I am working on supporting a REST API that literally has thousands of functions/objects/stats/etc., and placing all those calls into one file does not strike me as very maintainable. What I want to do is have a 'base' file that has the main constructor function, a few utility and very common functions, and then files for each section of API calls.
The Problem: How do you attach functions from other files to the 'base' Object so that referencing the main object allows for access from the subsections you have added to your program??
Let me try and illustrate what I am looking to do:
1) 'base' file has the main constructor:
var IPAddr = "";
var Token = "";
exports.Main = function(opts) {
IPAddr = opts.IPAddr;
Token = opts.Token;
}
2) 'file1' has some subfunctions that I want to define:
Main.prototype.Function1 = function(callback) {
// stuff done here
callback(error, data);
}
Main.prototype.Function2 = function(callback) {
// stuff done here
callback(error,data);
}
3) Program file brings it all together:
var Main = require('main.js');
var Main?!? = require('file1.js');
Main.Function1(function(err,out) {
if(err) {
// error stuff here
}
// main stuff here
}
Is there a way to combine an Object from multiple code files?? A 120,000 line Node.JS file just doesn't seem to be the way to go to me....not to mention it takes too long to load! Thanks :)
SOLUTION: For those who may stumble upon this in the future... I took the source code for Object.assign and back ported it to my v0.12 version of Node and got it working.
I used the code from here: https://github.com/sindresorhus/object-assign/blob/master/index.js and put it in a separate file that I just require('./object-assign.js') without assigning it to a var. Then my code looks something like this:
require('./object-assign.js');
var Main = require('./Main.js');
Object.assign(Main.prototype, require('./file1.js'));
Object.assign(Main.prototype, require('./file2.js'));
And all my functions from the two files show up under the Main() Object...too cool :)
At first each file works in its own scope, so all local variables are not shared.
However, as hacky approach, you may just add Main into global scope available everywhere by writing global.Main = Main right after you define it, please make sure that you require main file first in list of requires.
The better(who said?) approach is to extend prototype of Main later, but in this case you may need to update a lot of code. Just mix-in additional functionality into base class
file1.js
module.exports = {
x: function() {/*****/}
}
index.js
var Main = require('main.js');
Object.assign(Main.prototype, require('file1.js'));
Shure.
constructor.js
module.exports = function(){
//whatever
};
prototype.js
module.exports = {
someMethod(){ return "test";}
};
main.js
const Main = require("./constructor.js");
Object.assign( Main.prototype, require("./prototype.js"));
Related
Currently I am just passing my fileNamePrefix like that:
let shortid = require('shortid');
let fileNamePrefix = shortid.generate();
module1.run(fileNamePrefix); //generating a file based on `fileNamePrefix` `xxxxx.f1.json`
module2.run(fileNamePrefix); //generating a file based on `fileNamePrefix` `xxxxx.f2.json`
module3.run(fileNamePrefix); //generating a file based on `fileNamePrefix` `xxxxx.f3.js
Which I think in not quite right, I might need to pass more things to my modules later on, so I want to avoid to pass that as function params.
What is the best way to approach that in nodejs?
Will global object like global.fileNamePrefix = shortid.generate(); will do in that case or would you approach that different? I just read that global is not good...
You can use either singleton approach or approach suggested by #Сергей Тертичный
Singleton :
//shortid.js
var fileSingleTon = module.exports = {
fileNamePrefix: null,
getFileNamePrefix: function() {
return fileSingleTon.fileNamePrefix || fileSingleTon.generate()
},
generate: function() {
console.log('generating..');
return fileSingleTon.fileNamePrefix = 'your_file_prefix';
}
}
//module1.js
var fileNamePrefix = require('./shortid').getFileNamePrefix();
//do stuff for module1
//module2/js
var fileNamePrefix = require('./shortid').getFileNamePrefix();
//do stuff for module1
and so on..
