
SubObjMaker.prototype.c = 'third';
obj2 = new SubObjMaker();
// [[prototype]] property of obj2 is now set to SubObjMaker.prototype
// Remember that the [[prototype]] property of SubObjMaker.prototype
// is ObjMaker.prototype. So now obj2 has a prototype chain!
// obj2 ---> SubObjMaker.prototype ---> ObjMaker.prototype
obj2.c;
// returns 'third', from SubObjMaker.prototype
obj2.b;
// returns 'second', from ObjMaker.prototype
obj2.a;
// returns 'first', from SubObjMaker.prototype, because SubObjMaker.prototype
// was created with the ObjMaker function, which assigned a for us
I read a ton of rubbish on this subject before finally finding this page, where this is explained very well with nice diagrams.
Suppose you have this function:
var Foo = function(){
this.A = 1;
this.B = 2;
};
If you call this as a stand-alone function like so:
Foo();
Executing this function will add two properties to the window object (A and B). It adds it to the window because window is the object that called the function when you execute it like that, and this in a function is the object that called the function. In JavaScript at least.
Now, call it like this with new:
var bar = new Foo();
When you add new to a function call, a new object is created (just var bar = new Object()) and the this within the function points to the new Object you just created, instead of to the object that called the function. So bar is now an object with the properties A and B. Any function can be a constructor; it just doesn't always make sense.
In addition to Daniel Howard's answer, here is what new does (or at least seems to do):
function New(func) {
var res = {};
if (func.prototype !== null) {
res.__proto__ = func.prototype;
}
var ret = func.apply(res, Array.prototype.slice.call(arguments, 1));
if ((typeof ret === "object" || typeof ret === "function") && ret !== null) {
return ret;
}
return res;
}
While
var obj = New(A, 1, 2);
is equivalent to
var obj = new A(1, 2);
For beginners to understand it better
Try out the following code in the browser console.
function Foo() {
return this;
}
var a = Foo(); // Returns the 'window' object
var b = new Foo(); // Returns an empty object of foo
a instanceof Window; // True
a instanceof Foo; // False
b instanceof Window; // False
b instanceof Foo; // True
Now you can read the community wiki answer :)
so it's probably not for creating
instances of object
It's used exactly for that. You define a function constructor like so:
function Person(name) {
this.name = name;
}
var john = new Person('John');
However the extra benefit that ECMAScript has is you can extend with the .prototype property, so we can do something like...
Person.prototype.getName = function() { return this.name; }
All objects created from this constructor will now have a getName because of the prototype chain that they have access to.
JavaScript is an object-oriented programming language and it's used exactly for creating instances. It's prototype-based, rather than class-based, but that does not mean that it is not object-oriented.
Summary:
The new keyword is used in JavaScript to create a object from a constructor function. The new keyword has to be placed before the constructor function call and will do the following things:
Creates a new object
Sets the prototype of this object to the constructor function's prototype property
Binds the this keyword to the newly created object and executes the constructor function
Returns the newly created object
Example:
function Dog (age) {
this.age = age;
}
const doggie = new Dog(12);
console.log(doggie);
console.log(Object.getPrototypeOf(doggie) === Dog.prototype) // true
What exactly happens:
const doggie says: We need memory for declaring a variable.
The assignment operator = says: We are going to initialize this variable with the expression after the =
The expression is new Dog(12). The JavaScript engine sees the new keyword, creates a new object and sets the prototype to Dog.prototype
The constructor function is executed with the this value set to the new object. In this step is where the age is assigned to the new created doggie object.
The newly created object is returned and assigned to the variable doggie.
Please take a look at my observation on case III below. It is about what happens when you have an explicit return statement in a function which you are newing up. Have a look at the below cases:
Case I:
var Foo = function(){
this.A = 1;
this.B = 2;
};
console.log(Foo()); //prints undefined
console.log(window.A); //prints 1
Above is a plain case of calling the anonymous function pointed by variable Foo. When you call this function it returns undefined. Since there isn’t any explicit return statement, the JavaScript interpreter forcefully inserts a return undefined; statement at the end of the function. So the above code sample is equivalent to:
var Foo = function(){
this.A = 1;
this.B = 2;
return undefined;
};
console.log(Foo()); //prints undefined
console.log(window.A); //prints 1
When Foo function is invoked window is the default invocation object (contextual this) which gets new A and B properties.
Case II:
var Foo = function(){
this.A = 1;
this.B = 2;
};
var bar = new Foo();
console.log(bar()); //illegal isn't pointing to a function but an object
console.log(bar.A); //prints 1
Here the JavaScript interpreter, seeing the new keyword, creates a new object which acts as the invocation object (contextual this) of anonymous function pointed by Foo. In this case A and B become properties on the newly created object (in place of window object). Since you don't have any explicit return statement, JavaScript interpreter forcefully inserts a return statement to return the new object created due to usage of new keyword.
Case III:
var Foo = function(){
this.A = 1;
this.B = 2;
return {C:20,D:30};
};
var bar = new Foo();
console.log(bar.C);//prints 20
console.log(bar.A); //prints undefined. bar is not pointing to the object which got created due to new keyword.
Here again, the JavaScript interpreter, seeing the new keyword, creates a new object which acts as the invocation object (contextual this) of anonymous function pointed by Foo. Again, A and B become properties on the newly created object. But this time you have an explicit return statement so JavaScript interpreter will not do anything of its own.
The thing to note in case III is that the object being created due to new keyword got lost from your radar. bar is actually pointing to a completely different object which is not the one which JavaScript interpreter created due to the new keyword.
