How to realy include a js file in Node.js - javascript

I did't found any realy working solution of this issue on Google, so...
There is a module called vm, but people say it is very heavy. I need some simple function, like PHP's include, which works like the code of an including file inserts right into the place in code you need and then executes.
I tryed to create such function
function include(path) {
eval( fs.readFileSync(path) + "" );
}
but it is not as simple... it is better if I'll show you why in example.
Let's say I need to include file.js file with content
var a = 1;
The relative file look like this
include("file.js");
console.log(a); // undefined
As you already realized a is undefined because it is not inherits from a function.
Seems the only way to do that is to type this long creepy code
eval( fs.readFileSync("file.js") + "" );
console.log(a); // 1
every time with no wrapper function in order to get all the functionality from a file as it is.
Using require with module.exports for each file is also a bad idea...
Any other solutions?

Using require with module.exports for each file is also a bad idea...
No, require is the way you do this in NodeJS:
var stuff = require("stuff");
// Or
var stuff = require("./stuff"); // If it's within the same directory, part of a package
Break your big vm into small, maintainable pieces, and if they need to be gathered together into one big thing rather than being used directly, have a vm.js that does that.
So for example
stuff.js:
exports.nifty = nifty;
function nifty() {
console.log("I do nifty stuff");
}
morestuff.js:
// This is to address your variables question
exports.unavoidable = "I'm something that absolutely has to be exposed outside the module.";
exports.spiffy = spiffy;
function spiffy() {
console.log("I do spiffy stuff");
}
vm.js:
var stuff = require("./stuff"),
morestuff = require("./morestuff");
exports.cool = cool;
function cool() {
console.log("I do cool stuff, using the nifty function and the spiffy function");
stuff.nifty();
morestuff.spiffy();
console.log("I also use this from morestuff: " + morestuff.unavoidable);
}
app.js (the app using vm):
var vm = require("./vm");
vm.cool();
Output:
I do cool stuff, using the nifty function and the spiffy function
I do nifty stuff
I do spiffy stuff
I also use this from morestuff: I'm something that absolutely has to be exposed outside the module.

What you are trying to do breaks modularity and goes against Node.js best practices.
Lets say you have this module (sync-read.js):
var fs = require('fs');
module.exports = {
a: fs.readFileSync('./a.json'),
b: fs.readFileSync('./b.json'),
c: fs.readFileSync('./c.json')
}
When you call the module the first time ...
var data = require('./sync-read');
... it will be cached and you wont read those files from disk again. With your approach you'll be reading from disk on every include call. No bueno.
You don't need to append each of your vars to module.exports (as in comment above):
var constants = {
lebowski: 'Jeff Bridges',
neo: 'Keanu Reeves',
bourne: 'Matt Damon'
};
function theDude() { return constants.lebowski; };
function theOne() { return constants.neo; };
function theOnly() { return constants.bourne; };
module.exports = {
names: constants,
theDude : theDude,
theOne : theOne
// bourne is not exposed
}
Then:
var characters = require('./characters');
console.log(characters.names);
characters.theDude();
characters.theOne();

Related

Node.JS Module/Object that spans several files?

I am working on supporting a REST API that literally has thousands of functions/objects/stats/etc., and placing all those calls into one file does not strike me as very maintainable. What I want to do is have a 'base' file that has the main constructor function, a few utility and very common functions, and then files for each section of API calls.
The Problem: How do you attach functions from other files to the 'base' Object so that referencing the main object allows for access from the subsections you have added to your program??
Let me try and illustrate what I am looking to do:
1) 'base' file has the main constructor:
var IPAddr = "";
var Token = "";
exports.Main = function(opts) {
IPAddr = opts.IPAddr;
Token = opts.Token;
}
2) 'file1' has some subfunctions that I want to define:
Main.prototype.Function1 = function(callback) {
// stuff done here
callback(error, data);
}
Main.prototype.Function2 = function(callback) {
// stuff done here
callback(error,data);
}
3) Program file brings it all together:
var Main = require('main.js');
var Main?!? = require('file1.js');
Main.Function1(function(err,out) {
if(err) {
// error stuff here
}
// main stuff here
}
Is there a way to combine an Object from multiple code files?? A 120,000 line Node.JS file just doesn't seem to be the way to go to me....not to mention it takes too long to load! Thanks :)
SOLUTION: For those who may stumble upon this in the future... I took the source code for Object.assign and back ported it to my v0.12 version of Node and got it working.
I used the code from here: https://github.com/sindresorhus/object-assign/blob/master/index.js and put it in a separate file that I just require('./object-assign.js') without assigning it to a var. Then my code looks something like this:
require('./object-assign.js');
var Main = require('./Main.js');
Object.assign(Main.prototype, require('./file1.js'));
Object.assign(Main.prototype, require('./file2.js'));
And all my functions from the two files show up under the Main() Object...too cool :)
At first each file works in its own scope, so all local variables are not shared.
However, as hacky approach, you may just add Main into global scope available everywhere by writing global.Main = Main right after you define it, please make sure that you require main file first in list of requires.
The better(who said?) approach is to extend prototype of Main later, but in this case you may need to update a lot of code. Just mix-in additional functionality into base class
file1.js
module.exports = {
x: function() {/*****/}
}
index.js
var Main = require('main.js');
Object.assign(Main.prototype, require('file1.js'));
Shure.
constructor.js
module.exports = function(){
//whatever
};
prototype.js
module.exports = {
someMethod(){ return "test";}
};
main.js
const Main = require("./constructor.js");
Object.assign( Main.prototype, require("./prototype.js"));