Even now you are calling require('./shortid').getFileNamePrefix(); multiple times, generate function is getting called only once.
Node Caching approach :
Consider you have shortid.js as following :
// A: block of code to do some manipulations
// B : module.exports = manipulation result.
So basically in node js "modules" core module which is responsible for giving us module.export functionality executes whatever is here above export(in abode example the part A) only for the first time and caches it even if you have required in in multiple other files. However, it only executes the functions or block of code in every require which is inside export. So you can use this approach where your A block will have login to generate fileNamePrefix and then B just returns it.
Just create module like that:
// unicname.js
let shortid = require('shortid');
let fileName = shortid.generate();
module.exports = {fname: fileName};
//module1.js
const {fname} = require('./unicname.js');
....
Since the node.js caching the modules the value will be calculated only one time so you can get same value in all your modules.
Thus far I've worked only with relatively small projects (and mostly alone), but this time I have to collaborate with other programmers... basically because of that I must plan the structure of the website very carefully for the avoidance of spending hours debugging the code.
At this point I suppose doing that in the following manner. I divide my code in modules and store each module in a separate file inside an object (or a function) with a made-up name (lzheA, lzheB, lzheC etc.) to avoid conflicts whether an object with the same name was used in an another piece of code. When the document is loaded, I declare a variable (an object) that I use as a main namespace of the application. Properties of the object are the modules I defined before.
// file BI.lib.js
var lzheA = {
foo: function() {
},
bar: function() {
},
}
// file BI.init.js
function lzheK() {
BI.loadPage();
}
// file BI.loadPage.js
function lzheC() {
var result = document.getElementById('result');
result.innerHTML = "that worked";
}
// and so on
var lzheA,lzheB,lzheD,lzheE,lzheF,lzheG,lzheH,lzheI,lzheJ;
// doing the following when the document is loaded
var BI = {
lib: lzheA,
menu: lzheB,
loadPage: lzheC,
customScripts: lzheD,
_index: lzheE,
_briefs: lzheF,
_shop: lzheG,
_cases: lzheH,
_blog: lzheI,
_contacts: lzheJ,
init: lzheK,
}
BI.init();
https://jsfiddle.net/vwc2og57/2/
The question... is this way of structuring worth living or did I miss something because of lack of experience? Would the made-up names of the modules confuse you regardless of the fact that each one used only twice - while declaring the variable and assigning it to a property?
I consider the namespaces a good option when you want to modularize applications in Javascript. But I declare them in a different way
var myModule = myModule || {}; // This will allow to use the module in other places, declaring more than one specificComponent in other js file for example
myModule.specificComponent = (function(){
// Private things
var myVar = {};
var init = function() {
// Code
};
return {
init: init // Public Stuff
};
})();
If you want to call the init method, you would call it like this
myModule.specificComponent.init();
With this approach, i guarantee that the module will not be overwritten by another declaration in another place, and also I can declare internal components into my namespaces.
Also, the trick of just exposing what you want inside the return block, will make your component safer and you will be encapsulating your code in a pretty way.
Hope it helps
I did't found any realy working solution of this issue on Google, so...
There is a module called vm, but people say it is very heavy. I need some simple function, like PHP's include, which works like the code of an including file inserts right into the place in code you need and then executes.
I tryed to create such function
function include(path) {
eval( fs.readFileSync(path) + "" );
}
but it is not as simple... it is better if I'll show you why in example.
Let's say I need to include file.js file with content
var a = 1;
The relative file look like this
include("file.js");
console.log(a); // undefined
As you already realized a is undefined because it is not inherits from a function.
Seems the only way to do that is to type this long creepy code
eval( fs.readFileSync("file.js") + "" );
console.log(a); // 1
every time with no wrapper function in order to get all the functionality from a file as it is.
Using require with module.exports for each file is also a bad idea...
Any other solutions?
Using require with module.exports for each file is also a bad idea...