Quoting David Flanagan from JavaScript: The Definitive Guide (6th Edition), Chapter 4, Page # 62:
When an object creation expression is evaluated, JavaScript first
creates a new empty object, just like the one created by the object
initializer {}. Next, it invokes the specified function with the
specified arguments, passing the new object as the value of the this
keyword. The function can then use this to initialize the properties
of the newly created object. Functions written for use as constructors
do not return a value, and the value of the object creation expression
is the newly created and initialized object. If a constructor does
return an object value, that value becomes the value of the object
creation expression and the newly created object is discarded.
Additional information:
The functions used in the code snippet of the above cases have special names in the JavaScript world as below:
Case #
Name
Case I
Constructor function
Case II
Constructor function
Case III
Factory function
You can read about the difference between constructor functions and factory functions in this thread.
Code smell in case III - Factory functions should not be used with the new keyword which I've shown in the code snippet above. I've done so deliberately only to explain the concept.
JavaScript is a dynamic programming language which supports the object-oriented programming paradigm, and it is used for creating new instances of objects.
Classes are not necessary for objects. JavaScript is a prototype-based language.
The new keyword changes the context under which the function is being run and returns a pointer to that context.
When you don't use the new keyword, the context under which function Vehicle() runs is the same context from which you are calling the Vehicle function. The this keyword will refer to the same context. When you use new Vehicle(), a new context is created so the keyword this inside the function refers to the new context. What you get in return is the newly created context.
Sometimes code is easier than words:
var func1 = function (x) { this.x = x; } // Used with 'new' only
var func2 = function (x) { var z={}; z.x = x; return z; } // Used both ways
func1.prototype.y = 11;
func2.prototype.y = 12;
A1 = new func1(1); // Has A1.x AND A1.y
A2 = func1(1); // Undefined ('this' refers to 'window')
B1 = new func2(2); // Has B1.x ONLY
B2 = func2(2); // Has B2.x ONLY
For me, as long as I do not prototype, I use the style of func2 as it gives me a bit more flexibility inside and outside the function.
Every function has a prototype object that’s automatically set as the prototype of the objects created with that function.
You guys can check easily:
const a = { name: "something" };
console.log(a.prototype); // 'undefined' because it is not directly accessible
const b = function () {
console.log("somethign");
};
console.log(b.prototype); // Returns b {}
But every function and objects has the __proto__ property which points to the prototype of that object or function. __proto__ and prototype are two different terms. I think we can make this comment: "Every object is linked to a prototype via the proto" But __proto__ does not exist in JavaScript. This property is added by browser just to help for debugging.
console.log(a.__proto__); // Returns {}
console.log(b.__proto__); // Returns [Function]
You guys can check this on the terminal easily. So what is a constructor function?
function CreateObject(name, age) {
this.name = name;
this.age = age
}
Five things that pay attention first:
When the constructor function is invoked with new, the function’s internal [[Construct]] method is called to create a new instance object and allocate memory.
We are not using return keyword. new will handle it.
The name of the function is capitalized, so when developers see your code they can understand that they have to use the new keyword.
We do not use the arrow function. Because the value of the this parameter is picked up at the moment that the arrow function is created which is "window". Arrow functions are lexically scoped, not dynamically. Lexically here means locally. The arrow function carries its local "this" value.
Unlike regular functions, arrow functions can never be called with the new keyword, because they do not have the [[Construct]] method. The prototype property also does not exist for arrow functions.
const me = new CreateObject("yilmaz", "21")
new invokes the function and then creates an empty object {} and then adds "name" key with the value of "name", and "age" key with the value of argument "age".
When we invoke a function, a new execution context is created with "this" and "arguments", and that is why "new" has access to these arguments.
By default, this inside the constructor function will point to the "window" object, but new changes it. "this" points to the empty object {} that is created and then properties are added to newly created object. If you had any variable that defined without "this" property will no be added to the object.
function CreateObject(name, age) {
this.name = name;
this.age = age;
const myJob = "developer"
}
myJob property will not added to the object because there is nothing referencing to the newly created object.
const me = {name: "yilmaz", age: 21} // There isn't any 'myJob' key
In the beginning I said every function has a "prototype" property, including constructor functions. We can add methods to the prototype of the constructor, so every object that created from that function will have access to it.
CreateObject.prototype.myActions = function() { /* Define something */ }
Now "me" object can use the "myActions" method.
JavaScript has built-in constructor functions: Function, Boolean, Number, String, etc.
If I create
const a = new Number(5);
console.log(a); // [Number: 5]
console.log(typeof a); // object
Anything that is created by using new has the type of object. Now "a" has access all of the methods that are stored inside Number.prototype. If I defined
const b = 5;
console.log(a === b); // 'false'
a and b are 5 but a is object and b is primitive. Even though b is primitive type, when it is created, JavaScript automatically wraps it with Number(), so b has access to all of the methods that inside Number.prototype.
A constructor function is useful when you want to create multiple similar objects with the same properties and methods. That way you will not be allocating extra memory so your code will run more efficiently.
The new keyword is for creating new object instances. And yes, JavaScript is a dynamic programming language, which supports the object-oriented programming paradigm. The convention about the object naming is: always use a capital letter for objects that are supposed to be instantiated by the new keyword.
obj = new Element();
JavaScript is not an object-oriented programming (OOP) language. Therefore the look up process in JavaScript works using a delegation process, also known as prototype delegation or prototypical inheritance.
If you try to get the value of a property from an object that it doesn't have, the JavaScript engine looks to the object's prototype (and its prototype, one step above at a time).