js - avoiding namespace conflict

Thus far I've worked only with relatively small projects (and mostly alone), but this time I have to collaborate with other programmers... basically because of that I must plan the structure of the website very carefully for the avoidance of spending hours debugging the code.
At this point I suppose doing that in the following manner. I divide my code in modules and store each module in a separate file inside an object (or a function) with a made-up name (lzheA, lzheB, lzheC etc.) to avoid conflicts whether an object with the same name was used in an another piece of code. When the document is loaded, I declare a variable (an object) that I use as a main namespace of the application. Properties of the object are the modules I defined before.
// file BI.lib.js
var lzheA = {
foo: function() {
},
bar: function() {
},
}
// file BI.init.js
function lzheK() {
BI.loadPage();
}
// file BI.loadPage.js
function lzheC() {
var result = document.getElementById('result');
result.innerHTML = "that worked";
}
// and so on
var lzheA,lzheB,lzheD,lzheE,lzheF,lzheG,lzheH,lzheI,lzheJ;
// doing the following when the document is loaded
var BI = {
lib: lzheA,
menu: lzheB,
loadPage: lzheC,
customScripts: lzheD,
_index: lzheE,
_briefs: lzheF,
_shop: lzheG,
_cases: lzheH,
_blog: lzheI,
_contacts: lzheJ,
init: lzheK,
}
BI.init();
https://jsfiddle.net/vwc2og57/2/
The question... is this way of structuring worth living or did I miss something because of lack of experience? Would the made-up names of the modules confuse you regardless of the fact that each one used only twice - while declaring the variable and assigning it to a property?
I consider the namespaces a good option when you want to modularize applications in Javascript. But I declare them in a different way
var myModule = myModule || {}; // This will allow to use the module in other places, declaring more than one specificComponent in other js file for example
myModule.specificComponent = (function(){
// Private things
var myVar = {};
var init = function() {
// Code
};
return {
init: init // Public Stuff
};
})();
If you want to call the init method, you would call it like this
myModule.specificComponent.init();
With this approach, i guarantee that the module will not be overwritten by another declaration in another place, and also I can declare internal components into my namespaces.
Also, the trick of just exposing what you want inside the return block, will make your component safer and you will be encapsulating your code in a pretty way.
Hope it helps

Passing in window to this in browserify

One of my dependencies uses the following to pass in window to its closure
(function (window) {
//
})(this)
For the time being I can just change it to something more sensible so that it doesn't break browserify, but is there some method whereby I can force a value for this in a browserified module?
I wrote a browserify transform called "moduleify" that should generally do what you want, i.e. wrap the offending code in an IIFE that looks kinda like this:
(function () {
// this === window
}.call(window));
In fact, my implementation is not much more sophisticated than that.
The original idea was to export a globals-polluting "module" as if it were a CommonJS module (e.g. have AngularJS export window.angular), but because it contains that wrapper, it should do the trick.
For instructions, see the README. If the offending script doesn't actually have anything it could reasonably export, just have it export window (which will result in module.exports = window['window']) or an arbitrary name that doesn't exist (resulting in undefined).
If you want to access the window object in your own browserify code, also check out the global module, which provides a nice wrapper to access browser globals safely in CommonJS modules.
To solve this specific problem, a simple transform, that wraps the code in a self calling function, will do the job.
CoffeeScript
through = require('through')
fenestrate = (file) ->
data = ';(function() {\n';
write = (buf) ->
data += buf
end = ->
data += '\n}).call(window);'
this.queue(data)
this.queue(null)
through(write, end)
JavaScript
var through = require('through');
var fenestrate = function(file) {
var data, end, write;
data = ';(function() {\n';
write = function(buf) {
return data += buf;
};
end = function() {
data += '\n}).call(window);';
this.queue(data);
return this.queue(null);
};
return through(write, end);
};
Writing Transforms: https://github.com/substack/browserify-handbook#transforms