No, require is the way you do this in NodeJS:
var stuff = require("stuff");
// Or
var stuff = require("./stuff"); // If it's within the same directory, part of a package
Break your big vm into small, maintainable pieces, and if they need to be gathered together into one big thing rather than being used directly, have a vm.js that does that.
So for example
stuff.js:
exports.nifty = nifty;
function nifty() {
console.log("I do nifty stuff");
}
morestuff.js:
// This is to address your variables question
exports.unavoidable = "I'm something that absolutely has to be exposed outside the module.";
exports.spiffy = spiffy;
function spiffy() {
console.log("I do spiffy stuff");
}
vm.js:
var stuff = require("./stuff"),
morestuff = require("./morestuff");
exports.cool = cool;
function cool() {
console.log("I do cool stuff, using the nifty function and the spiffy function");
stuff.nifty();
morestuff.spiffy();
console.log("I also use this from morestuff: " + morestuff.unavoidable);
}
app.js (the app using vm):
var vm = require("./vm");
vm.cool();
Output:
I do cool stuff, using the nifty function and the spiffy function
I do nifty stuff
I do spiffy stuff
I also use this from morestuff: I'm something that absolutely has to be exposed outside the module.
What you are trying to do breaks modularity and goes against Node.js best practices.
Lets say you have this module (sync-read.js):
var fs = require('fs');
module.exports = {
a: fs.readFileSync('./a.json'),
b: fs.readFileSync('./b.json'),
c: fs.readFileSync('./c.json')
}
When you call the module the first time ...
var data = require('./sync-read');
... it will be cached and you wont read those files from disk again. With your approach you'll be reading from disk on every include call. No bueno.
You don't need to append each of your vars to module.exports (as in comment above):
var constants = {
lebowski: 'Jeff Bridges',
neo: 'Keanu Reeves',
bourne: 'Matt Damon'
};
function theDude() { return constants.lebowski; };
function theOne() { return constants.neo; };
function theOnly() { return constants.bourne; };
module.exports = {
names: constants,
theDude : theDude,
theOne : theOne
// bourne is not exposed
}
Then:
var characters = require('./characters');
console.log(characters.names);
characters.theDude();
characters.theOne();
This is my second weekend playing with Node, so this is a bit newbie.
I have a js file full of common utilities that provide stuff that JavaScript doesn't. Severely clipped, it looks like this:
module.exports = {
Round: function(num, dec) {
return Math.round(num * Math.pow(10,dec)) / Math.pow(10,dec);
}
};
Many other custom code modules - also included via require() statements - need to call the utility functions. They make calls like this:
module.exports = {
Init: function(pie) {
// does lots of other stuff, but now needs to round a number
// using the custom rounding fn provided in the common util code
console.log(util.Round(pie, 2)); // ReferenceError: util is not defined
}
};
The node.js file that is actually run is very simple (well, for this example). It just require()'s in the code and kicks off the custom code's Init() fn, like this:
var util = require("./utilities.js");
var customCode = require("./programCode.js");
customCode.Init(Math.PI);
Well, this doesn't work, I get a "ReferenceError: util is not defined" coming from the customCode. I know everything in each required file is "private" and this is why the error is occuring, but I also know that the variable holding the utility code object has GOT to be stored somewhere, perhaps hanging off of global?
I searched through global but didn't see any reference to utils in there. I was thinking of using something like global.utils.Round in the custom code.
So the question is, given that the utility code could be referred to as anything really (var u, util, or utility), how in heck can I organize this so that other code modules can see these utilities?
There are at least two ways to solve this:
If you need something from another module in a file, just require it. That's the easy one.
Provide something which actually builds the module for you. I will explain this in a second.
However, your current approach won't work as the node.js module system doesn't provide globals as you might expect them from other languages. Except for the things exported with module.exports you get nothing from the required module, and the required module doesn't know anything of the requiree's environment.