It's prototype chain until the chain ends up to null which is Object.prototype == null (Standard Object Prototype).
At this point, if the property or method is not defined then undefined is returned.
Important! Functions are are first-class objects.
Functions = Function + Objects Combo
FunctionName.prototype = { shared SubObject }
{
// other properties
prototype: {
// shared space which automatically gets [[prototype]] linkage
when "new" keyword is used on creating instance of "Constructor
Function"
}
}
Thus with the new keyword, some of the task that were manually done, e.g.,
Manual object creation, e.g., newObj.
Hidden bond creation using proto (AKA: dunder proto) in the JavaScript specification [[prototype]] (i.e., proto)
referencing and assign properties to newObj
return of the newObj object.
All is done manually.
function CreateObj(value1, value2) {
const newObj = {};
newObj.property1 = value1;
newObj.property2 = value2;
return newObj;
}
var obj = CreateObj(10,20);
obj.__proto__ === Object.prototype; // true
Object.getPrototypeOf(obj) === Object.prototype // true
JavaScript keyword new helps to automate this process:
A new object literal is created identified by this:{}
referencing and assign properties to this
Hidden bond creation [[prototype]] (i.e. proto) to Function.prototype shared space.
implicit return of this object {}
function CreateObj(value1, value2) {
this.property1 = value1;
this.property2 = value2;
}
var obj = new CreateObj(10,20);
obj.__proto__ === CreateObj.prototype // true
Object.getPrototypeOf(obj) == CreateObj.prototype // true
Calling a constructor function without the new keyword:
=> this: Window
function CreateObj(value1, value2) {
var isWindowObj = this === window;
console.log("Is Pointing to Window Object", isWindowObj);
this.property1 = value1;
this.property2 = value2;
}
var obj = new CreateObj(10,20); // Is Pointing to Window Object false
var obj = CreateObj(10,20); // Is Pointing to Window Object true
window.property1; // 10
window.property2; // 20
The new keyword creates instances of objects using functions as a constructor. For instance:
var Foo = function() {};
Foo.prototype.bar = 'bar';
var foo = new Foo();
foo instanceof Foo; // true
Instances inherit from the prototype of the constructor function. So given the example above...
foo.bar; // 'bar'
Well, JavaScript per se can differ greatly from platform to platform as it is always an implementation of the original specification ECMAScript (ES).
In any case, independently of the implementation, all JavaScript implementations that follow the ECMAScript specification right, will give you an object-oriented language. According to the ES standard:
ECMAScript is an object-oriented programming language for
performing computations and manipulating computational objects
within a host environment.
So now that we have agreed that JavaScript is an implementation of ECMAScript and therefore it is an object-oriented language. The definition of the new operation in any object-oriented language, says that such a keyword is used to create an object instance from a class of a certain type (including anonymous types, in cases like C#).
In ECMAScript we don't use classes, as you can read from the specifications:
ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via
a literal notation or via constructors which create objects and then execute code that initializes all or part of them by assigning initial
values to their properties. Each constructor is a function that has a
property named ―
prototype ‖ that is used to implement prototype - based inheritance and shared properties. Objects are created by
using constructors in new expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor
without using new has consequences that depend on the constructor.
For example, Date() produces a string representation of the
current date and time rather than an object.
It has 3 stages:
1.Create: It creates a new object, and sets this object's [[prototype]] property to be the prototype property of the constructor function.
2.Execute: It makes this point to the newly created object and executes the constructor function.
3.Return: In normal case, it will return the newly created object. However, if you explicitly return a non-null object or a function , this value is returned instead. To be mentioned, if you return a non-null value, but it is not an object(such as Symbol value, undefined, NaN), this value is ignored and the newly created object is returned.
function myNew(constructor, ...args) {
const obj = {}
Object.setPrototypeOf(obj, constructor.prototype)
const returnedVal = constructor.apply(obj, args)
if (
typeof returnedVal === 'function'
|| (typeof returnedVal === 'object' && returnedVal !== null)) {
return returnedVal
}
return obj
}
For more info and the tests for myNew, you can read my blog: https://medium.com/#magenta2127/how-does-the-new-operator-work-f7eaac692026

javascript: what do the new keywords do internally

I know there are maybe a million similar questions out there already, e.g.,
here: what is the new keyword
here: typeerror: x is not a constructor
here: __proto__ vs prototype
here: MDN doc: new operator
but please hear me out.
The code:
let f = function(){console.log(".f.")};
fn = new f();
// Now:
typeof fn === "object" //true
//! fn() //TypeError: fn is not a function
//! new fn() //TypeError: fn is not a constructor
The general question would be: is it possible to create a "newable" object fn, by manipulating the functionf.
The question breaks down to the internal of the "new" keywords.
My doubt is, according to the MDN document, when a new keyword is used, the constructor of an class or function is called. However, even though fn.__proto__.constructor === f is true like all other javascript functions, fn is of type'object' (can we somehow alter it to 'function'?), and new fn() throws TypeError.
We can even add more to the mix by doing:
fn.constructor = f.constructor
fn.__proto__ = f.__proto__
fn.prototype = f.prototype
// f.constructor === Function //true
//! fn.call(this) //fn.call is not a function
still, fn() won't work, neither does new fn or new fn().
Why?
The new-able objects in JavaScript are:
Functions created using the function keyword (excluding generator functions)
Classes (which can be treated as functions)
Bound function exotic objects ("bound functions")
Some host objects
Proxies if they are applied to one of the above
I know this because the only object types the new operator works with are "constructors" (specification term). A constructor is an object with a [[Construct]] internal method, and you can search the ECMAScript specification to find out which kinds of object have a [[Construct]] internal method.