understanding a modular javascript pattern

I'm trying to write 'better' javascript.
Below is one pattern I've found, and am trying to adopt. However, I'm slightly confused about its use.
Say, for example, I've got a page called "Jobs". Any JS functionality on that page would be encapsulated in something like:
window.jobs = (function(jobs, $, undefined){
return {
addNew: function(){
// job-adding code
}
}
})(window.jobs|| {}, jQuery);
$(function(){
$('.add_job').on('click', function(event){
event.preventDefault();
window.jobs.addNew();
});
});
As you can probably deduct, all I've done is replaced all the code that would have sat inside the anonymous event-handler function, with a call to a function in my global jobs object. I'm not sure why that's a good thing, other than it's reduced the possibility of variable collisions and made the whole thing a bit neater, but that's good enough for me.
The - probably fairly obvious - question is: all my event-binding init-type stuff is still sitting outside my shiny new jobs object: where should it be? Inside the jobs object? Inside the return object inside the jobs object? Inside an init() function?
I'm just trying to get a sense of a stable, basic framework for putting simple functionality in. I'm not building JS apps, I'd just like to write code that's a little more robust and maintainable than it is currently. Any and all suggestions are warmly welcomed :)
You can break down your application in whatever number of modules / objects you like too.
For instance, you can have another object / module which caches and defines all your DOM nodes and another one, which just handles any event. So for instance:
(function ( win, doc, $, undef ) {
win.myApp = win.myApp || { };
var eventHandler = {
onJobClick: function( event ) {
event.preventDefault();
myApp.addNew();
}
};
var nodes = (function() {
var rootNode = $( '.myRootNode' ),
addJob = rootNode.find( '.add_job' );
return {
rootNode: rootNode,
addJob: addJob
};
}());
$(function() {
myApp.nodes.addJob.on( 'click', myApp.handler.onJobClick );
});
myApp.nodes = nodes;
myApp.handler = eventHandler;
}( this, this.document, jQuery ));
It doesn't really matter how you create singletons in this (module) pattern, either as literal, constructor, Object.create() or whatnot. It needs to fit your requirements.
But you should try to create as many specific modules/objects as necesarry. Of course, if makes even more sense to separate those singletons / modules / objects into multiple javascript files and load them on demand and before you can say knife, you're in the world of modular programming patterns, dealing with requireJS and AMD or CommonJS modules.
Encapsulation-wise, you're fine: you could even just declare addNew in the jQuery closure and you'd still avoid the global scope. I think what you're getting at is more of implementing something close to an MVC architecture.
Something I like to do is create an object that you instantiate with a DOM element and that takes care of its own bindings/provides methods to access its controls etc.
Example:
// (pretend we're inside a closure already)
var myObj = function(args){
this.el = args.el; // just a selector, e.g. #myId
this.html = args.html;
this.bindings = args.bindings || {};
}
myObj.prototype.appendTo = function(elem){
elem.innerHTML += this.html;
this.bindControls();
};
myObj.prototype.remove = function(){
$(this.el).remove(); // using jQuery
};
myObj.prototype.bindControls = function(){
for(var i in this.bindings){ // event#selector : function
var boundFunc = function(e){ return this.bindings[i].call(this,e); };
$(this.el).on(i,boundFunc);
}
};
The way you are doing it right now is exactly how I do it also, I typically create the window objects inside the anonymous function itself and then declare inside that (in this case: jClass = window.jClass).
(function (jClass, $, undefined) {
/// <param name="$" type="jQuery" />
var VERSION = '1.31';
UPDATED_DATE = '7/20/2012';
// Private Namespace Variables
var _self = jClass; // internal self-reference
jClass = window.jClass; // (fix for intellisense)
$ = jQuery; // save rights to jQuery (also fixes vsdoc Intellisense)
// I init my namespace from inside itself
$(function () {
jClass.init('branchName');
});
jClass.init = function(branch) {
this._branch = branch;
this._globalFunctionality({ globalDatePicker: true });
this._jQueryValidateAdditions();
//put GLOBAL IMAGES to preload in the array
this._preloadImages( [''] );
this._log('*******************************************************');
this._log('jClass Loaded Successfully :: v' + VERSION + ' :: Last Updated: ' + UPDATED_DATE);
this._log('*******************************************************\n');
};
jClass._log = function() {
//NOTE: Global Log (cross browser Console.log - for Testing purposes)
//ENDNOTE
try { console.log.apply(console, arguments); }
catch (e) {
try { opera.postError.apply(opera, arguments); }
catch (e) { /* IE Currently shut OFF : alert(Array.prototype.join.call(arguments, ' '));*/ }
}
};
}(window.jClass= window.jClass|| {}, jQuery));
The reason I leave them completely anonymous like this, is that let's say in another file I want to add much more functionality to this jClass. I simply create another:
(function jClass, $, undefined) {
jClass.newFunction = function (params) {
// new stuff here
};
}(window.jClass = window.jClass || {}, jQuery))
As you can see I prefer the object.object notation, but you can use object literals object : object, it's up to you!
Either way by leaving all of this separate, and encapsulated without actual page logic makes it easier to have this within a globalJS file and every page on your site able to use it. Such as the example below.
jClass._log('log this text for me');
You don't want to intertwine model logic with your business logic, so your on the right path separating the two, and allowing for your global namespace/class/etc to be more flexible!
You can find here a comprehensive study on module pattern here: http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html It covers all the aspects of block-scoped module approach. However in practice you gonna have quite a number files encapsulating you code, so the question is how to combine them property. AMD... multiple HTTP requests produced by every module loading will rather harm your page response time. So you can go with CommonJS compiled to a single JavaScript file suitable for in-browser use. Take a look how easy it is http://dsheiko.github.io/cjsc/