Just require it
To avoid the gap mentioned above, you need to require the other module beforehand:
// -- file: ./programCode.js
var util = require(...);
module.exports = {
Init: function(pie) {
console.log(util.Round(pie, 2));
}
};
requires are cached, so don't think too much about performance at this point.
Keep it flexible
In this case you don't directly export the contents of your module. Instead, you provide a constructor that will create the actual content. This enables you to give some additional arguments, for example another version of your utility library:
// -- file: ./programCode.js
module.exports = {
create: function(util){
return {
Init: function(pie) {
console.log(util.Round(pie, 2));
}
}
}
};
// --- other file
var util = require(...);
var myModule = require('./module').create(util);
As you can see this will create a new object when you call create. As such it will consume more memory as the first approach. Thus I recommend you to just require() things.
There are some third party Javascript libraries that have some functionality I would like to use in a Node.js server. (Specifically I want to use a QuadTree javascript library that I found.) But these libraries are just straightforward .js files and not "Node.js libraries".
As such, these libraries don't follow the exports.var_name syntax that Node.js expects for its modules. As far as I understand that means when you do module = require('module_name'); or module = require('./path/to/file.js'); you'll end up with a module with no publicly accessible functions, etc.
My question then is "How do I load an arbitrary javascript file into Node.js such that I can utilize its functionality without having to rewrite it so that it does do exports?"
I'm very new to Node.js so please let me know if there is some glaring hole in my understanding of how it works.
EDIT: Researching into things more and I now see that the module loading pattern that Node.js uses is actually part of a recently developed standard for loading Javascript libraries called CommonJS. It says this right on the module doc page for Node.js, but I missed that until now.
It may end up being that the answer to my question is "wait until your library's authors get around to writing a CommonJS interface or do it your damn self."
Here's what I think is the 'rightest' answer for this situation.
Say you have a script file called quadtree.js.
You should build a custom node_module that has this sort of directory structure...
./node_modules/quadtree/quadtree-lib/
./node_modules/quadtree/quadtree-lib/quadtree.js
./node_modules/quadtree/quadtree-lib/README
./node_modules/quadtree/quadtree-lib/some-other-crap.js
./node_modules/quadtree/index.js
Everything in your ./node_modules/quadtree/quadtree-lib/ directory are files from your 3rd party library.
Then your ./node_modules/quadtree/index.js file will just load that library from the filesystem and do the work of exporting things properly.
var fs = require('fs');
// Read and eval library
filedata = fs.readFileSync('./node_modules/quadtree/quadtree-lib/quadtree.js','utf8');
eval(filedata);
/* The quadtree.js file defines a class 'QuadTree' which is all we want to export */
exports.QuadTree = QuadTree
Now you can use your quadtree module like any other node module...
var qt = require('quadtree');
qt.QuadTree();
I like this method because there's no need to go changing any of the source code of your 3rd party library--so it's easier to maintain. All you need to do on upgrade is look at their source code and ensure that you are still exporting the proper objects.
There is a much better method than using eval: the vm module.
For example, here is my execfile module, which evaluates the script at path in either context or the global context:
var vm = require("vm");
var fs = require("fs");
module.exports = function(path, context) {
context = context || {};
var data = fs.readFileSync(path);
vm.runInNewContext(data, context, path);
return context;
}
And it can be used like this:
> var execfile = require("execfile");
> // `someGlobal` will be a global variable while the script runs
> var context = execfile("example.js", { someGlobal: 42 });
> // And `getSomeGlobal` defined in the script is available on `context`:
> context.getSomeGlobal()
42
> context.someGlobal = 16
> context.getSomeGlobal()
16
Where example.js contains:
function getSomeGlobal() {
return someGlobal;
}
The big advantage of this method is that you've got complete control over the global variables in the executed script: you can pass in custom globals (via context), and all the globals created by the script will be added to context. Debugging is also easier because syntax errors and the like will be reported with the correct file name.
The simplest way is: eval(require('fs').readFileSync('./path/to/file.js', 'utf8'));
This works great for testing in the interactive shell.