To make the result of a constructor function new-able, therefore, you must return one of the object kinds listed above.
Note that the specification specifically says that all constructors are definitionally functions because they must support the [[Call]] internal method (note also the caveat below about host objects).
If you want to get very advanced, then you may be interested to learn that host objects do not appear to share the ordinary limitations for constructors (presumably for legacy Web compatibility reasons), but these are exceptional.
Explanation of the .constructor property
When a new-able function f is declared, two objects are created: the function-object f itself, and a default object on the .prototype own-property of f. The .constructor property of this default .prototype object is automatically set by the runtime to be f. I believe classes work in a very similar fashion. Note that the fact that the name of this property was chosen to be "prototype" makes discussing prototypes quite confusing in JavaScript (as it is distinct from the [[prototype]] of the function).
This constructor own-property on the object positioned on the .prototype property, is never read by any built-in function or operation (that I know of). I view it as vestigial from the earliest days of JavaScript - it's original intent was as a way to maintain a link between the "class" that constructed an object as a developer affordance. Host environments (eg browsers) sometimes use it to infer the "type" of an object for the purposes of communicating with the user (eg. console output), the property is writeable and therefore unreliable.
Steps performed by the new operator
At a high level, when new is invoked against a constructor, the following steps occur (spec contains full details):
A new object o is created
The [[Prototype]] ("the prototype") of o is set to the value of the .prototype property of the constructor (note this means the .constructor property is inherited by the new object)
The target (ie this) of the constructor body is set to o
The constructor is run with the this value defined above
If there is no explicit object-type return value, then o is returned by default
The Scope: we exam the new on Function only. because this is the part that confuse the most. Calling new on Class yield results similar to that from other major OOP languages.
The original question could be break down to the following two questions:
What is the detailed construction process, when a new keyword is called?
How does JavaScript decide if an Object is Callable? (Thanks for #BenAston mentioning that the new keywords may only works with a limited set of Objects (e.g., prefixed with Class or Function))
Answer to the first question:
Back to the MDN Document,
When the code new Foo(...) is executed, the following things happen:
A new object is created, inheriting from Foo.prototype.
The constructor function Foo is called with the specified arguments, and with this bound to the newly created object. new Foo is equivalent to new Foo(), i.e. if no argument list is specified, Foo is called without arguments.
The object (not null, false, 3.1415 or other primitive types) returned by the constructor function becomes the result of the whole new expression. If the constructor function doesn't explicitly return an object, the object created in step 1 is used instead.(Normally constructors don't return a value, but they can choose to do so if they want to override the normal object creation process.)
The words might be ambiguous,
But the PoC code is as follows:
// Case1, function has no return value;
// A new object is created, f0n.__proto__ === f0.prototype
let f0 = function() {};
f0.prototype.f0p = "f0p";
let f0n = new f0();
console.log(f0n) // f0n is a new Object, inheriting from f0.prototype
console.log(f0n.__proto__.f0p); // "f0p"
// Case3, function has an explicit return value, the value is an object
// (not null, false, 3.1415 or other primitive types);
// the return value becomes the new object value.
let f3 = function() {
return {
"f3": "f3"
}
};
f3.prototype.f3p = "f3p";
let f3n = new f3();
console.log(f3n) // {f3: "f3"}
// f3n is an Object, the return value of its constructor function `f3`
console.log(f3n.__proto__.f3p); // undefined
// Case4 (or Case1 again), function has an **implicit** return value.
let f4 = function(a) {
return (a + a)
};
f4.prototype.f4p = "f4p";
let f4n = new f4();
console.log(f4n.__proto__.f4p); // "f4p"
2.Answer to the second question:
I still do not yet know how JavaScript decide if a object is callable. The answer should be hiding in the ECMAScripts spec. (Thanks #BenAston for pointing out)
It might be legit to assume that only Function is callable. And the following post provide a workaround:
How to make an object callable
extra: how to return an Callable?
Use the Case3, let f = Function(){return Function(){}}
Since the return value is an non-primitive explicit Object, it becomes the result of the new directive. The result is a function, which could then be called.

value of "this" in javascript constructor function when called with new and as a regular function [duplicate]

The new keyword in JavaScript can be quite confusing when it is first encountered, as people tend to think that JavaScript is not an object-oriented programming language.
What is it?
What problems does it solve?
When is it appropriate and when not?
It does 5 things:
It creates a new object. The type of this object is simply object.
It sets this new object's internal, inaccessible, [[prototype]] (i.e. __proto__) property to be the constructor function's external, accessible, prototype object (every function object automatically has a prototype property).
It makes the this variable point to the newly created object.
It executes the constructor function, using the newly created object whenever this is mentioned.
It returns the newly created object, unless the constructor function returns a non-null object reference. In this case, that object reference is returned instead.
Note: constructor function refers to the function after the new keyword, as in
new ConstructorFunction(arg1, arg2)
Once this is done, if an undefined property of the new object is requested, the script will check the object's [[prototype]] object for the property instead. This is how you can get something similar to traditional class inheritance in JavaScript.
The most difficult part about this is point number 2. Every object (including functions) has this internal property called [[prototype]]. It can only be set at object creation time, either with new, with Object.create, or based on the literal (functions default to Function.prototype, numbers to Number.prototype, etc.). It can only be read with Object.getPrototypeOf(someObject). There is no other way to get or set this value.