Load "Vanilla" Javascript Libraries into Node.js

There are some third party Javascript libraries that have some functionality I would like to use in a Node.js server. (Specifically I want to use a QuadTree javascript library that I found.) But these libraries are just straightforward .js files and not "Node.js libraries".
As such, these libraries don't follow the exports.var_name syntax that Node.js expects for its modules. As far as I understand that means when you do module = require('module_name'); or module = require('./path/to/file.js'); you'll end up with a module with no publicly accessible functions, etc.
My question then is "How do I load an arbitrary javascript file into Node.js such that I can utilize its functionality without having to rewrite it so that it does do exports?"
I'm very new to Node.js so please let me know if there is some glaring hole in my understanding of how it works.
EDIT: Researching into things more and I now see that the module loading pattern that Node.js uses is actually part of a recently developed standard for loading Javascript libraries called CommonJS. It says this right on the module doc page for Node.js, but I missed that until now.
It may end up being that the answer to my question is "wait until your library's authors get around to writing a CommonJS interface or do it your damn self."
Here's what I think is the 'rightest' answer for this situation.
Say you have a script file called quadtree.js.
You should build a custom node_module that has this sort of directory structure...
./node_modules/quadtree/quadtree-lib/
./node_modules/quadtree/quadtree-lib/quadtree.js
./node_modules/quadtree/quadtree-lib/README
./node_modules/quadtree/quadtree-lib/some-other-crap.js
./node_modules/quadtree/index.js
Everything in your ./node_modules/quadtree/quadtree-lib/ directory are files from your 3rd party library.
Then your ./node_modules/quadtree/index.js file will just load that library from the filesystem and do the work of exporting things properly.
var fs = require('fs');
// Read and eval library
filedata = fs.readFileSync('./node_modules/quadtree/quadtree-lib/quadtree.js','utf8');
eval(filedata);
/* The quadtree.js file defines a class 'QuadTree' which is all we want to export */
exports.QuadTree = QuadTree
Now you can use your quadtree module like any other node module...
var qt = require('quadtree');
qt.QuadTree();
I like this method because there's no need to go changing any of the source code of your 3rd party library--so it's easier to maintain. All you need to do on upgrade is look at their source code and ensure that you are still exporting the proper objects.
There is a much better method than using eval: the vm module.
For example, here is my execfile module, which evaluates the script at path in either context or the global context:
var vm = require("vm");
var fs = require("fs");
module.exports = function(path, context) {
context = context || {};
var data = fs.readFileSync(path);
vm.runInNewContext(data, context, path);
return context;
}
And it can be used like this:
> var execfile = require("execfile");
> // `someGlobal` will be a global variable while the script runs
> var context = execfile("example.js", { someGlobal: 42 });
> // And `getSomeGlobal` defined in the script is available on `context`:
> context.getSomeGlobal()
42
> context.someGlobal = 16
> context.getSomeGlobal()
16
Where example.js contains:
function getSomeGlobal() {
return someGlobal;
}
The big advantage of this method is that you've got complete control over the global variables in the executed script: you can pass in custom globals (via context), and all the globals created by the script will be added to context. Debugging is also easier because syntax errors and the like will be reported with the correct file name.
The simplest way is: eval(require('fs').readFileSync('./path/to/file.js', 'utf8'));
This works great for testing in the interactive shell.
AFAIK, that is indeed how modules must be loaded.