AFAIK, that is indeed how modules must be loaded.
However, instead of tacking all exported functions onto the exports object, you can also tack them onto this (what would otherwise be the global object).
So, if you want to keep the other libraries compatible, you can do this:
this.quadTree = function () {
// the function's code
};
or, when the external library already has its own namespace, e.g. jQuery (not that you can use that in a server-side environment):
this.jQuery = jQuery;
In a non-Node environment, this would resolve to the global object, thus making it a global variable... which it already was. So it shouldn't break anything.
Edit:
James Herdman has a nice writeup about node.js for beginners, which also mentions this.
I'm not sure if I'll actually end up using this because it's a rather hacky solution, but one way around this is to build a little mini-module importer like this...
In the file ./node_modules/vanilla.js:
var fs = require('fs');
exports.require = function(path,names_to_export) {
filedata = fs.readFileSync(path,'utf8');
eval(filedata);
exported_obj = {};
for (i in names_to_export) {
to_eval = 'exported_obj[names_to_export[i]] = '
+ names_to_export[i] + ';'
eval(to_eval);
}
return exported_obj;
}
Then when you want to use your library's functionality you'll need to manually choose which names to export.
So for a library like the file ./lib/mylibrary.js...
function Foo() { //Do something... }
biz = "Blah blah";
var bar = {'baz':'filler'};
When you want to use its functionality in your Node.js code...
var vanilla = require('vanilla');
var mylibrary = vanilla.require('./lib/mylibrary.js',['biz','Foo'])
mylibrary.Foo // <-- this is Foo()
mylibrary.biz // <-- this is "Blah blah"
mylibrary.bar // <-- this is undefined (because we didn't export it)
Don't know how well this would all work in practice though.
I was able to make it work by updating their script, very easily, simply adding module.exports = where appropriate...
For example, I took their file and I copied to './libs/apprise.js'. Then where it starts with
function apprise(string, args, callback){
I assigned the function to module.exports = thus:
module.exports = function(string, args, callback){
Thus I'm able to import the library into my code like this:
window.apprise = require('./libs/apprise.js');
And I was good to go. YMMV, this was with webpack.
A simple include(filename) function with better error messaging (stack, filename etc.) for eval, in case of errors:
var fs = require('fs');
// circumvent nodejs/v8 "bug":
// https://github.com/PythonJS/PythonJS/issues/111
// http://perfectionkills.com/global-eval-what-are-the-options/
// e.g. a "function test() {}" will be undefined, but "test = function() {}" will exist
var globalEval = (function() {
var isIndirectEvalGlobal = (function(original, Object) {
try {
// Does `Object` resolve to a local variable, or to a global, built-in `Object`,
// reference to which we passed as a first argument?
return (1, eval)('Object') === original;
} catch (err) {
// if indirect eval errors out (as allowed per ES3), then just bail out with `false`
return false;
}
})(Object, 123);
if (isIndirectEvalGlobal) {
// if indirect eval executes code globally, use it
return function(expression) {
return (1, eval)(expression);
};
} else if (typeof window.execScript !== 'undefined') {
// if `window.execScript exists`, use it
return function(expression) {
return window.execScript(expression);
};
}
// otherwise, globalEval is `undefined` since nothing is returned
})();
function include(filename) {
file_contents = fs.readFileSync(filename, "utf8");
try {
//console.log(file_contents);
globalEval(file_contents);
} catch (e) {
e.fileName = filename;
keys = ["columnNumber", "fileName", "lineNumber", "message", "name", "stack"]
for (key in keys) {
k = keys[key];
console.log(k, " = ", e[k])
}
fo = e;
//throw new Error("include failed");
}
}
But it even gets dirtier with nodejs: you need to specify this:
export NODE_MODULE_CONTEXTS=1
nodejs tmp.js
Otherwise you cannot use global variables in files included with include(...).