Functions, in addition to the hidden [[prototype]] property, also have a property called prototype, and it is this that you can access, and modify, to provide inherited properties and methods for the objects you make.
Here is an example:
ObjMaker = function() { this.a = 'first'; };
// `ObjMaker` is just a function, there's nothing special about it
// that makes it a constructor.
ObjMaker.prototype.b = 'second';
// like all functions, ObjMaker has an accessible `prototype` property that
// we can alter. I just added a property called 'b' to it. Like
// all objects, ObjMaker also has an inaccessible `[[prototype]]` property
// that we can't do anything with
obj1 = new ObjMaker();
// 3 things just happened.
// A new, empty object was created called `obj1`. At first `obj1`
// was just `{}`. The `[[prototype]]` property of `obj1` was then set to the current
// object value of the `ObjMaker.prototype` (if `ObjMaker.prototype` is later
// assigned a new object value, `obj1`'s `[[prototype]]` will not change, but you
// can alter the properties of `ObjMaker.prototype` to add to both the
// `prototype` and `[[prototype]]`). The `ObjMaker` function was executed, with
// `obj1` in place of `this`... so `obj1.a` was set to 'first'.
obj1.a;
// returns 'first'
obj1.b;
// `obj1` doesn't have a property called 'b', so JavaScript checks
// its `[[prototype]]`. Its `[[prototype]]` is the same as `ObjMaker.prototype`
// `ObjMaker.prototype` has a property called 'b' with value 'second'
// returns 'second'
It's like class inheritance because now, any objects you make using new ObjMaker() will also appear to have inherited the 'b' property.
If you want something like a subclass, then you do this:
SubObjMaker = function () {};
SubObjMaker.prototype = new ObjMaker(); // note: this pattern is deprecated!
// Because we used 'new', the [[prototype]] property of SubObjMaker.prototype
// is now set to the object value of ObjMaker.prototype.
// The modern way to do this is with Object.create(), which was added in ECMAScript 5:
// SubObjMaker.prototype = Object.create(ObjMaker.prototype);
SubObjMaker.prototype.c = 'third';
obj2 = new SubObjMaker();
// [[prototype]] property of obj2 is now set to SubObjMaker.prototype
// Remember that the [[prototype]] property of SubObjMaker.prototype
// is ObjMaker.prototype. So now obj2 has a prototype chain!
// obj2 ---> SubObjMaker.prototype ---> ObjMaker.prototype
obj2.c;
// returns 'third', from SubObjMaker.prototype
obj2.b;
// returns 'second', from ObjMaker.prototype
obj2.a;
// returns 'first', from SubObjMaker.prototype, because SubObjMaker.prototype
// was created with the ObjMaker function, which assigned a for us
I read a ton of rubbish on this subject before finally finding this page, where this is explained very well with nice diagrams.
Suppose you have this function:
var Foo = function(){
this.A = 1;
this.B = 2;
};
If you call this as a stand-alone function like so:
Foo();
Executing this function will add two properties to the window object (A and B). It adds it to the window because window is the object that called the function when you execute it like that, and this in a function is the object that called the function. In JavaScript at least.
Now, call it like this with new:
var bar = new Foo();
When you add new to a function call, a new object is created (just var bar = new Object()) and the this within the function points to the new Object you just created, instead of to the object that called the function. So bar is now an object with the properties A and B. Any function can be a constructor; it just doesn't always make sense.
In addition to Daniel Howard's answer, here is what new does (or at least seems to do):
function New(func) {
var res = {};
if (func.prototype !== null) {
res.__proto__ = func.prototype;
}
var ret = func.apply(res, Array.prototype.slice.call(arguments, 1));
if ((typeof ret === "object" || typeof ret === "function") && ret !== null) {
return ret;
}
return res;
}
While
var obj = New(A, 1, 2);
is equivalent to
var obj = new A(1, 2);
For beginners to understand it better
Try out the following code in the browser console.
function Foo() {
return this;
}
var a = Foo(); // Returns the 'window' object
var b = new Foo(); // Returns an empty object of foo
a instanceof Window; // True
a instanceof Foo; // False
b instanceof Window; // False
b instanceof Foo; // True
Now you can read the community wiki answer :)
so it's probably not for creating
instances of object
It's used exactly for that. You define a function constructor like so:
function Person(name) {
this.name = name;
}
var john = new Person('John');
However the extra benefit that ECMAScript has is you can extend with the .prototype property, so we can do something like...
Person.prototype.getName = function() { return this.name; }
All objects created from this constructor will now have a getName because of the prototype chain that they have access to.
JavaScript is an object-oriented programming language and it's used exactly for creating instances. It's prototype-based, rather than class-based, but that does not mean that it is not object-oriented.
Summary:
The new keyword is used in JavaScript to create a object from a constructor function. The new keyword has to be placed before the constructor function call and will do the following things:
Creates a new object
Sets the prototype of this object to the constructor function's prototype property
Binds the this keyword to the newly created object and executes the constructor function
Returns the newly created object
Example:
function Dog (age) {
this.age = age;
}
const doggie = new Dog(12);
console.log(doggie);
console.log(Object.getPrototypeOf(doggie) === Dog.prototype) // true
What exactly happens:
const doggie says: We need memory for declaring a variable.
The assignment operator = says: We are going to initialize this variable with the expression after the =
The expression is new Dog(12). The JavaScript engine sees the new keyword, creates a new object and sets the prototype to Dog.prototype
The constructor function is executed with the this value set to the new object. In this step is where the age is assigned to the new created doggie object.