However, instead of tacking all exported functions onto the exports object, you can also tack them onto this (what would otherwise be the global object).
So, if you want to keep the other libraries compatible, you can do this:
this.quadTree = function () {
// the function's code
};
or, when the external library already has its own namespace, e.g. jQuery (not that you can use that in a server-side environment):
this.jQuery = jQuery;
In a non-Node environment, this would resolve to the global object, thus making it a global variable... which it already was. So it shouldn't break anything.
Edit:
James Herdman has a nice writeup about node.js for beginners, which also mentions this.
I'm not sure if I'll actually end up using this because it's a rather hacky solution, but one way around this is to build a little mini-module importer like this...
In the file ./node_modules/vanilla.js:
var fs = require('fs');
exports.require = function(path,names_to_export) {
filedata = fs.readFileSync(path,'utf8');
eval(filedata);
exported_obj = {};
for (i in names_to_export) {
to_eval = 'exported_obj[names_to_export[i]] = '
+ names_to_export[i] + ';'
eval(to_eval);
}
return exported_obj;
}
Then when you want to use your library's functionality you'll need to manually choose which names to export.
So for a library like the file ./lib/mylibrary.js...
function Foo() { //Do something... }
biz = "Blah blah";
var bar = {'baz':'filler'};
When you want to use its functionality in your Node.js code...
var vanilla = require('vanilla');
var mylibrary = vanilla.require('./lib/mylibrary.js',['biz','Foo'])
mylibrary.Foo // <-- this is Foo()
mylibrary.biz // <-- this is "Blah blah"
mylibrary.bar // <-- this is undefined (because we didn't export it)
Don't know how well this would all work in practice though.
I was able to make it work by updating their script, very easily, simply adding module.exports = where appropriate...
For example, I took their file and I copied to './libs/apprise.js'. Then where it starts with
function apprise(string, args, callback){
I assigned the function to module.exports = thus:
module.exports = function(string, args, callback){
Thus I'm able to import the library into my code like this:
window.apprise = require('./libs/apprise.js');
And I was good to go. YMMV, this was with webpack.
A simple include(filename) function with better error messaging (stack, filename etc.) for eval, in case of errors:
var fs = require('fs');
// circumvent nodejs/v8 "bug":
// https://github.com/PythonJS/PythonJS/issues/111
// http://perfectionkills.com/global-eval-what-are-the-options/
// e.g. a "function test() {}" will be undefined, but "test = function() {}" will exist
var globalEval = (function() {
var isIndirectEvalGlobal = (function(original, Object) {
try {
// Does `Object` resolve to a local variable, or to a global, built-in `Object`,
// reference to which we passed as a first argument?
return (1, eval)('Object') === original;
} catch (err) {
// if indirect eval errors out (as allowed per ES3), then just bail out with `false`
return false;
}
})(Object, 123);
if (isIndirectEvalGlobal) {
// if indirect eval executes code globally, use it
return function(expression) {
return (1, eval)(expression);
};
} else if (typeof window.execScript !== 'undefined') {
// if `window.execScript exists`, use it
return function(expression) {
return window.execScript(expression);
};
}
// otherwise, globalEval is `undefined` since nothing is returned
})();
function include(filename) {
file_contents = fs.readFileSync(filename, "utf8");
try {
//console.log(file_contents);
globalEval(file_contents);
} catch (e) {
e.fileName = filename;
keys = ["columnNumber", "fileName", "lineNumber", "message", "name", "stack"]
for (key in keys) {
k = keys[key];
console.log(k, " = ", e[k])
}
fo = e;
//throw new Error("include failed");
}
}
But it even gets dirtier with nodejs: you need to specify this:
export NODE_MODULE_CONTEXTS=1
nodejs tmp.js
Otherwise you cannot use global variables in files included with include(...).

Categories