The newly created object is returned and assigned to the variable doggie.
Please take a look at my observation on case III below. It is about what happens when you have an explicit return statement in a function which you are newing up. Have a look at the below cases:
Case I:
var Foo = function(){
this.A = 1;
this.B = 2;
};
console.log(Foo()); //prints undefined
console.log(window.A); //prints 1
Above is a plain case of calling the anonymous function pointed by variable Foo. When you call this function it returns undefined. Since there isn’t any explicit return statement, the JavaScript interpreter forcefully inserts a return undefined; statement at the end of the function. So the above code sample is equivalent to:
var Foo = function(){
this.A = 1;
this.B = 2;
return undefined;
};
console.log(Foo()); //prints undefined
console.log(window.A); //prints 1
When Foo function is invoked window is the default invocation object (contextual this) which gets new A and B properties.
Case II:
var Foo = function(){
this.A = 1;
this.B = 2;
};
var bar = new Foo();
console.log(bar()); //illegal isn't pointing to a function but an object
console.log(bar.A); //prints 1
Here the JavaScript interpreter, seeing the new keyword, creates a new object which acts as the invocation object (contextual this) of anonymous function pointed by Foo. In this case A and B become properties on the newly created object (in place of window object). Since you don't have any explicit return statement, JavaScript interpreter forcefully inserts a return statement to return the new object created due to usage of new keyword.
Case III:
var Foo = function(){
this.A = 1;
this.B = 2;
return {C:20,D:30};
};
var bar = new Foo();
console.log(bar.C);//prints 20
console.log(bar.A); //prints undefined. bar is not pointing to the object which got created due to new keyword.
Here again, the JavaScript interpreter, seeing the new keyword, creates a new object which acts as the invocation object (contextual this) of anonymous function pointed by Foo. Again, A and B become properties on the newly created object. But this time you have an explicit return statement so JavaScript interpreter will not do anything of its own.
The thing to note in case III is that the object being created due to new keyword got lost from your radar. bar is actually pointing to a completely different object which is not the one which JavaScript interpreter created due to the new keyword.
Quoting David Flanagan from JavaScript: The Definitive Guide (6th Edition), Chapter 4, Page # 62:
When an object creation expression is evaluated, JavaScript first
creates a new empty object, just like the one created by the object
initializer {}. Next, it invokes the specified function with the
specified arguments, passing the new object as the value of the this
keyword. The function can then use this to initialize the properties
of the newly created object. Functions written for use as constructors
do not return a value, and the value of the object creation expression
is the newly created and initialized object. If a constructor does
return an object value, that value becomes the value of the object
creation expression and the newly created object is discarded.
Additional information:
The functions used in the code snippet of the above cases have special names in the JavaScript world as below:
Case #
Name
Case I
Constructor function
Case II
Constructor function
Case III
Factory function
You can read about the difference between constructor functions and factory functions in this thread.
Code smell in case III - Factory functions should not be used with the new keyword which I've shown in the code snippet above. I've done so deliberately only to explain the concept.
JavaScript is a dynamic programming language which supports the object-oriented programming paradigm, and it is used for creating new instances of objects.
Classes are not necessary for objects. JavaScript is a prototype-based language.
The new keyword changes the context under which the function is being run and returns a pointer to that context.
When you don't use the new keyword, the context under which function Vehicle() runs is the same context from which you are calling the Vehicle function. The this keyword will refer to the same context. When you use new Vehicle(), a new context is created so the keyword this inside the function refers to the new context. What you get in return is the newly created context.
Sometimes code is easier than words:
var func1 = function (x) { this.x = x; } // Used with 'new' only
var func2 = function (x) { var z={}; z.x = x; return z; } // Used both ways
func1.prototype.y = 11;
func2.prototype.y = 12;
A1 = new func1(1); // Has A1.x AND A1.y
A2 = func1(1); // Undefined ('this' refers to 'window')
B1 = new func2(2); // Has B1.x ONLY
B2 = func2(2); // Has B2.x ONLY
For me, as long as I do not prototype, I use the style of func2 as it gives me a bit more flexibility inside and outside the function.
Every function has a prototype object that’s automatically set as the prototype of the objects created with that function.
You guys can check easily:
const a = { name: "something" };
console.log(a.prototype); // 'undefined' because it is not directly accessible
const b = function () {
console.log("somethign");
};
console.log(b.prototype); // Returns b {}
But every function and objects has the __proto__ property which points to the prototype of that object or function. __proto__ and prototype are two different terms. I think we can make this comment: "Every object is linked to a prototype via the proto" But __proto__ does not exist in JavaScript. This property is added by browser just to help for debugging.
console.log(a.__proto__); // Returns {}
console.log(b.__proto__); // Returns [Function]
You guys can check this on the terminal easily. So what is a constructor function?
function CreateObject(name, age) {
this.name = name;
this.age = age
}
Five things that pay attention first:
When the constructor function is invoked with new, the function’s internal [[Construct]] method is called to create a new instance object and allocate memory.
We are not using return keyword. new will handle it.
The name of the function is capitalized, so when developers see your code they can understand that they have to use the new keyword.
We do not use the arrow function. Because the value of the this parameter is picked up at the moment that the arrow function is created which is "window". Arrow functions are lexically scoped, not dynamically. Lexically here means locally. The arrow function carries its local "this" value.
Unlike regular functions, arrow functions can never be called with the new keyword, because they do not have the [[Construct]] method. The prototype property also does not exist for arrow functions.
const me = new CreateObject("yilmaz", "21")
new invokes the function and then creates an empty object {} and then adds "name" key with the value of "name", and "age" key with the value of argument "age".
When we invoke a function, a new execution context is created with "this" and "arguments", and that is why "new" has access to these arguments.
By default, this inside the constructor function will point to the "window" object, but new changes it. "this" points to the empty object {} that is created and then properties are added to newly created object. If you had any variable that defined without "this" property will no be added to the object.
function CreateObject(name, age) {
this.name = name;
this.age = age;
const myJob = "developer"
}
myJob property will not added to the object because there is nothing referencing to the newly created object.
const me = {name: "yilmaz", age: 21} // There isn't any 'myJob' key
In the beginning I said every function has a "prototype" property, including constructor functions. We can add methods to the prototype of the constructor, so every object that created from that function will have access to it.
CreateObject.prototype.myActions = function() { /* Define something */ }
Now "me" object can use the "myActions" method.
JavaScript has built-in constructor functions: Function, Boolean, Number, String, etc.
If I create
const a = new Number(5);
console.log(a); // [Number: 5]
console.log(typeof a); // object
Anything that is created by using new has the type of object. Now "a" has access all of the methods that are stored inside Number.prototype. If I defined
const b = 5;
console.log(a === b); // 'false'
a and b are 5 but a is object and b is primitive. Even though b is primitive type, when it is created, JavaScript automatically wraps it with Number(), so b has access to all of the methods that inside Number.prototype.
A constructor function is useful when you want to create multiple similar objects with the same properties and methods. That way you will not be allocating extra memory so your code will run more efficiently.
The new keyword is for creating new object instances. And yes, JavaScript is a dynamic programming language, which supports the object-oriented programming paradigm. The convention about the object naming is: always use a capital letter for objects that are supposed to be instantiated by the new keyword.
obj = new Element();
JavaScript is not an object-oriented programming (OOP) language. Therefore the look up process in JavaScript works using a delegation process, also known as prototype delegation or prototypical inheritance.
If you try to get the value of a property from an object that it doesn't have, the JavaScript engine looks to the object's prototype (and its prototype, one step above at a time).
It's prototype chain until the chain ends up to null which is Object.prototype == null (Standard Object Prototype).
At this point, if the property or method is not defined then undefined is returned.
Important! Functions are are first-class objects.
Functions = Function + Objects Combo
FunctionName.prototype = { shared SubObject }
{
// other properties
prototype: {
// shared space which automatically gets [[prototype]] linkage
when "new" keyword is used on creating instance of "Constructor
Function"
}
}
Thus with the new keyword, some of the task that were manually done, e.g.,
Manual object creation, e.g., newObj.
Hidden bond creation using proto (AKA: dunder proto) in the JavaScript specification [[prototype]] (i.e., proto)
referencing and assign properties to newObj
return of the newObj object.
All is done manually.
function CreateObj(value1, value2) {
const newObj = {};
newObj.property1 = value1;
newObj.property2 = value2;
return newObj;
}
var obj = CreateObj(10,20);
obj.__proto__ === Object.prototype; // true
Object.getPrototypeOf(obj) === Object.prototype // true
JavaScript keyword new helps to automate this process:
A new object literal is created identified by this:{}
referencing and assign properties to this
Hidden bond creation [[prototype]] (i.e. proto) to Function.prototype shared space.
implicit return of this object {}
function CreateObj(value1, value2) {
this.property1 = value1;
this.property2 = value2;
}
var obj = new CreateObj(10,20);
obj.__proto__ === CreateObj.prototype // true
Object.getPrototypeOf(obj) == CreateObj.prototype // true
Calling a constructor function without the new keyword:
=> this: Window
function CreateObj(value1, value2) {
var isWindowObj = this === window;
console.log("Is Pointing to Window Object", isWindowObj);
this.property1 = value1;
this.property2 = value2;
}
var obj = new CreateObj(10,20); // Is Pointing to Window Object false
var obj = CreateObj(10,20); // Is Pointing to Window Object true
window.property1; // 10
window.property2; // 20
The new keyword creates instances of objects using functions as a constructor. For instance:
var Foo = function() {};
Foo.prototype.bar = 'bar';
var foo = new Foo();
foo instanceof Foo; // true
Instances inherit from the prototype of the constructor function. So given the example above...
foo.bar; // 'bar'
Well, JavaScript per se can differ greatly from platform to platform as it is always an implementation of the original specification ECMAScript (ES).
In any case, independently of the implementation, all JavaScript implementations that follow the ECMAScript specification right, will give you an object-oriented language. According to the ES standard:
ECMAScript is an object-oriented programming language for
performing computations and manipulating computational objects
within a host environment.
So now that we have agreed that JavaScript is an implementation of ECMAScript and therefore it is an object-oriented language. The definition of the new operation in any object-oriented language, says that such a keyword is used to create an object instance from a class of a certain type (including anonymous types, in cases like C#).
In ECMAScript we don't use classes, as you can read from the specifications:
ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via
a literal notation or via constructors which create objects and then execute code that initializes all or part of them by assigning initial
values to their properties. Each constructor is a function that has a
property named ―
prototype ‖ that is used to implement prototype - based inheritance and shared properties. Objects are created by
using constructors in new expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor
without using new has consequences that depend on the constructor.
For example, Date() produces a string representation of the
current date and time rather than an object.
It has 3 stages:
1.Create: It creates a new object, and sets this object's [[prototype]] property to be the prototype property of the constructor function.
2.Execute: It makes this point to the newly created object and executes the constructor function.
3.Return: In normal case, it will return the newly created object. However, if you explicitly return a non-null object or a function , this value is returned instead. To be mentioned, if you return a non-null value, but it is not an object(such as Symbol value, undefined, NaN), this value is ignored and the newly created object is returned.
function myNew(constructor, ...args) {
const obj = {}
Object.setPrototypeOf(obj, constructor.prototype)
const returnedVal = constructor.apply(obj, args)
if (
typeof returnedVal === 'function'
|| (typeof returnedVal === 'object' && returnedVal !== null)) {
return returnedVal
}
return obj
}
For more info and the tests for myNew, you can read my blog: https://medium.com/#magenta2127/how-does-the-new-operator-work-f7eaac692026

Javascript: function.prototype.method

I guess most of you have seen the following code snippet:
Function.prototype.method = function (name, func) {
this.prototype[name] = func;
return this;
};
I also know that it will affect all functions since they are all objects created by Function so that they can access method named "method", however I am confused why Function itself also can also access "method" like following:
Function.method('test', function () {return 1;});
Edorka's answer is correct: Function is its own constructor (i.e. "parent").
Function.constructor; // function Function() { [native code] }
Normally you can't do what you're doing. For example, this won't work:
f = function () {};
f.prototype.a = 5;
f.a; // undefined
This kind of thing only works if you use a function as a constructor, like so:
f = function () {};
f.prototype.a = 5;
g = new f();
g.a; // 5
But Function is weird, it is the constructor for all functions and is also a function itself, so it templates its properties off its own prototype. Hence you can call Function.method() in your code.
Because Function is itself a function:
typeof Function === 'function'
Object.getPrototypeOf(Function) === Function.prototype
And you can see it being called as a function (a form of indirect eval):
Function('return 1+2')() === 3
All that as defined in the spec.
zerkms asked in a comment above:
Which came first - the Function object or the Function prototype?
We have to understand that what's exposed to us, the puny programmers, is different than what's represented internally. This can be exemplified by overriding the Array constructor (tip: don't try this while writing an answer, you'll get a lot of errors):
new Array(0, 1, 2); //gives you [0, 1, 2]
Array = function () { return [4] };
new Array(0, 1, 2); //gives you [4]
//however,
[0, 1, 2] //will always give you [0, 1, 2]
This is because of a section in the spec (a bit down, in the "semantics" section):
Let array be the result of creating a new object as if by the expression new Array() where Array is the standard built-in constructor with that name.
Using the array literal (or array initializer as the spec calls it) you ensure that you use the built-in Array constructor.
Why did I give this example? First of all, because it's a fun example. Second, to demonstrate how what we do and what's actually done are different. To answer zerkms, the Function object most likely came first, but that was not the first function. We don't have access to that built-in function.
because new functions are using the Function's prototype, Functions method is using his own prototype methods too.
If you modify one of this methods or attributes and it belonged to a "parent" prototype all the other objects using this prototype will be affected.
Some literacy related to this strange subject: http://www.packtpub.com/article/using-prototype-property-in-javascript
Consider the following constructor function object:
var Construct = function () { };
And a prototype shared function:
Construct.prototype.hello = function (name) { console.log("Hello " + name); };
Now if you create a new object from the constructor, this gets the shared member function:
var c = new Construct();
c.hello("World");
The same as c is instanceof Construct Object, also any
function is instanceof Function and instanceof Object,
Function itself is instanceof Function and Object,
Construct is instanceof Function Object and also
Object is instanceof Function Object.
Every function statement and operator is a literal for a native new Function.
Every { } literal is a native new Object.
Objects created new by a constructor get the members of the constructor.prototype.
Objects can have any member for themselves, only members of prototypes get shared.

In JavaScript, where does "constructor" come from?

The following snippet of code is taken from Eloquent JavaScript.
var noCatsAtAll = {};
if ("constructor" in noCatsAtAll)
console.log("Yes, there definitely is a cat called 'constructor'.");
I find it quite mystifying. Why does the 'if' return true?
JavaScript objects have a function called constructor which is the function that created the object's instance. It's built-in to all objects. The in operator tests for the presence of something called "constructor" in the instance of your dictionary, so it returns true. The same thing would happen if you tested for length, for example.
All instances of Object have a constructor property that specifies the function that constructs the Object's prototype.
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object#Properties_2
The in operator looks at all properties, including inherited ones. If you only want to see the properties on the object itself, you can use hasOwnProperty:
var a = {};
"constructor" in a; // true
a.hasOwnProperty("constructor"); // false
Note that while the in operator sees "constructor", a for (key in a) loop wouldn't. This is because the "constructor" property is non-enumerable.
It is the constructor of the Object type. A reference to the constructor function is available directly on that property ("constructor") of an object (it applies to constructors you write too).
In turn, the names of properties present are in objects.
constructor is a method of Object. You can find the constructor method throughout all objects unless you modify it. The in operator will find methods through the prototype chains. Which is is why it's recommended to use hasOwnProperty to test for properties in your own objects.
var noCatsAtAll = {};
if ("constructor" in noCatsAtAll)
console.log("Yes, there definitely is a cat called 'constructor'.");
if ('constructor' in Object)
console.log("Yes, there is also a method called constructor");
var noCon = Object.create(null); // create a completetly empty object
console.log('constructor' in noCon); // false
function hasConstructorToo() {}
console.log('constructor' in hasConstructorToo) // true
console.log('constructor' in []); // true
http://jsfiddle.net/Xsb3E/3`

Categories